APP下载

μ子寿命测量实验

2010-01-26孙腊珍吴雨生

物理实验 2010年2期
关键词:平均寿命事例探测器

孙腊珍,吴雨生,李 澄

(中国科学技术大学近代物理系,安徽合肥230026)

1 引 言

宇宙线中的μ子主要是由宇宙线中的π介子衰变(π-→μ-+¯νμ,π+→μ++νμ)产生的.大部分的μ子产生在约15 km的高空,由于μ子不参与强相互作用,因而具有较强的穿透力.海平面上μ子的通量近似为1~2 cm-2·min-1,平均能量约为4 GeV[1-2].μ子带有1个单位的电荷,其质量为105.658 M eV/c2,平均寿命约2.197μs[3].

对μ子寿命进行测量具有重要的物理意义,例如:可以利用μ子寿命的精确值来确定粒子物理标准模型中的费米耦合常数 GF;在实验室对μ子的观测和寿命测量也是对狭义相对论的时间膨胀效应的有力验证.在高能粒子物理实验中,传统的粒子衰变寿命测量方法是直接测量衰变事例的时间分布,计算出粒子的寿命.实验上通常采用延迟符合法测量μ子平均衰变寿命,该方法至少需要2个探测器以及相关的逻辑电路和数据处理系统,这就使得实验装置复杂,并且仪器设备所需费用较高.

中国科学技术大学近代物理系高能物理研究室的教师将科研成果经过精炼,核心提取,并采用大面积塑料闪烁探测器和可编程程序逻辑器件,自行设计了专门的电子学电路和探测系统,研制了既简便又大量减少仪器费用的μ子寿命测量装置,实现了对宇宙线μ子寿命直接测量[4],测量精度达到实验要求.

2 实验原理

宇宙线中的μ子通过塑料闪烁体时,主要的能量损失方式是电离能损,并伴随库仑散射.高能量μ子可直接从闪烁体中穿出,并在径迹周围产生电子及荧光光子等次级粒子;一些较低能量μ子在闪烁体中停止后,可以自由衰变,也可能与物质的原子核发生作用被俘获而消失.其发生衰变如下:

衰变中产生的电子(e)继续与闪烁体发生作用损失能量,并使闪烁体分子激发,而电子反中微子(¯νe)和μ子中微子(νμ)直接穿出.塑料闪烁体中受激发的分子在极短的时间内(约10-10s)退激发并发射荧光(荧光波长在350~500 nm之间),荧光通过光电倍增管光电转换放大而输出电信号,这个信号将作为μ子的“到达”信号.当停止在闪烁体内的μ子发生衰变,产生的电子被闪烁探测器探测,形成μ子“衰变”的信号.“到达”探测器的信号与μ子“衰变”的信号的时间间隔,即为μ子1次衰变的寿命.由于微观粒子的衰变具有一定的统计性,因此实验上是通过测量时间差的分布,进而计算得到μ子的平均寿命[5-6].

宇宙线中μ子的通量很低,每次击中探测器的事例可以看成单μ子事例.设μ子的平均寿命为τ,第 i个μ子的产生时间为 ti,则相对公共的时间零点,μ子在时刻t衰变概率[3]为

如果第i个μ子到达闪烁探测器的时刻为 Ti,那么时间间隔ΔT内,这个μ子衰变的概率是:

式中 K=e-(Ti-ti)/τ.如果实验共测量到M个μ子衰变事例,则在时间差ΔT以内,衰变的总μ子数N为

可见在ΔT时间内μ子衰变数随时间同样服从指数规律.实验上通过记录确定时间间隔内的μ子衰变事例数,利用指数函数拟合方法,可以求得μ子衰变的平均寿命τ.

3 实验装置

根据μ子寿命测量实验原理,自行设计制作了大面积闪烁探测器(探测面积450 cm2),如图1所示.实验使用的塑料闪烁体的发光衰减时间约为3 ns,与微秒量级的μ子衰变时间相比很小,可以保证时间差测量的相对准确性.

图1 实验装置系统框图

整个实验测量装置由塑料闪烁探测器[6]、高压电源、数据获取系统以及计算机和分析软件4部分组成.宇宙线中μ子入射到塑料闪烁体,经光电倍增管、放大器、甄别器、可编程逻辑电路(FPGA),最后通过USB接口把数据输入计算机处理.

图2是测量装置的照片.2套测量装置共用1个闪烁体和高压电源.

图2 μ子寿命测量装置

4 实验内容

首先将高压电源线(红色)与探测器连接,探测器信号线(黑色)与信号处理仪器测量面板上的信号输入端连接,USB接口线与计算机相应接口连接.将各部件电源线接好,检查无误后,打开高压电源和信号处理仪器电源,并将探测器工作高压设置为-600 V,记录电压及电流值.

1)用示波器观测放大器输出信号,并记录放大信号特征(幅度、上升时间,噪声信号);观测甄别器输出信号,记录甄别器输出信号特征(信号宽度、频率).

2)调节仪器面板上的电阻以选择合适的阈电压,使得去除放大器输出信号中包含的噪声信号.其方法是将阈电压从0.01~0.5 V连续变化,取10个测量点,作μ子计数-阈电压曲线,并得出合适的阈电压值.

3)打开计算机,执行数据获取软件:m uon.tcl,获取μ子的衰变信号,要求累积数据时间足够长(实验安排测量 3~4 h),存储数据文件(自备U盘拷贝数据文件).

学生完成实验后,要求利用O rigin软件处理数据,计算μ子的平均寿命,打印出实验曲线和实验结果,如图3所示.可选取感兴趣的相关问题进行探讨:

a.在地面参考系观测,运动的μ子(速率为0.998c)到达地面的平均寿命是多少?与实验测量的结果是否矛盾?

b.该实验是如何保证测量的2个信号恰是同一μ子的到达与衰变信号?

c.解释实验测量的μ子衰变寿命曲线具有一定分布的物理原因.

图3 衰变事例-时间关系曲线

d.比较所测数据与 100 h数据结果(由实验室提供)的差别.实验测量误差可能有哪些来源,如何减少这些误差?

e.1948年,我国科学家张文裕发现负μ子可以取代电子被原子核捕获形成μ原子,分析μ氢原子与氢原子在原子半径、结合能方面的差异.设想是否可以用μ氘原子实现聚变反应?

对问题b的探讨:学生可以利用 GEAN T4软件[4]对入射μ子在探测器中的衰变概率进行模拟.估计测量事例率,分析偶然事例对实验的影响.μ子的测量实验中,对每个事例设置20μs的测量时间窗,只取到达信号与衰变信号时间间隔小于这个窗的事例.对实验进行模拟,宇宙射线的μ子在晶体中衰变比率约2×10-3,而μ子的事例率约为10 Hz,μ子的衰变计数率在每分钟几个左右.伪事例的概率,即20μs内连续有2个无时间关联的μ信号的概率约10-4量级,所以可以认为,经可编程逻辑判选后,所测量输出的数据几乎都是μ子沉积在闪烁体内并且发生衰变的事例.

对问题d的探讨:学生可获取不同时期(例如:10 h,1 d,7 d等)的多组数据,用适当的统计方法处理实验数据,并对结果进行统计置信度分析,使学生认识数据的随机性和统计性.学生通过查阅参考书、计算机模拟或实验和数据分析,对感兴趣的问题进行探讨,可进一步理解μ子寿命测量的实验原理,加深对爱因斯坦相对论中时间膨胀效应的理解.同时给出实验条件,写出实验报告.

图3给出的是累积收集了18 296个衰变事例的实验结果.由测量数据拟合得到的实验值为τ=(2 124.6±9.6)ns,与文献[2]中给出的μ子静止平均寿命参考值(2 197.03±0.04)ns相近.由于测量时间所限,事例率及事例总样本数偏低,精度略显不足.

5 结束语

自行研制的μ子寿命测量实验装置相对比较精简,是一个较典型的基本粒子探测实验,测量方法新颖可靠,同时利用宇宙线开设高能粒子物理实验,既节省了经费,又解决了使用放射源开设核物理实验的辐射防护问题.学生通过此实验,加深了对高能粒子物理理论理解,并对高能粒子探测器、宇宙线的探测方法、相关电子学和数据获取与处理等方面有比较系统的了解.

[1] Coan T E,Ye J.M uon physics user manual[Z].v050201.0.

[2] Particle Data Group.Cosmic ray muon detection[Z].Review of Particle Physics,Regentsof the U-niversity of Califo rnia.2006.

[3] Lundy R A.Precision measurement of theμ+lifetime[J].Phys.Rev.,1962,125:1 686-1 696.

[4] 吴雨生.宇宙线muon寿命测量实验的Geant4模拟[D].合肥:中国科学技术大学,2008.

[5] 谢一冈,陈昌,王曼,等.粒子探测器与数据获取[M].北京:科学出版社,2003:171-220.

[6] 汪晓莲,李澄,邵明,等.粒子探测技术[M].合肥:中国科学技术大学出版社,2009:232-274.

[7] 林延畅,陈少敏,高原宁,等.μ子寿命测量与高能物理实验创造性人才的培养[J].实验技术与管理2008,25(9):19.

猜你喜欢

平均寿命事例探测器
传神写照,意味深长——写人要关注具体事例和细节
作文想好,“事例”不能少
第二章 探测器有反应
EN菌的引力波探测器
第二章 探测器有反应
中国十大宪法事例(2017)
有7颗彗星已经被探测器造访过
2050年,富国人均寿命120?
中国十大宪法事例(2012)
世卫称日本平均寿命全球第一