FAPI成像:突破传统PET/CT在癌症诊断中的局限性
2024-10-31董欣孙瑶汪菲张术谢国柱
摘要:近年来,传统的18F-氟代脱氧葡萄糖PET/CT在癌症诊断中得到广泛应用,但其在检测微小转移和淋巴结转移及显像特异性方面存在一定局限性。成纤维细胞激活蛋白α(FAPα)是肿瘤微环境中肿瘤相关成纤维细胞的特征性分子标记之一,其在90%的恶性实体瘤中呈现出高表达模式。靶向FAPα的新型放射性显像剂-68Ga标记的成纤维细胞激活蛋白抑制剂(68Ga-FAPI),已在多种肿瘤中显示出突破性的诊断潜力。本文综述了FAPI成像技术的分子基础及发展历程,并回顾了FAPI成像在乳腺癌、肺癌和胰腺癌等多种癌症中的临床应用现状,展示了其在诊断效能上相对于传统18F-FDG的优势,最后讨论了FAPI显像在当前临床推广时面临的主要挑战,旨在突显FAPI成像在癌症诊断中的巨大潜力及其未来的研究方向,以推动该技术的进一步完善和在临床实践中的广泛应用。
关键词:FAPI;PET-CT;放射性显像剂;癌症诊断
FAPI imaging: breaking the limitations of traditional PET/CT in cancer diagnosis
DONG Xin, SUN Yao, WANG Fei, ZHANG Shu, XIE Guozhu
Department of Radiation Therapy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
Abstract: In recent years, traditional 18F‑FDG PET/CT has been widely used in cancer diagnosis. However, it has certain limitations in detecting small metastases and lymph node metastases, as well as imaging specificity. Fibroblast activation protein-α (FAPα) is overexpressed on cancer-associated fibroblasts in approximately 90% of malignant solid tumors. 68Ga-labelled radiopharmaceuticals‑FAP‑inhibitors (FAPI)‑have been developed for PET by targeting FAPα, and showed breakthrough diagnostic potential in various tumors. "This article reviews the molecular basis and development history of FAPI imaging technology, and reviews the current clinical application status of FAPI imaging in various cancers such as breast cancer, lung cancer, and pancreatic cancer, showing its diagnostic efficacy compared to traditional 18F-FDG. Finally, it discusses the main challenges FAPI imaging faces in current clinical promotion, aiming to highlight the great potential of FAPI imaging in cancer diagnosis and its future research directions, to promote further improvement of the technology and its widespread application in clinical practice.
Keywords: FAPI; PET-CT; radiopharmaceuticals; cancer diagnosis
成像技术是恶性肿瘤治疗的基础,其检出率因肿瘤种类和诊断方法而异。正电子发射计算机断层扫描(PET/CT)是一种重要的成像技术,可以获取肿瘤的解剖学、功能学和分子信息,广泛用于癌症的诊断与分期[1] 。18F-氟代脱氧葡萄糖(18F-FDG)是最常用的PET/CT成像示踪剂。18F-FDG在检测、分期和评估癌症患者治疗反应方面具有高敏感度和特异度。但18F-FDG也存在一些局限性:这种示踪剂在检测小于1 cm的微转移和淋巴结转移方面的敏感度相对较低,且无法准确区分急性炎症与肿瘤生长[2];此外,患者需要在检查前禁食,整个检查可能需要较长的扫描时间[3]。因此,有必要开发新的示踪剂以提高PET/CT的诊断准确性和便利性。成纤维细胞激活蛋白α(FAPα)作为肿瘤相关成纤维细胞(CAFs)的一种特征性标记,高表达于绝大多数的恶性肿瘤,而在正常组织中几乎不表达,成为肿瘤诊疗的重要靶点。基于 FAPα抑制剂(FAPI)的 PET/CT显像因受血糖影响小、肿瘤摄取迅速及较高的肿瘤/背景比值(TBRs)等特点,在临床中显示出良好的应用前景。本综述旨在详细探讨FAPI成像技术的分子基础、发展历程、在各种癌症类型中的临床应用及面临的挑战。
1 "FAPI成像的分子基础及发展历程
FAPα高表达于多种恶性肿瘤微环境中的CAFs表面,如乳腺癌、结肠癌和胰腺癌[4-6],但在正常组织和良性肿瘤中,FAPα的表达通常很低或根本不存在。靶向FAPα的分子影像正成为一种癌症和纤维化疾病的有力诊疗手段。
FAPα是一种膜结合型丝氨酸蛋白酶,作为二肽基肽酶(DPP)家族的主要成员之一,其具备明胶酶和二肽基肽酶活性,能够有效切割包括I型胶原和二肽在内的多种底物[7]。FAPα与另一种蛋白酶DPPIV(也称为CD26)在结构和功能上有很高的相似性(48%的氨基酸序列同源性),但与FAPα不同的是,DPPIV在正常生理条件下广泛表达于多种组织中,并参与多个生理过程,因此是检测FAPα时的一个潜在干扰因子[8];此外,脯氨酸内肽酶(PREP)也与FAPα具有相似的功能,同样可能成为干扰因子[9]。
由于FAPα的蛋白酶属性,各种针对FAPα的人工底物及抑制剂被开发。从2005年第1代FAPα小分子抑制剂PT-100被报道开始[10],研究人员围绕着提高FAPI的选择性做了大量工作。近10年的时间,FAPI经历了7代的结构优化(FAPI-1~FAPI-7)[11-17](图1)。有学者于2014年结合既往关于FAPI探索经验,在其团队开发的FAPI-7基础上对吡咯烷环进行双氟置换,得到了目前为止对FAPα具有最佳亲和力的FAPI-8(UAMC-110)[18](图1),其IC50值达3.2 nM,并且有着高度的FAPα选择性:其对FAPα的亲和力是DPPIV的3万倍(IC50.DPPIVgt;100 μM),是PREP的562倍(IC50.PREPgt;1800 nM)。
通过对UAMC-1110进行结构修饰,2018年有研究团队开发了FAPI-01和FAPI-02配体,在经过放射性标记后,得到了125I-FAPI-01和68Ga-FAPI-02放射性核素探针[19],两种核素探针均对FAPα具有高亲和力,但125I-FAPI-01因存在时间依赖性外流和酶促脱碘等问题,其进一步临床前评估受阻,而68Ga-FAPI-02也由于在肿瘤中的滞留性缺陷,需要进一步改进。同年,该团队开发了核素探针FAPI-04,相较于前代探针,FAPI-04展现了更高的FAPα亲和力及更高的肿瘤摄取,68Ga-FAPI-04被广泛用于多种肿瘤的动物模型和人类患者的研究[20]。有学者在FAPI-04基础上进一步改变了配体的亲脂性,合成了新的核素配体FAPI-46[21],提高了其在肿瘤中的滞留时间;标记放射性核素68Ga后,68Ga-FAPI-46相较68Ga-FAPI-04展现出更低的背景信号,产生了更高对比度的图像。
在用于标记FAPI的放射性核素方面,除了最常用的68Ga之外,18F标记的FAPI具有更好的体内稳定性和药代动力学,可以提高成像质量和准确性;此外,18F标记示踪剂的生产不需要现场回旋加速器设备,因此它的生产和运输通常比68Ga更方便[22, 23]。对于放射性治疗,177Lu和90Y是主要选择。这些β发射体通过放射性衰变释放出粒子,能有效破坏肿瘤细胞,同时对周围正常组织的影响较小。特别是177Lu,由于其较低的能量和适中的穿透力,适用于处理小至中型肿瘤。
2 "临床应用
2.1 "乳腺癌
FAPI在乳腺癌中的应用主要集中在新诊断患者的分期和疑似复发/转移性状态的再分期。研究表明,68Ga-FAPI示踪剂在乳腺癌中显示出高肿瘤摄取率(SUVmax)和TBRs[24],其对癌症转移的检出率超过18F-FDG,特别是在骨骼和腹膜转移方面更为敏感[25, 26];且相较于18F-FDG ,68Ga-FAPI-04在淋巴结、肝脏和脑转移的检出率也更高[27, 28]。此外,有前瞻性研究评估了68Ga-FAPI在乳腺癌患者接受新辅助化疗后早期和晚期预测病理反应的适用性:该研究纳入了22例乳腺癌初诊患者,在患者接受标准化疗前、化疗2周期后和手术前1周进行了68Ga-FAPI PET/CT扫描,结果显示,SUVmax和TBR在化疗2周期后和手术前1周的扫描的绝对值在pCR患者中比非pCR患者低,这表明68Ga-FAPI PET/CT在预测新辅助化疗后的病理反应方面具有潜力[29]。然而,尽管多项研究指出FAPI在乳腺癌原位及转移区域成像具有优势,既往也有临床前研究针对两种放射性配体在肿瘤转移纵向监测中的表现进行过对比,通过监测小鼠模型(n=40),研究者发现68Ga-FAPI-04在肿瘤转移晚期阶段敏感度低于18F-FDG [30],这一定程度上提示需要根据肿瘤的类型、已知的生物标志物表达情况及其临床阶段来个性化选择成像策略。此外,68Ga-FAPI PET/CT也有一定比例的假阳性,这是由于疤痕、正常乳腺组织、炎症组织和术后伤口愈合中成纤维细胞增生导致的非肿瘤特异性摄取所致[31]。
2.2 "肺癌
在肺癌的诊断和分期中,尽管18F-FDG PET/CT表现良好,但仍然存在一定局限性,如缺乏特异性和在不同组织学类型之间存在变异性[32, 33]。FAPI PET/CT在肺癌中的研究相对有限,然而,研究指出,在评估晚期肺癌患者的全身转移,特别是在传统18F-FDG PET/CT可能表现不佳的脑和胸膜转移检测中,68Ga-FAPI提供了一个可能更为有效的选择,因为68Ga-FAPI 能够展现出更高的TBR[33, 34]。还有研究显示,68Ga-FAPI-46 PET在18F-FDG PET阴性的如贴壁型肺癌的病灶中显示出诊断潜力,并且动态成像可能提供额外的诊断信息[35]。对于累及淋巴结的检测,有研究揭示18F-FDG检测出多个FDG活跃的淋巴结,而68Ga-FAPI在同样的淋巴结中反而未显示出增加的摄取[36]。
2.3 "胰腺癌
FAPI显像在胰腺癌的影像诊断中表现出色,因为胰腺癌肿瘤微环境高度纤维化,且CAFs在此过程中活跃,使得针对FAPα的显像剂能有效区分肿瘤和周围组织。对于原发性胰腺病变,大量研究表明FAPI PET优于FDG PET,表现为SUV值和敏感度更高[37-39]。此外,FAPI PET在癌症的淋巴结转移中的检出率同样超过了FDG CT[39-41]。对于胰腺导管腺癌的远处转移,也有部分研究报道FAPI PET具有优势[40, 41]。但也有学者指出,FAPI PET在识别胰腺癌原发病变时特异性低于FDG PET,这可能与胰腺原发肿瘤和肿瘤诱导的胰腺实质梗阻性胰腺炎的摄取强度重叠有关[42, 43]。针对这样的情况,双时间点(延迟3 h)成像已被研究作为区分肿瘤和炎症性纤维化的解决方案,并观察到积极的结果。
2.4 "骨与软组织肉瘤
骨肉瘤和软组织肉瘤表现出高FAPα表达,使FAPα成为这些肿瘤类型的特异性靶点。有团队的前瞻性研究探讨了骨与软组织肉瘤的FAPα组织病理学表达与68Ga-FAPI PET摄取强度之间的关系,并且进一步分析了68Ga-FAPI的PET敏感度、特异度和阳性预测值的差异。他们分析了43例同期接受68Ga-FAPI-46 PET和18F-FDG PET检查的软组织肉瘤患者,发现68Ga-FAPI PET摄取强度与病理学上的FAPα表达之间有显著关联,尤其是在高FAPα表达的肿瘤中,68Ga-FAPI的摄取更高。他们还观察到68Ga-FAPI PET在肉瘤的诊断中具有很高的阳性预测值和敏感度,但是特异度和总体检测率与18F-FDG PET相似[44]。另有研究评估了68Ga-FAPI PET在多种骨肉瘤和软组织肉瘤中的诊断性能,研究共纳入200例患者,结果显示68Ga-FAPI PET在孤立性纤维瘤、未分化多形性肉瘤和平滑肌肉瘤中有较高的放射性示踪剂摄取。与前述研究一致,在低级别肉瘤和未经WHO分级的肉瘤中,68Ga-FAPI的摄取和准确性均显著高于18F-FDG PET,表现出更好的诊断效果,并且68Ga-FAPI与肉瘤活检样本中的FAPα表达分数具有中度相关性。这些结果强调了在传统成像方法表现不佳的低级别和未分级肉瘤中FAPI成像的潜在价值[45]。
2.5 "胶质瘤
由于正常脑组织对葡萄糖的高摄取,FDG-PET在脑胶质瘤中的成像可能受到干扰,使得区分肿瘤和正常脑组织变得困难,相对而言,FAPI成像具有更高的特异性,并能提供更高TBR的成像结果,在诊断、治疗规划及效果监测脑胶质瘤中具有巨大优势。既往有研究使用FAPI PET成像技术来探索其对胶质瘤的诊断潜力,通过对两种FAPα配体(FAPI-02和FAPI-04)在体外和小鼠模型中的亲和力、特异性、药代动力学和生物分布进行分析,以及在18例胶质瘤患者中进行临床PET成像,发现FAPI-04在IDH野生型胶质母细胞瘤和高级别IDH突变型星形细胞瘤中表现出较高的示踪剂摄取,而在低级别的IDH突变型星形细胞瘤中则没有显著摄取。这表明FAPI特异性成像可能有助于无创区分低级别与高级别胶质瘤,为胶质瘤的诊断和随访研究提供了新的视角[46]。后续研究进一步在临床试验中FAPI显像能力进行了测试,通过对12例手术切除或活检不完全的胶质母细胞瘤患者进行放疗前的18F-FAPI-PET/CT和MRI检查,发现18F-FAPI PET/CT成像技术显示出对病变的高亲和性,其中16个FAPI亲和性病变区域在12名患者中通过PET/CT被检测出来,而MRI检测到了23个病变区域。尽管18F-FAPI PET/CT在病变检测的数量上低于MRI,但其阳性预测值达到了100%,表明其在区分MRI上检测到的病变时具有高度的特异度;此外,胶质母细胞瘤病变的SUVmax和TBR值分别为7.08±3.55和19.95±13.22,意味着FAPI亲和性病变可能因为更高的TBR而具有更清晰的PET/CT显像。这些发现提示在区分那些MRI上难以确诊的病变时,18F-FAPI PET/CT可能在胶质母细胞瘤的诊断、活检和放疗计划中有其独特的应用价值[47]。然而,现阶段研究的样本量有限,并且相关报道较少,未来需要更大样本量的前瞻性研究来进一步验证这些初步发现。
2.6 "肝胆恶性肿瘤
目前18F-FDG PET/CT在肝脏恶性肿瘤的应用存在争议。有研究显示高达40%~50%的肝细胞癌呈低代谢或等代谢状态,尤其是低级别肝细胞癌,对18F-FDG显像不敏感,这将导致恶性病变被掩盖,提高假阴性率。而鉴于FAPα在90%的上皮性癌症的CAFs中高度表达,有研究比较了68Ga-FAPI-04 PET/CT 和18F-FDG PET/CT在肝脏恶性肿瘤中的诊断价值:一项纳入了41例疑似患有肝细胞癌或胆管癌的患者的研究中,68Ga-FAPI-04 PET/CT在敏感度、特异度和准确性上均优于18F-FDG PET/CT,并且在FDG不敏感的病理类型粘液性腺癌的诊断方面FAPI显像的表现更为突出[48];另一项前瞻性研究也显示,18F-FAPI PET/CT在评估非FDG敏感的肝脏局灶性病变中表现出较高的诊断准确性(83.8%),并成功区分了大多数恶性和良性病变[49];还有研究进一步证实了68Ga-FAPI-46 PET/CT在检测肝内病变和肝外(包括脑和腹膜区域)转移中的高效性[50]。对于胆道系统癌症,也有研究强调了68Ga-FAPI PET/CT的应用价值,其在检测原发肿瘤、淋巴结和远处转移方面具有高敏感性,能提供关键的新肿瘤发现和肿瘤分期信息[51]。
2.7 "胃癌
有研究比较了68Ga-FAPI-04与18F-FDG PET/CT在13例胃癌患者中的成像结果。在初步分期评估中,68Ga-FAPI-04 PET/CT检测到所有原发性胃肿瘤,而18F-FDG仅检测到50%的病例。即使两种示踪剂在2例受试者中检测到相同的转移性淋巴结,FAPI的TBR比FDG更高,且在1例FDG亲和性弱的病例中,68Ga-FAPI-04 PET/CT揭示了额外的淋巴结;在3例分化差的印戒细胞胃癌患者中,报告了FAPI阳性而FDG阴性的腹膜病灶[52]。此外,一项研究招募了45例新诊断胃癌及11例术后复查患者,评估68Ga-FAPI-04和18F-FDG PET/CT的成像效果:尽管两种示踪剂在检测原发肿瘤和淋巴结转移方面的能力相当,68Ga- FAPI-04在检测腹膜受累和骨病变方面更为准确;由于腹膜转移癌侵袭过程中间质成纤维细胞活化,68Ga-FAPI-04能更清晰显示转移性腹膜肿块[53]。有研究通过对25例胃癌患者进行68Ga-FAPI-04 PET检查,明确了68Ga-FAPI显像的优势:对于原发病灶、转移淋巴结和远处转移病灶,68Ga-FAPI-04的检测率和SUVmax值均高于18F-FDG,并且,68Ga-FAPI-04 PET/CT在25例中的14例中发现了新的病灶,并在7例中修改了肿瘤分期[54]。这些结果均提示FAPI PET-CT成像在胃癌的诊断中具有比FDG更好的应用价值。
2.8 "结直肠癌
结直肠癌患者的五年生存率在很大程度上取决于首次就诊时的癌症阶段。早期阶段的生存率在80%~90%之间,而在晚期阶段降至13%。结直肠癌的最佳成像对于准确的首次分期和选择首次治疗至关重要,同时在随访检查中准确及时地检测局部复发和/或转移也同样重要。在这种情况下,18F-FDG PET/CT存在几个局限性,包括特异度低、无法检测微小病变以及粘液性和印戒细胞癌症缺乏FDG摄取的情况。基于FAPI的示踪剂能一定程度弥补18F-FDG的局限性。有研究评估了61例进行了68Ga-FAPI-04和18F-FDG PET/CT成像的转移性结直肠癌病变患者,研究者发现68Ga-FAPI-04在印戒细胞/粘液性细胞类型的结直肠癌原发病变或腹膜和肝转移的平均TBR和SUVmax均高于18F-FDG ,68Ga-FAPI-04 PET/CT成像结果使得10例(16.4%)受试者的分期升级和5例(8.2%)受试者的分期降级;相比18F-FDG,有13例(21.3%)受试者的治疗选择发生了变化[54]。
3 "FAPI成像面临的挑战
FAPI成像作为一种前沿的医学成像技术,虽然在多种癌症的诊断中展现出巨大潜力,但同样存在一些挑战和限制。第一,68Ga-FAPI-04的摄取在纤维化、伤口愈合或炎症等良性病变中也有所增加[55, 56]。虽然这些良性病变的SUVmax通常低于恶性肿瘤,但两者之间还是存在较大的SUVmax重叠。这一现象与FDG PET相似,尽管通过结合CT表现、特定位置及临床信息可以辅助诊断某些良性病变,但依然有病变可能与恶性肿瘤混淆,需引起临床上的高度关注。第二,虽然针对FAPα的小分子显像剂在某些恶性肿瘤成像中显示出较18F-FDG更优的性能,但目前关于FAPI PET/CT的研究仍相对有限,大多数研究样本较小,且多为早期或探索性研究阶段。因此,为了验证FAPI在各类癌症及其他疾病中的效果与安全性,迫切需要开展更多大规模和多中心的临床试验。第三,虽然初步研究表明FAPI成像具有良好的耐受性和低毒性,但其长期安全性仍需通过更长时间的跟踪观察和更多的数据来加以证实。同时,FAPI示踪剂的广泛临床应用还待更多监管机构的批准。
总体来看,尽管FAPI成像技术在肿瘤的诊断和治疗评估中显示出显著潜力,但其在实际临床应用中仍面临不少挑战。这要求未来研究在克服这些限制的同时,进一步提升其在医疗实践中的应用价值。
参考文献:
[1] " Ell PJ. The contribution of PET/CT to improved patient management[J]. Br J Radiol, 2006, 79(937): 32-6.
[2] " Lind P, Igerc I, Beyer T, et al. Advantages and limitations of FDG PET in the follow‑up of breast cancer[J]. Eur J Nucl Med Mol Imaging, 2004, 31(Suppl 1): S125-34.
[3] "Hess S, Scholtens AM, Gormsen LC. Patient preparation and patient‑related challenges with FDG‑PET/CT in infectious and inflammatory disease[J]. PET Clin, 2020, 15(2): 125-34.
[4] " Yang LJ, Ma L, Lai DM. Over-expression of fibroblast activation protein alpha increases tumor growth in xenografts of ovarian cancer cells[J]. Acta Biochim Biophys Sin, 2013, 45(11): 928-37.
[5] " Das S, Valton J, Duchateau P, et al. Stromal depletion by TALEN-edited universal hypoimmunogenic FAP‑CAR T cells enables infiltration and anti‑tumor cytotoxicity of tumor antigen-targeted CAR-T immunotherapy[J]. Front Immunol, 2023, 14: 1172681.
[6] " Liu JY, Huang CQ, Peng CW, et al. Stromal fibroblast activation protein alpha promotes gastric cancer progression via epithelial-mesenchymal transition through Wnt/β‑catenin pathway[J]. BMC Cancer, 2018, 18(1): 1099.
[7] " Park JE, Lenter MC, Zimmermann RN, et al. Fibroblast activation protein, a dual specificity serine protease expressed in reactive human tumor stromal fibroblasts[J]. J Biol Chem, 1999, 274(51): 36505-12.
[8] " "Klemann C, Wagner L, Stephan M, et al. Cut to the chase: a review of CD26/dipeptidyl peptidase‑4's (DPP4) entanglement in the immune system[J]. Clin Exp Immunol, 2016, 185(1): 1-21.
[9] "Larrinaga G, Perez I, Blanco L, et al. Increased prolyl endopeptidase activity in human neoplasia[J]. Regul Pept, 2010, 163(1/2/3): 102-6.
[10] Hu Y, Ma LF, Wu M, et al. Synthesis and structure-activity relationship of N-alkyl Gly-boro-Pro inhibitors of DPP4, FAP, and DPP7[J]. Bioorg Med Chem Lett, 2005, 15(19): 4239-42.
[11] Edosada CY, Quan C, Wiesmann C, et al. Selective inhibition of fibroblast activation protein protease based on dipeptide substrate specificity[J]. J Biol Chem, 2006, 281(11): 7437-44.
[12] Tran T, Quan C, Edosada CY, et al. Synthesis and structure-activity relationship of N‑acyl‑Gly‑, N‑acyl‑Sar‑and N‑blocked‑boroPro inhibitors of FAP, DPP4, and POP[J]. Bioorg Med Chem Lett, 2007, 17(5): 1438-42.
[13] Poplawski SE, Lai JH, Li YH, et al. Identification of selective and potent inhibitors of fibroblast activation protein and prolyl oligopeptidase[J]. J Med Chem, 2013, 56(9): 3467-77.
[14] Tsai TY, Hsu T, Chen CT, et al. Rational design and synthesis of potent and long‑lasting glutamic acid-based dipeptidyl peptidase IV inhibitors[J]. Bioorg Med Chem Lett, 2009, 19(7): 1908-12.
[15] Tsai TY, Yeh TK, Chen X, et al. Substituted 4-carboxymethylpyroglutamic acid diamides as potent and selective inhibitors of fibroblast activation protein[J]. J Med Chem, 2010, 53(18): 6572-83.
[16] Ryabtsova O, Jansen K, van Goethem S, et al. Acylated Gly‑(2-cyano)pyrrolidines as inhibitors of fibroblast activation protein (FAP) and the issue of FAP/prolyl oligopeptidase (PREP)-selectivity[J]. Bioorg Med Chem Lett, 2012, 22(10): 3412-7.
[17] Jansen K, Heirbaut L, Cheng JD, et al. Selective inhibitors of fibroblast activation protein (FAP) with a (4-quinolinoyl)-glycyl-2-cyanopyrrolidine scaffold[J]. ACS Med Chem Lett, 2013, 4(5): 491-6.
[18] Jansen K, Heirbaut L, Verkerk R, et al. Extended structure-activity relationship and pharmacokinetic investigation of (4‑quinolinoyl)glycyl‑2‑cyanopyrrolidine inhibitors of fibroblast activation protein (FAP)[J]. J Med Chem, 2014, 57(7): 3053-74.
[19] Loktev A, Lindner T, Mier W, et al. A tumor‑imaging method targeting cancer‑associated fibroblasts[J]. J Nucl Med, 2018, 59(9): 1423-9.
[20] Lindner T, Loktev A, Altmann A, et al. Development of quinoline-based theranostic ligands for the targeting of fibroblast activation protein[J]. "Nucl Med, 2018, 59(9): 1415-22.
[21] Loktev A, Lindner T, Burger EM, et al. Development of fibroblast activation protein‑targeted radiotracers with improved tumor retention[J]. J Nucl Med, 2019, 60(10): 1421-9.
[22] Jiang X, Wang XX, Shen TP, et al. FAPI-04 PET/CT using 18AlF labeling strategy: automatic synthesis, quality control, and in vivo assessment in patient[J]. Front Oncol, 2021, 11: 649148.
[23] Wei YC, Zheng JS, Ma L, et al. 18F-NOTA-FAPI-04: FAP-targeting specificity, biodistribution, and PET/CT imaging of various cancers[J]. Eur J Nucl Med Mol Imaging, 2022, 49(8): 2761-73.
[24] Elboga U, Sahin E, Kus T, et al. Superiority of 68Ga-fapi pet/ct scan in detecting additional lesions compared to 18FDG pet/ct scan in breast cancer[J]. Ann Nucl Med, 2021, 35(12): 1321-31.
[25] Pang YZ, Zhao L, Chen HJ. 68Ga-FAPI outperforms 18F-FDG PET/CT in identifying bone metastasis and peritoneal carcinomatosis in a patient with metastatic breast cancer[J]. Clin Nucl Med, 2020, 45(11): 913-5.
[26] Li TY, Jiang XJ, Zhang ZQ, et al. Case Report: 68Ga-FAPI PET/CT, a more advantageous detection mean of gastric, peritoneal, and ovarian metastases from breast cancer[J]. Front Oncol, 2022, 12: 1013066.
[27] Kömek H, Can CN, Güzel Y, et al. 68Ga-FAPI-04 PET/CT, a new step in breast cancer imaging: a comparative pilot study with the 18F-FDG PET/CT[J]. Ann Nucl Med, 2021, 35(6): 744-52.
[28] Sahin E, Kus T, Aytekin A, et al. 68Ga‑FAPI PET/CT as an alternative to 18F‑FDG PET/CT in the imaging of invasive lobular breast carcinoma[J]. J Nucl Med, 2024, 65(4): 512-9.
[29] Chen L, Zheng S, Chen LY, et al. 68Ga-labeled fibroblast activation protein inhibitor PET/CT for the early and late prediction of pathologic response to neoadjuvant chemotherapy in breast cancer patients: a prospective study[J]. J Nucl Med, 2023, 64(12): 1899-905.
[30] Ding F, Huang C, Liang CY, et al. 68Ga‑FAPI‑04 vs 18F‑FDG in a longitudinal preclinical PET imaging of metastatic breast cancer[J]. Eur J Nucl Med Mol Imaging, 2021, 49(1): 290-300.
[31] Kessler L, Ferdinandus J, Hirmas N, et al. Pitfalls and common findings in 68Ga‑FAPI PET: a pictorial analysis[J]. J Nucl Med, 2022, 63(6): 890-6.
[32]Telo S, Calderoni L, Vichi S, et al. Alternative and new radiopharmaceutical agents for lung cancer[J]. Curr Radiopharm, 2020, 13(3): 185-94.
[33] Wang LJ, Tang GH, Hu KZ, et al. Comparison of 68Ga-FAPI and 18F-FDG PET/CT in the evaluation of advanced lung cancer[J]. "Radiology, 2022, 303(1): 191-9.
[34] Giesel FL, Heussel CP, Lindner T, et al. FAPI-PET/CT improves staging in a lung cancer patient with cerebral metastasis[J]. Eur J Nucl Med Mol Imaging, 2019, 46(8): 1754-5.
[35] Röhrich M, Daum J, Gutjahr E, et al. Diagnostic potential of supplemental static and dynamic 68Ga-FAPI-46 PET for primary 18F-FDG-negative pulmonary lesions[J]. J Nucl Med, 2024. 10.2967/jnumed.123.267103.
[36] Shang QH, Zhao L, Pang YZ, et al. Differentiation of reactive lymph nodes and tumor metastatic lymph nodes with 68Ga-FAPI PET/CT in a patient with squamous cell lung cancer[J]. Clin Nucl Med, 2022, 47(5): 458-61.
[37] Spektor AM, Gutjahr E, Lang M, et al. Immunohistochemical FAP expression reflects 68Ga-FAPI PET imaging properties of low-and high‑grade intraductal papillary mucinous neoplasms and pancreatic ductal adenocarcinoma[J]. J Nucl Med, 2024, 65(1): 52-8.
[38] Kessler L, Hirmas N, Pabst KM, et al. 68Ga-labeled fibroblast activation protein inhibitor (68Ga‑FAPI) PET for pancreatic adenocarcinoma: data from the 68Ga-FAPI PET observational trial[J]. J Nucl Med, 2023, 64(12): 1910-7.
[39] Liu QF, Shi S, Liu S, et al. The added value of 68Ga-DOTA-FAPI-04 PET/CT in pancreatic cancer: a comparison to 18F-FDG[J]. Eur Radiol, 2023, 33(7): 5007-16.
[40] Ding J, Qiu JD, Hao ZX, et al. Comparing the clinical value of baseline 68Ga-FAPI-04 PET/CT and 18F-FDG PET/CT in pancreatic ductal adenocarcinoma: additional prognostic value of the distal pancreatitis[J]. Eur J Nucl Med Mol Imaging, 2023, 50(13): 4036-50.
[41] Xu WZ, Cai JY, Peng TX, et al. Fibroblast activation protein-targeted PET/CT with 18F-fibroblast activation protein inhibitor-74 for evaluation of gastrointestinal cancer: comparison with 18F-FDG PET/CT[J]. J Nucl Med, 2024, 65(1): 40-51.
[42] Ding J, Qiu JD, Hao ZX, et al. Prognostic value of preoperative 68Ga-FAPI-04 PET/CT in patients with resectable pancreatic ductal adenocarcinoma in correlation with immunohistological characteristics[J]. Eur J Nucl Med Mol Imaging, 2023, 50(6): 1780-91.
[43] Pang YZ, Zhao L, Shang QH, et al. Positron emission tomography and computed tomography with 68Ga‑fibroblast activation protein inhibitors improves tumor detection and staging in patients with pancreatic cancer[J]. Eur J Nucl Med Mol Imaging, 2022, 49(4): 1322-37.
[44] Kessler L, Ferdinandus J, Hirmas N, et al. 68Ga‑FAPI as a diagnostic tool in sarcoma: data from the 68Ga‑FAPI PET prospective observational trial[J]. J Nucl Med, 2022, 63(1): 89-95.
[45] Lanzafame H, Mavroeidi IA, Pabst KM, et al. 68Ga‑fibroblast activation protein inhibitor PET/CT improves detection of intermediate and low-grade sarcomas and identifies candidates for radiopharmaceutical therapy[J]. J Nucl Med, 2024. doi: 10.2967/jnumed.123.267248.
[46]Röhrich M, Loktev A, Wefers AK, et al. IDH‑wildtype glioblastomas and grade III/IV IDH-mutant gliomas show elevated tracer uptake in fibroblast activation protein-specific PET/CT[J]. Eur J Nucl Med Mol Imaging, 2019, 46(12): 2569-80.
[47] Yao YT, Tan XF, Yin WY, et al. Performance of 18F-FAPI PET/CT in assessing glioblastoma before radiotherapy: a pilot study[J]. BMC Med Imaging, 2022, 22(1): 226.
[48] Rajaraman V, Meenakshi LA, Selvaraj AJ, et al. Role of 68Ga-FAPI PET/CT in assessing hepatobiliary malignancies: a prospective pilot study[J]. Clin Nucl Med, 2023, 48(6): e281-e288.
[49] Zhang J, He Q, Jiang SQ, et al. 18FAPI PET/CT in the evaluation of focal liver lesions with 18FDG non-avidity[J]. Eur J Nucl Med Mol Imaging, 2023, 50(3): 937-50.
[50]Siripongsatian D, Promteangtrong C, Kunawudhi A, et al. Comparisons of quantitative parameters of 68Ga-labelled fibroblast activating protein inhibitor (FAPI) PET/CT and 18F-FDG PET/CT in patients with liver malignancies[J]. Mol Imaging Biol, 2022, 24(5): 818-29.
[51] Lan LJ, Zhang SM, Xu TT, et al. Prospective comparison of 68Ga-FAPI versus 18F‑FDG PET/CT for tumor staging in biliary tract cancers[J]. "Radiology, 2022, 304(3): 648-57.
[52] Gündoğan C, Kömek H, Can CN, et al. Comparison of 18F-FDG PET/CT and 68Ga-FAPI-04 PET/CT in the staging and restaging of gastric adenocarcinoma[J]. Nucl Med Commun, 2022, 43(1): 64-72.
[53] Lin R, Lin ZF, Chen ZY, et al. 68Ga-DOTA-FAPI-04 PET/CT in the evaluation of gastric cancer: comparison with 18FDG PET/CT[J]. Eur J Nucl Med Mol Imag, 2022, 49(8): 2960-71.
[54] Zhang SM, Wang W, Xu TT, et al. Comparison of diagnostic efficacy of 68Ga‑FAPI‑04 and 18FDG PET/CT for staging and restaging of gastric cancer[J]. Front Oncol, 2022, 12: 925100.
[55] Zheng S, Lin R, Chen SM, et al. Characterization of the benign lesions with increased 68Ga-FAPI-04 uptake in PET/CT[J]. Ann Nucl Med, 2021, 35(12): 1312-20.
[56] Qin CX, Song Y, Liu X, et al. Increased uptake of 68Ga-DOTA-FAPI-04 in bones and joints: metastases and beyond[J]. Eur J Nucl Med Mol Imaging, 2022, 49(2): 709-20.
(编辑:孙昌朋)