电流型逆变器问题应用研究
2009-06-04曹树栋
曹树栋
摘要:在电机漏感上减小的情况下,可以相应地降低功率半导体器件的耐压要求,为了减小换流时间以提高逆变器的运行频率,也要求降低电动机的总漏感上。
关键词:逆变器 电动机 电势
下述问题涉及电流型逆变器内部结构,以串联二极管式电流型逆变器为讨论对象。对异步电动机的从逆变器元件的选择对电机参数的要求。
串联二极管式电流型逆变器的品闸管和隔离二极管可以确定耐压值。可以看到,在电机漏感上减小的情况下,可以相应地降低功率半导体器件的耐压要求。另外,二极管换流阶段的持续时间可确定。为了减小换流时间以提高逆变器的运行频率,也要求降低电动机的总漏感上。因而,电流型逆变器要求异步电动机有尽可能小的漏感上。这一点正好与电压型逆变器对异步电动机的要求相反。在功率半导体器件耐压已知的情况下,应合理地选择电动机,以减小换流电容器的电容量。
从电动机运行的安全可靠性对电动机材料的要求,电动机在电流型逆变器供电的运行过程中,由干每次换流在电压波形中产生尖峰。这个尖峰在数值上等于I,差加千正线电势波形之上。因此,电动机在运行过程中实际承受的最高电压,于电动机额定线电压的峰值。为了电动机安全地运行,应适当加强其绝缘。由于电流矩形波对电动机供电在电动机内造成谐波损耗,逆变器在高于50赫的情况下运行时,电动机的损坏也有所增加。为了不致因电机效率过低和温升过高造电动机过热而损坏,应适当降低电动机铜铁材料的电负荷。在运行频率较高的情况下,应注意降低电动机的机械损耗和铁耗。
起动转矩和避免机振对电动机结构的要求。电动机低频起动时,起动转矩的平均值和转矩的波动率。起动转矩在某频率时具有最大值。它取决于电动机参数。当频率低于出现最大起动转矩的数值时,转矩的波动率急剧增加。因此,应根据运行要求和特性等决定最佳起动频率或电动机参数。此外,即使在逆变器对电动机供电的正常运行情况下,转矩波形中也含有六倍于逆变器输出频率的脉动转矩。为了避免这种脉动转矩造成的机械系统谐振,应使机械系统的谐振频率与逆变器运行频率范围的六倍相互错开。
对于功率半导体器件的要求。在串联二极管式电流型逆变器中,在触发一个晶闸管,用电容电压关断另一晶闸管以后争由恒流对电容器反向充电。由于电容电压过零需要一段时间,这就保证被关断晶闸管有较长的承受反压的时间。如果说,电压型逆变器对于晶闸管元件的关断时间有较高的要求(郎要求使用快速晶闸管),那末电流型逆变器由于承受反压的时间较长,因而可以使用普通晶闸管元件。在换流过程中以谐振造成了电压尖峰,因此要求晶闸管元件和隔离二雌有较高的耐压值。
换流浪涌电压吸收回路。在正弦电势波形上迭加的尖峰电压,是由于换流过程中电动机释放漏感贮能所产生的。特别是在运行频率较高的场合,在为了缩短换流时间而选择较小的换流电容值的情况下,换流浪涌过电压就更加严重。浪涌电压将直接威胁功率半导体器件和电动机的安全运行。为了减小这种影响,可以在逆变器输出端,与负载电动机并联一个换流浪涌电压吸收回路(也称为电压箝位器),如采用电压箝位器以后,逆变器的输出电压和输出电流波形如逆变器输出电压的尖峰可以限制在正弦电势峰值的(11~12)倍以内。有源逆变器型式,可以使箝位电压保持一定。
逆变器运行的可靠性问题。在逆变器的直流侧设有乎波大电感上,在电流闭环的作用下,可以有效地限制故障电流,即使在逆变器换流失败或短路的情况下,也不会造成大电流而损坏元件,因此,电流型逆变器的卫作是可靠的。
能够实现电能再生。在电动机降频减速时,系统能自动地运行于再生状态,可把机械能有效地转变为电能,并缩短电动机的减速时间。此时,逆变器与整流器直流侧电压的极性反号,而电流的流向保持不变,功率由电动机经逆变器和整流器流向交流电源,实现再生制动。因此,电流型逆变器能够方便地实现四象限运行,其动态特性好,容易满足快速及可逆系统的要求。
使用电流型逆变器除了用于要求电变频调速的系统以外,近年来在下述两个方面受到较大的关注。(1)用于泵、风机、增压机等机械的节能。过去这些机械常用恒频的交流电机拖动,在流量、压力要求变化时,用调节阀门的蘐芸方法以满足要求。这样,就白白地浪费了大量的电能。电流型逆变器因有许多使用上的优点,并且采用变频调速,可以减小这些机械低速时的电能消耗,以达到节电的目的。(2)作为电动机的起动器。交流电动机采用直接投入电网(电力电源)的起动方法,不仅对于电网的冲击很大,可能造成与电网联接的其它用电设备的不正常运行,因而不适用于经常要求起动的设备。而且直接投入电网的起动方法对于交流电动机和生产机械也产生较大的冲击,因而容易损坏设备。采用电流型逆变器向交流电动机供电,可以用低频起动,逐步增高逆变器输出频率和电机的转速,最后向步切换到电力电源上。因此,可以减轻对电网的冲击,以及减小电机和机械的应方口作为起动器,特别在生产机械无载起动的情况下,逆变器的设计容量可大为减小。◆
参考文献:
[1] 邓隐北, 吴佑曾. 对节能电机的几种错误看法[J]. 电机技术 , 1995,(04)
[2] 邓隐北,吴佑曾. 对节能电机几种错误观点的分析[J]. 节能 , 1995,(11)
[3] Stephen Williamson, 冯丽亚,虞绍锦, 张晶. 高效节能电机及其发展趋势[J]. 中小型电机 , 1999,(04)
[4] 新型高效节能电机[J]. 起重运输机械 , 2005,(11)
[5] 杨奎林, 温嘉斌, 王元柱, 谢先平. 油田用节能电机阈值的确定及动态仿真[J]. 哈尔滨理工大学学报 , 2004,(06)
[6] 陈金柱. 高效节能电机将备受推崇[J]. 电器工业 , 2005,(03)
[7] 张树德, 周长敬. 大转矩电机与其它几种节能电机的对比[J]. 节能 , 2001,(09)
[8] 推广高效节能电机已势在必行[J]. 家电科技 , 2003,(03)
[9] 高效节能电机将作为最重要的动力设备之一[J]. 中小型电机 , 2005,(06)
作者单位:西北民族大学电气工程学院 05级电气工程及其自动化专业(2)班