储层条件下CO2相态与应用研究
2010-09-25孔艳,曲斌,刘玉
孔 艳,曲 斌,刘 玉
(大庆油田有限责任公司 勘探开发研究院,黑龙江 大庆 163712)
0 引言
长期以来CO2气田储量评价方法延用天然气田储量规范进行储量计算,由于CO2物理化学性质与天然气的物理化学性质显著地不同,CO2易被液化,对于液态或气液混存CO2储层,用目前储量计算方法,显然是不合适的。建立一种能够满足不同状态下的CO2气藏储量计算方法,对天然气勘探开发具有重要意义。
1 CO2的物理性质
在标准状态下CO2是无色无臭有酸味的气体,相对密度1.5192,不燃烧,CO2是易被液化的真实气体,随温度压力的变化,物理状态分为气态、液态和固态三种相态,在超高和超低温条件下能成等离子态和超固态(超导态)。CO2的临界温度为31.43℃,临界压力为0.2938MPa,较高的临界温度与较低的临界压力决定CO2很易被液化[1,3]。
2 CO2实验
2.1 实验方法
为了了解不同温度、压力条件下CO2的变化特征,开展了实验研究。CO2气藏一般情况下含有一定量的水,为克服由于水蒸气对计算CO2气体的偏差系数的影响(水分子量18,临界压力21.98MPa,临界温度647.71K),使实验更接近储层孔隙流体状况,在高温高压容器内加入定量地层水,以减少水蒸气的影响。容器内的最低水量应该是能够充满容器整个空间且压力达到1个大气压的水蒸汽的量,使实验条件最大限度地接近储层环境,容器相当于放大数倍的岩芯一个孔隙。采用该方法,实验结果更能真实地反映储层CO2变化特征。
2.2 实验分析
图1是实验数据绘制的散点图,散点线密度是等同的,密度线梯度随密度增大而变大。密度线在温度大于31℃时呈扇形放射,小于31℃成束状收敛。如图1所示,在31℃~15℃区间内,密度线压力随温度的降低呈抛物线状,说明该区间的相态是气液混存,CO2是处于液化过程,不以液态为主。当小于10℃时,以液相为主,同时,向相邻低密度线方向收缩。
当温度大于31℃(压力大于临界压力),密度线呈良好的线性关系,即压力是温度和密度函数,P=f(T,ρ),由图1可以得到:P、T、ρ有很好的线性函数关系。
如图1中所示,当CO2密度达到0.46 g/cm3~0.8 g/cm3时,密度线在31℃附近弯曲方向不同,分界线密度近似为0.46 g/cm3;当密度小于0.46 g/cm3向下弯曲,而且密度越小弯曲曲度越大;同样,当密度大于0.46 g/cm3向上弯曲,并随密度增大弯曲曲度而增大。根据张川如对高密度压缩气体定义[1], CO2密度在大于0.46g/cm3属于高密度压缩气,密度小于0.46 g/cm3时,为正常气态。同时,实验证实,最低密度的分界点的与理论液态CO2密度最低点是吻合的。
温度大于31℃,密度线的梯度随温度的升高有增有减,密度是影响CO2曲线梯度变化的主要因素,而在这个区间内,温度不影响曲线的梯度变化。
图1 温压条件下CO2实验图 图2 等温Z-P图版
3 CO2应用研究
CO2是天然气的一种,有效地计算CO2储量是石油工作者追求的目标。利用上述实验数据能够绘制CO2偏差系数图及确定储层密度与温度、压力之间的关系,为计算CO2气藏储量提供可靠的方法。
3.1 偏差系数图版制作
偏差系数实质是在相同温度与压力条件下,相同摩尔数的真实气体与理想气体的体积之比,即:
(1)
其中,V为相同温度压力条件下的真实气体体积,mL;V0为相同温度压力条件下的理想气体体积,mL。
也可以直接用真实气体状态方程:PV=ZnRT 计算偏差系数,即:
(2)
Z为偏差系数;P是真实气体的实测压力,MPa;V是真实气体的实测体积,mL;T是真实气体的实测温度,K;n是在定容器里的气体的摩尔数,mol; R是气体常数, mL·MPa/(K·mol)。
通过实验,得到相同温度、压力的偏差系数,并作等温Z-P-T图(见图2),对于以气相CO2存在储层用该图版能够直接查得Z值,就可以使用规范中规定的储量计算方法进行储量计算。但要是以液态或气液混相存在CO2储层,上述方法就难以计算,下面介绍一种适用于各种相态的储量计算方法。
3.2 等温ρ-P图
上述实验数据,当温度大于31℃,不同密度的温度、压力散点图呈放射状,数据遵循如下方程:
P=a+S·ρ·T
(3)
P为压力,MPa;a为y轴截距;MPa;S为与密度相关的系数;ρ为密度,g/cm3;T为温度,K。
上述方程确定了密度与温度、压力的相关关系,说明储层CO2气体压力是密度与温度的函数,也就是说,CO2气藏储层压力是由CO2密度和温度决定的。求取CO2密度除温度、压力外还要了解更多的参数。解决该问题的最好途径是通过用实测有限个数据建立密度与温度、压力(ρ-T-P)图,即等温ρ-P图(见图3),利用该图查得密度,就可以进行储量评价。
图3 等温ρ-P图版
3.3 储量计算
目前,CO2储量计算主要采用体积法,这里不再阐述,而主要介绍如何应用CO2气田储层密度计算储量,即密度—质量法。利用等温ρ-P图版计算CO2气藏储量,该方法是以实验为基础,用等温ρ-P图版,根据储层的温度、压力直接确定储层流体密度(ρ)。
设CO2储层的体积为V,有:
V=A·h
(4)
A为含油面积,Km2;h为储层厚度,m。
存储CO2的孔隙体积为:
V孔=A·h·φ(1-Sw)
(5)
ф为地下有效孔隙度,%;Sw为原始含水饱和度,%。
孔隙体积含CO2质量为:
M=A·h·φ(1-Sw)·ρ
(6)
ρ为地层条件下CO2气体密度,g/cm3。
体积CO2内的摩尔数为:
(7)
摩尔体积为22.4L[3],即22.4×1000mL,在标准状态下,CO2的体积为:
V标=nmol×22.4×1000
(8)
由标准状态到常温常压下体积为:
(9)
V常为常温常压下CO2体积,m3;V标为标准状态CO2体积,m3。
得到密度—质量法的计算公式:
(10)
G为储量,108m3。
利用图3,查得密度值,再根据储层物性分析数据及地质资料,就能够计算储量,该方法适用于不同相态的CO2储量计算。
4 结语
1)当温度大于31℃(压力大于临界压力),密度线呈良好的线性关系,即压力是温度和密度函数,P=f(T,ρ)且P、T、ρ有很好的线性函数关系。
2)CO2气体在临界温度以下、临界压力以上(P临=0.2938 MPa T=304.43℃)是二相存在,蒸汽压是压力的主要贡献者;CO2气体在临界温度、临界压力以上,CO2以气相存在,分子运动动能是压力的主要贡献者。
3)储层气体CO2的压力是密度与温度的线性函数,直线变化率受密度制约,密度越大变化率越大。
4)建立CO2密度与温度、压力关系图版,并提供了采用该图版的储量计算方法。此方法适用于不同相态CO2的储量计算。
[参考文献]
[1] 张川如.二氧化碳气井测试与评价方法[M].北京:石油出版社,1999.
[2] 刘雨芬, 范尚炯.二氧化碳气藏成藏条件及储量计算方法[J].中国海上油气(地质),1996,10(1):54-63.
[3] 傅献彩.物理化学[M].北京:人民教育出版社,1990.