用方程解决数学实际问题中的行程问题
2009-01-20武箭
武 箭
数学实际问题中的行程问题是用方程解决数学实际问题的典型题型,平时练习和考试中都会经常出现,而初中阶段的学生对于应用题本已感到吃力,就更别说较好地把握行程问题的各种题型了,本文就用方程解决数学实际问题中的行程问题作简单归纳,以供读者参考。
不管是什么行程问题,其基本的关系都是:路程=速度×时间,而针对不同的实际情况又有其特有的关系,下面举例说明:
一、相向问题
例1:甲乙两站的路程为240千米,一列快车在甲站,一列慢车在乙站,快车的速度是慢车的1.5倍,若两车同时开出,相向而行,2小时相遇,快车、慢车每小时各行多少千米?
分析:简单的相向问题抓住基本关系:甲走的路程+乙走的路程=两地的路程可设慢车的速度为x千米/小时,则快车的速度应为1.5x千米/小时,可得2(1.5x)+2x=240
例2:祖孙两人在一条长300米的环行跑道上跑步,已知孙子的速度是爷爷的2倍,他们同时同地反向跑步,3分钟后相遇,求祖孙两人的速度。
分析:此题也可以看成是相向问题,抓住基本关系:爷爷的路程+孙子的路程=环行跑道一圈的路程,可设爷爷的速度为a米/分,则孙子的速度应为2a米/分,可得3a+3(2a)=300
二、追及问题
1.同地不同时的追及问题
其等量关系是:两人所走的路程相等(两人所用时间不同)
例:学校一队师生步行去某风景区春游,大队伍出发1.5小时后,学校有紧急通知,于是派通讯员骑自行车以每小时10千米的速度追赶,已知师生们步行的速度为2千米/小时,问通讯员出发后多少分钟追上大队伍?
分析:可设通讯员出发后x小时追上大队伍,可得:10x=2(1.5+x)的出答案后将时间转化为分钟即可。
2.同时不同地的追及问题
其等量关系是:两人所走的路程之差=两地的距离(两人所用时间相同)
例:摩托车与货车分别在相距40千米的甲、乙两地,两车的速度分别是45千米/小时和35千米/小时,他们同时出发,货车在前,多少小时后摩托车追上货车?
分析:设m小时后摩托车追上货车,可得:45m-35m=40
3.不同时不同地的追及问题
其等量关系是:两人所走路程之差=两地的距离(注意两人所用时间不同)
例:摩托车与货车分别在相距40千米的甲、乙两地,两车的速度分别是45千米/小时和35千米/小时,货车在前,货车先出发1小时后摩托车才出发,摩托车出发后多少小时才能追上货车?
分析:设摩托车出发后n小时追上货车,可得:45n-35(n+1)=40
4.同时同地的追及问题
这一类问题都是在环行跑道中的问题,其等量关系是:两人所走的路程之差=环行跑道一圈的路程(两人所用时间相同)
例:小王每天到田径场沿400米跑道跑步,都见到一位田径队的叔叔也在跑步锻炼,每次总是小王跑2圈的时间,叔叔跑3圈。一天小王打算和叔叔(下转第65页)(上接第64页)同时同地同向而跑,看叔叔隔多少时间追上小王,结果隔2分40秒,叔叔就追上了小王。问两人的速度分别是多少?
分析:“小王跑2圈的时间,叔叔跑3圈”表示小王与叔叔的速度之比为2∶3,设小王的速度为2a米/秒,则叔叔的速度为3a米/秒,于是160(3a)-160(2a)=400
三、航行问题
航行问题的基本数量关系:顺水速=静水速+水速,逆水速=静水速-水速;找寻等量关系的方法:抓住两码头之间距离不变,水流速度,船在静水中速度不变的特点来考虑。
例:一艘船航行于A、B两码头之间,顺水航行需3h,逆水航行需5h,已知水流速度是4km/h,求两码头之间的距离。
分析:此题直接设距离不如设船在静水中的速度,然后根据顺水路程等于逆水路程列方程求解,设船在静水中的速度为x km/h,则船顺水航行的速度为(x+4)km/h,而船逆水航行的速度为(x-4)km/h,有3(x+4)=5(x-4)
四、特殊问题
例:客车和货车分别在两条平行的铁轨上行驶,客车长150米,货车长250米,如果两车相向而行,那么从两车车头相遇到车尾离开共需10秒钟;如果客车从后面追货车,那么从客车车头追上货车车尾到客车车尾离开货车车头共需1分40秒,求两车的速度。
分析:可设客车和货车的速度分别是x米/秒和y米/秒,但如果按实际进行作图,此题比较复杂,不如这样分析,两车相向而行时,我们看作是货车不动,只是客车前进,那么客车的速度就应是两车速度之和,而从两车车头相遇到车尾离开就是行驶了两车的总长400米的路程。即可列方程:10(x+y)=150+250
客车追及货车时,我们也看作是货车不动,只是客车前进,这时客车的速度就应是两车速度之差,而从客车车头追上货车车尾到客车车尾离开货车车头就是行驶了两车的总长400米。即可列方程:100(x-y)=150+250
两个方程联列得方程组求解即可得。
以上就用方程解决数学实际问题中的行程问题作简单归纳,切不可生搬硬套,一定要具体问题具体分析,以不变应万变,方能较好地解决实际问题。
作者单位:四川省泸州市泸县第五中学