适配体在免疫性疾病靶向治疗中的应用
2024-07-13牛会敏杨兰邱抒倩陈莉张胜行
牛会敏 杨兰 邱抒倩 陈莉 张胜行
【摘要】细胞因子是由活化的免疫细胞或非免疫细胞合成并分泌的小分子蛋白质,其主要通过与特定受体结合并激活相应下游信号转导通路,在免疫调控以及免疫性疾病的发生、发展过程中发挥广泛的生物学作用。迄今为止,基于抗体的细胞因子和(或)细胞因子受体的靶向阻断在免疫性疾病的治疗中已取得令人鼓舞的效果,但其高昂的治疗费用给患者带来极大的经济负担。适配体又称化学抗体,是体外合成并经人工筛选获得的、能与诸多靶标分子特异并高亲和结合的寡核苷酸片段。与抗体相比,适配体有着成本低廉、低免疫原性和易于修饰等诸多优势。因此,功能化适配体在免疫性疾病靶向治疗中的潜在应用前景吸引了越来越多研究者的关注。文章综述了在免疫调控中发挥重要作用的8种细胞因子[IL-1α、IL-6、IL-17、TNF-α、转化生长因子- β、IFN-γ、单核细胞趋化蛋白-1(MCP-1)和IFN-α诱导蛋白10]相关的特异性适配体的化学修饰及其在免疫和免疫相关性疾病治疗中应用的研究进展,并就未来适配体药物在临床特定免疫性疾病的精准靶向治疗中的潜在应用进行展望。
【关键词】适配体;细胞因子;信号通路;阻断剂;免疫治疗;炎症
Application of aptamers in the targeted treatment of immunological diseases
NIU Huimin1,2, YANG Lan1, QIU Shuqian2, CHEN Li1,2, ZHANG Shenghang1,2
(1. Key Laboratory of Aptamers Technology, Fuzhou General Clinical Medical School (the 900th Hospital), Fujian Medical University, Fuzhou 350001, China;2. Department of Clinical Laboratory Medicine, Fuzhou General Teaching Hospital (the 900th Hospital), Fujian University of Traditional Chinese Medicine, Fuzhou 350001, China)
Corresponding author: ZHANG Shenghang, E-mail: fzzyyzsh@126.com
【Abstract】Cytokines are small molecular proteins released by activated immune cells or non-immune cells. Cytokines can play a wide range of biological roles in immune regulation and the incidence and progression of immune diseases by selectively binding with specific signals and activating the downstream immune signal transduction pathway. Encouraging efficacy has been achieved in the application of antibody-based cytokines or cytokine receptor monoclonal antibodies in the treatment of related immune diseases. Nevertheless, the high cost of administration based on monoclonal antibodies makes it unaffordable for patients. Aptamers, also known as chemical antibodies, are oligonucleotide fragments synthesized in vitro and obtained by artificial screening, which can specifically bind to multiple target molecules with high affinity. Compared with antibodies, aptamers have the advantages of low cost, low immunogenicity and convenient modification. Hence, the potential application prospect of functionalized aptamers in targeted therapy of immune diseases has attracted more and more attention from researchers. In this article, chemical modification of specific aptamers related to 8 types of cytokine aptamers (IL-1α, IL-6, IL-17, TNF-α, TGF-β, IFN-γ, MCP-1 and IP-10) which play critical roles in immune regulation was reviewed, the research progress in their application in the treatment for immune and immune-related diseases was summarized, and the potential application of aptamer drugs in precise targeted therapy for specific immune diseases was briefly predicted.
【Key words】Aptamer; Cytokine; Signaling pathway; Blocker; Immune treatment; Inflammation
为应对环境有害因素的感染及其对组织的损伤,机体建立了一系列由免疫细胞介导的细胞因子保护性生物反应[1]。众多细胞因子在体内具有多效性、重叠性、拮抗性及协同性等多种生理特性,形成了复杂的细胞因子免疫调节网络[2]。然而,不受控的急性严重感染会引发细胞因子风暴,最终导致ARDS及MODS。同时,多种慢性疾病如心血管疾病、癌症、糖尿病、慢性肾脏病、非酒精性脂肪性肝病以及自身免疫性和神经退行性疾病也与长期的促炎及抗炎平衡失调有着密切关系[3]。有研究显示,90%以上的宫颈癌可归因于人乳头状瘤病毒感染导致的慢性细胞因子紊乱[4]。
1 细胞因子概述
细胞因子主要有IL、集落刺激因子(colony stimulating factor,CSF)、IFN、TNF家族、生长因子
[如转化生长因子(transforming growth factor,TGF)]和趋化因子[如单核细胞趋化蛋白-1(monocyte chemoattractant protein-1,MCP-1)、IFN-γ诱导蛋白10(interferon γ inducible protein-10,IP-10)]等,其主要信号通路见图1。目前,细胞因子和细胞因子受体的单克隆抗体被广泛用于免疫、感染及肿瘤相关疾病的临床治疗。部分已成为免疫治疗二线药物,如托珠单抗靶向IL-6受体,被FDA批准用于治疗类风湿关节炎和细胞因子释放综合征等。单克隆抗体成本高昂,患者难以负担。核酸适配体不仅具有靶向性、循环稳定性及低免疫原性的优点,还具有低成本的优势,有望替代单克隆抗体成为免疫调控的靶向药物。
通过指数富集的配体系统进化技术(systematic evolution of ligands by exponential enrichment,SELEX)从大量不同序列组成的核酸文库中筛选和分离出能与靶标结合的单链RNA或DNA寡聚体称为适配体,筛选流程见图2。为增加富集池的目标选择性,一般设计加入关键干扰物进行反筛,减少体内应用的交叉反应性[13]。SELEX可以针对靶标样品的基质进行反筛,如表面带氰基的磁珠与血清孵育形成磁珠-血清蛋白进行反筛,以获得适于在体应用且对目标高亲和高特异的候选适配体[14]。本文阐述了上述8种信号通路相关特异性适配体阻断剂的种类、性能优化和治疗应用研究现状,通过总结目前细胞因子及其受体特异性适配体在免疫相关疾病治疗方面的应用潜力,为新型治疗制剂的研发提供指导。
2 IL-1α通路适配体抑制剂治疗策略
IL-1α是多种全身性和急性期反应的早期诱导剂[15]。IL-1家族信号转导由配体、受体和共受体组成异源三聚体复合物[16],复合物的形成激活Toll/IL-1结构域,活化MYD88触发级联激酶,导致细胞的促炎症状态[5]。IL-1α与炎症诱导的癌变有关,靶向IL-1α的抗体MABp1已进入Ⅲ期临床研究,结果显示MABp1与晚期结直肠癌患者的抗肿瘤活性和衰弱症状的缓解有关,同时具有高水平的安全性和耐受性[17]。
抑制IL-1α可能是一种有前途的抗感染治疗策略。因此,Ren 等[18]筛选出来的IL-1α的高亲和力(KD=7.3 nmol,KD为解离常数,其值越大代表亲和力越小)及高特异性适配体SL1067,经脱氧尿苷位的2-萘甲基取代形成的稳定态DNA以代替抗体,在细胞实验水平可抑制成纤维细胞生长,减少肝细胞引起急性期蛋白产生,调节T细胞和B细胞生长和分化,有望用于临床免疫治疗。
3 IL-6通路适配体抑制剂治疗策略
IL-6是由IL-1与TNF-α诱导产生的、固有免疫系统对损伤和感染最初反应所表达的多效细胞因子,参与自身免疫性疾病、炎症和部分癌症的发病机制[19]。同时,IL-6是影响体内炎症严重程度的激素样细胞因子,被认为是临床干预的重要靶点。IL-6介导的刺激诱导糖蛋白130(glycoprotein 130,GP130)同质二聚化,随后磷酸化的Juns激酶(Juns kinase,JAK)激活信号转导与转录激活因子1(signal transduction and transcription activation factors 1,STAT1)和STAT3形成同源二聚体或异源二聚体,诱导各种基因的激活[6, 20]。
针对IL-6受体抑制剂的托珠单抗已开展临床应用研究[21],如在急性ST段抬高型心肌梗死(STEMI)心肌挽救中发挥作用[22]。为降低成本,Gupta等[23]筛选了针对人类IL-6的DNA适配体SL1025(KD=0.2 nmol),PEG化的适配体SL1026通过结合IL-6抑制T细胞中STAT3磷酸化,用于治疗胶原诱导的关节炎[24]。针对IL-6受体位点的适配体阻断剂也备受关注,如Mittelberger等[25]筛选了34 nt 的RNA适配体RAID3用于阻断IL-6R。Ando等[26]获得解离常数为200 nmol的IL-6信号通路拮抗剂,该拮抗剂可抑制新型冠状病毒感染(corona virus disease 2019,COVID-19)导致的细胞因子释放综合征。除了RNA适配体,由32个氨基酸组成的肽适配体及其富二硫化物可代替IL-6R单克隆抗体[27] 。另外,Takamori等[28]进一步从随机肽库中筛选了一个新的13mer非天然的间(氯甲基)苯甲酸环化肽适配体,环化增加了肽的蛋白酶抗性,其可以结合IL-6R的胞外结构域,有望在IL-6/IL-6R信号转导的多种诊断和治疗方案中应用。
4 IL-17A通路适配体抑制剂治疗策略
IL-17家族由6个具有强烈促炎作用的结构相关成分组成,分别是IL-17A~F,其中IL-17A是最重要的T细胞诱导炎症反应的早期启动因子[29]。IL-17A通过与相关受体IL-17RA和IL-17RC结合,胞内结构域编码保守的SEFIR结构域与适配器Act1相互作用,Actl含有与TNF受体相关因子(TNF receptor related factor,TRAF)家族蛋白结合的位点,与TRAF6结合可激活MAPK或TGF-β激活激酶1(TGF-β activate kinase 1,TAK1),这些因子共同触发靶基因转录[7]。该通路参与诱导趋化因子的表达以招募白细胞,同时通过刺激TNF-α、IL-1β和IL-6的释放而发挥炎症放大作用[30]。
IL-17A及其近亲IL-17F在免疫性疾病的治疗领域受到广泛关注。30mer RNA适配体Apt21-2(KD=48.5 pmol)与IL-17A结合可抑制IL-6分泌[26, 31]。
其PEG化适配体PEG21-2idT以剂量依赖性的方式抑制关节炎或神经症状的发展。后续研究者又分析了Apt21-2对银屑病炎症的效果,发现Apt21-2在成纤维细胞培养和成纤维T细胞培养中对IL-17A具有中和能力,然而适配体被上层皮肤角质形成细胞摄取,可能会导致其在真实皮肤治疗中失效[32]。另有研究者报道,IL-17适配体覆盖氧化铈纳米颗粒明胶对脑炎治疗有显著效果[33]。IL-17A和IL-17F常以同型二聚体或异型二聚体配合物存在于细胞膜,Adachi等[34]针对IL-17A/F的异质二聚体全局构象筛选适配体AptAF42,优化后的衍生物AptAF42dope1有望成为首个针对IL-17A/F的抑制物。
5 TNF-α通路适配体抑制剂治疗策略
TNF-α是TNF家族中最先确定的成员,激活的单核细胞和巨噬细胞是TNF-α的主要来源。TNF-α信号转导是免疫系统的重要组成部分,具有抑制肿瘤发生、阻止病毒复制的作用,并且是诱导发热和细胞凋亡的内源性热原。TNF-α通过与Ⅰ型受体(TNF receptor 1,TNF-R1;p55)或Ⅱ型受体(TNF receptor 1,TNF-R2;p75)结合,激活不同的信号转导途径,平衡促炎或抗炎效应,其中以TNFR1信号转导为主,启动核转录因子-κB(nuclear factor-κB,NF-κB)、丝裂原活化蛋白激酶(mitogen activated protein kinase,MAPK)途径的激活及诱导死亡信号转导[8]。
中和TNF的生物制剂是慢性炎症和自身免疫性疾病最有效的治疗药物,菌血症期间输注抗TNF-α单克隆抗体,可抑制IL-1和IL-6释放[35]。DNA适配体有潜力成为TNF单抗替代品。Orava等[36]首次用25碱基单链DNA适配体VR11特异性地与TNF-α结合,减少体外一氧化氮(nitric oxide,NO)产生,减轻炎症反应。此外,Lai等[37]探究了筛选的TNF-α适配体聚乙二醇(polyethylene glycol,PEG)衍生物可减轻肝细胞的急性损伤程度并增强肝组织的早期再生能力。Mashayekhi 等[38]为增强免疫抑制作用,制备二聚体形式的DNA适配体(KD=67 nmol),其抑制效果达到40%,而融合蛋白依那西普为60%。类似地,Shobeiri等[39]构建了T1~T4适配体二聚体,探究了其在低浓度下实现治疗小鼠银屑病的作用。利用腺苷三磷酸(adenosine triphosphate,ATP)、TNF-α适配体和聚合物苯基硼酸构建的聚合物/适配体/金纳米颗粒,能够通过清除活性氧并捕获TNF-α治疗腹膜炎[40]。上述研究均验证了阻断TNF-α促炎信号通路可缓解相关疾病症状,然而TNF-α-TNFR2介导的生存和繁殖功能被中断可能引起副作用。为此,Chu等[41]筛选了针对TNFR1的适配体,并验证其二价核酸适配体有望作为抗RA候选药。An等[42]进一步通过微针共递送IL- 6R抑制剂托珠单抗和特异性抑制TNFR1的适配体Apt1-67,验证了联合用药比单药更有效缓解小鼠的类风湿关节炎。
6 TGF-β通路适配体抑制剂治疗策略
转化生长因子β1是一个25 kDa的同源二聚体蛋白,主要来源于调节性T细胞[43]。TGF-β信号转导是通过膜蛋白多糖β聚糖作为一种共受体,收集TGF-β并提呈给受体即I型受体(transforming growth factor-β receptor 1,TGFBR1)和Ⅱ型受体(transforming growth factor-β receptor 2,TGFBR2),组装形成复合物。随后,TGFBR2磷酸化并激活TGFBR1激酶,而TGFBR1激酶结合转录因子SMAD2/3并磷酸化。这些SMAD与SMAD4形成三聚体复合物,并在细胞核内聚集,结合并转录激活靶基因座[9]。TGF-β通路异常可能导致多种疾病发生,如肿瘤、组织纤维化、心血管疾病和免疫性疾病等。
目前,多种抑制TGF-β信号通路的免疫疗法已被提出用于癌症治疗[44],靶向TGF-β受体Ⅱ的适配体是一种有潜力的治疗手段,多项研究证实其对青光眼滤过术后瘢痕形成具有抑制作用[45-47]。对于TGF-β1的结合抑制,Stejskalová等[48]利用细胞牵引力触发响应创建了TGF-β1的调控海绵,实现选择性地激活释放药物。Kang等[49]筛选分离出的一种TGF-β1硫代磷酸单链DNA适配体(T18-1-3)
具有较高稳定性。而Takahashi等[50]进一步验证了抗TGF-β1适配体具有增强酪氨酸激酶抑制剂吉非替尼对非小细胞肺癌异种移植模型的治疗作用。
7 IFN-γ通路适配体抑制剂治疗策略
IFN-γ在抗病毒免疫和炎症条件下具有生物活性,是一种典型的1型辅助性T细胞(T helper cell 1,Th1)细胞因子,IFN-γ通过依附于其受体(Ⅰ和Ⅱ)并激活JAK/STAT信号通路发挥促炎症作用,激活T细胞,增加TNF活性,刺激NO释放[51]。失调的IFN反应在多种形式自身免疫性疾病的发展中起着至关重要的作用,SLE、系统性硬化症、干燥综合征和皮肌炎患者均可表现出IFN信号增强[10]。
目前多种IFN-γ特异性适配体被报道,且多种光学、电化学传感器被开发[52]。在治疗领域,Tuleuova等[53]筛选了一种DNA适配体(KD=3.44 nmol)代替IFN-γ抗体。在另一项研究中,特异性的59mer DNA适配体B1~B4可进入细胞识别IFN-γ(KD=74.5 nmol)[54]。近年研究者报道了一种针对促炎因子检测和抗炎因子治疗的新型一体化策略:基于结构转换适配体的生物传感器能够在体内定量且动态检测IFN-γ,同时依据IFN-γ浓度控制阿司匹林释放,在大鼠模型中具有抑制炎症的作用[55]。这种通用的治疗平台有望为患者提供个性化的抗感染治疗。
8 趋化因子MCP-1通路适配体
抑制剂治疗策略
阻断促炎介质已被证实可成功治疗慢性炎症,趋化因子是介导炎性细胞聚集到病灶处的主要细胞因子,分为CXC、CC、CX3C和XC。CC趋化因子CCL2也被称为MCP-1,可使白细胞与内皮细胞结合并聚集到炎症部位。配体CCL2与其受体CCR2结合时,一系列下游信号被激活,如JAK/STAT、p38MAPK、PI3K/AKT等,调动多种转录因子和基因,导致肿瘤细胞的增殖和迁移[56-57]。此外,CCL2-CCR2轴与冠状动脉粥样硬化[58]、狼疮性肾炎[59]也存在关联。
Kulkarni等[59]报道了一种L-对映体RNA寡核苷酸适配体,称为mNOX-E36,可在小鼠体内或体外与MCP-1高亲和力结合并中和其作用,是目前针对MCP-1的唯一高亲和力适配体,可以阻止白细胞与内皮细胞结合,并抑制白细胞外渗至炎症部位,适配体mNOX-E36不仅在小鼠中显示出疗效,并在药代动力学研究中证明了其适用性,且没有免疫刺激的不良反应,为治疗狼疮性肾炎提供了一种新的有潜力的方法。此外,CCL2特异性mNOX-E36与CXCL12特异性阻断剂NOX-A12联用,对提高胰岛移植和1型糖尿病小鼠模型的胰岛存活率也具有良好效果[60]。近期研究将该适配体注射至小鼠原位4T1三阴性乳腺癌肿瘤,实现调节肿瘤相关巨噬细胞浸润和极化,使血管正常化以改善肿瘤靶向药物递送[61]。
9 趋化因子 IP-10通路适配体抑制剂治疗策略
趋化因子CXCL10是仅77个氨基酸的小型细胞因子,受IFN-γ刺激释放,因此也称为IP-10。IP-10可促进T细胞与内皮细胞的黏附,抑制骨髓细胞集落形成和血管生成。CXCL10通过结合CXCR3受体激活ERK、p38 MAPK和PI3K/Akt信号通路,其中p38、PI3K/Akt和cAMP依赖性蛋白激酶A(protein kinase A,PKA)信号通路调节人嗜酸性粒细胞、肺细胞和上皮细胞的趋化性[12]。
目前已经筛选出一组针对IP-10的高亲和力且具有核酸酶抗性的RNA适配体。Marro等[62]从中选择了最高效的一条进行截短,并在3'-端进行聚乙二醇化(KD=1.6 nmol),将其修饰为稳定的长度仅34 nt的RNA适配体,是迄今为止报道的CXCLI0/CXCR3信号通路最有效的拮抗剂,可有效抑制哮喘。
10 结论与展望
目前多种适配体已经在体外进行测试以明确其治疗效能,但其代替抗体用药仍然达不到临床期待,主要局限在于体循环的稳定性和复杂基质环境影响结构而易导致脱靶效应。为提高在体给药发挥效用的成功率,需在筛选过程中引入真实应用环境介质中的蛋白进行负筛,对SELEX过程进行质量控制,以优化核酸适配体的亲和力和特异性;通过改造糖环等修饰途径防止核酸快速降解;同时靶标与单链RNA或DNA结合的微观分子机制需明确才可实现适配体结构有效改造。本文总结了当前基于细胞因子或其作用受体的特异性核酸适配体作为免疫抑制剂的最新进展,并归纳了提高其应用稳定性及亲和力的方法,见表1。8种促炎细胞因子及相关受体特异性适配体可抑制信号转导,从而减缓炎症或自身免疫性疾病,核酸适配体可能会给生物科学带来革命性的变化,有望作为一种低成本、易改造、低毒副作用、易保存的识别分子用于靶向治疗,但推动适配体成药仍然需要广大科研人员深入探索。
参 考 文 献
[1] NATHAN C. Points of control in inflammation[J]. Nature, 2002, 420(6917): 846-852. DOI: 10.1038/nature01320.
[2] FEEZOR R J, OBERHOLZER C, BAKER H V, et al. Molecular characterization of the acute inflammatory response to infections with gram-negative versus gram-positive bacteria[J]. Infect Immun, 2003, 71(10): 5803-5813. DOI: 10.1128/IAI.71.10.5803-5813.2003.
[3] FURMAN D, CAMPISI J, VERDIN E, et al. Chronic inflammation in the etiology of disease across the life span[J]. Nat Med, 2019, 25(12): 1822-1832. DOI: 10.1038/s41591-019-0675-0.
[4] BOGANI G, LEONE ROBERTI MAGGIORE U, SIGNORELLI M, et al. The role of human papillomavirus vaccines in cervical cancer: Prevention and treatment[J]. Crit Rev Oncol Hematol, 2018, 122: 92-97. DOI: 10.1016/j.critrevonc.2017.12.017.
[5] ALOMO J, DIETRICH D, MARTIN P, et al. The interleukin (IL)-1 cytokine family: balance between agonists and antagonists in inflammatory diseases[J]. Cytokine, 2015, 76(1): 25-37. DOI: 10.1016/j.cyto.2015.06.017.
[6] ROSE-JOHN S, JENKINS B J, GARBERS C, et al. Targeting IL-6 trans-signalling: past, present and future prospects[J]. Nat Rev Immunol, 2023, 23(10): 666-681. DOI: 10.1038/s41577-023-00856-y.
[7] MCGEACHY M J, CUA D J, GAFFEN S L. The IL-17 family of cytokines in health and disease[J]. Immunity, 2019, 50(4): 892-906. DOI: 10.1016/j.immuni.2019.03.021.
[8] VAN LOO G, BERTRAND M J M. Death by TNF: a road to inflammation[J]. Nat Rev Immunol, 2023, 23(5): 289-303. DOI: 10.1038/s41577-022-00792-3.
[9] DENG Z, FAN T, XIAO C, et al. TGF-β signaling in health, disease, and therapeutics[J]. Signal Transduct Target Ther, 2024, 9(1): 61. DOI: 10.1038/s41392-024-01764-w.
[10] FERNANDEZ-RUIZ R, NIEWOLD T B. Type I interferons in autoimmunity[J]. J Invest Dermatol, 2022, 142(3 Pt B): 793-803. DOI: 10.1016/j.jid.2021.11.031.
[11] ISHIGURO A, AKIYAMA T, ADACHI H, et al. Therapeutic potential of anti-interleukin-17A aptamer: suppression of interleukin-17A signaling and attenuation of autoimmunity in two mouse models[J]. Arthritis Rheum, 2011, 63(2): 455-466. DOI: 10.1002/art.30108.
[12] LIU M, GUO S, HIBBERT J M, et al. CXCL10/IP-10 in infectious diseases pathogenesis and potential therapeutic implications[J]. Cytokine Growth Factor Rev, 2011, 22(3): 121-130. DOI: 10.1016/j.cytogfr.2011.06.001.
[13] KOHLBERGER M, GADERMAIER G. SELEX: critical factors and optimization strategies for successful aptamer selection[J]. Biotechnol Appl Biochem, 2022, 69(5): 1771-1792. DOI: 10.1002/bab.2244.
[14] TOLNAI Z J, ANDR?S J, SZEITNER Z, et al. Spiegelmer-based sandwich assay for cardiac troponin I detection[J]. Int J Mol Sci, 2020, 21(14): 4963. DOI: 10.3390/ijms21144963.
[15] MANTOVANI A, DINARELLO C A, MOLGORA M, et al. Interleukin-1 and related cytokines in the regulation of inflammation and immunity[J]. Immunity, 2019, 50(4): 778-795. DOI: 10.1016/j.immuni.2019.03.012.
[16] G?NTHER S, DEREDGE D, BOWERS A L, et al. IL-1 family cytokines use distinct molecular mechanisms to signal through their shared co-receptor[J]. Immunity, 2017, 47(3): 510-523.e4. DOI: 10.1016/j.immuni.2017.08.004.
[17] HICKISH T, ANDRE T, WYRWICZ L, et al. MABp1 as a novel antibody treatment for advanced colorectal cancer: a randomised, double-blind, placebo-controlled, phase 3 study[J]. Lancet Oncol, 2017, 18(2): 192-201. DOI: 10.1016/S1470-2045(17)30006-2.
[18] REN X, GELINAS A D, VON CARLOWITZ I, et al. Structural basis for IL-1α recognition by a modified DNA aptamer that specifically inhibits IL-1α signaling[J]. Nat Commun, 2017, 8(1): 810. DOI: 10.1038/s41467-017-00864-2.
[19] HIRANO T. IL-6 in inflammation, autoimmunity and cancer[J]. Int Immunol, 2021, 33(3): 127-148. DOI: 10.1093/intimm/dxaa078.
[20] KISHIMOTO T. IL-6: from its discovery to clinical applications[J]. Int Immunol, 2010, 22(5): 347-352. DOI: 10.1093/intimm/dxq030.
[21] TANAKA T, NARAZAKI M, KISHIMOTO T. Immunotherapeutic implications of IL-6 blockade for cytokine storm[J]. Immunotherapy, 2016, 8(8): 959-970. DOI: 10.2217/imt-2016-0020.
[22] BROCH K, ANSTENSRUD A K, WOXHOLT S, et al. Randomized trial of interleukin-6 receptor inhibition in patients with acute ST-segment elevation myocardial infarction[J]. J Am Coll Cardiol, 2021, 77(15): 1845-1855. DOI: 10.1016/j.jacc.2021.02.049.
[23] GUPTA S, HIROTA M, WAUGH S M, et al. Chemically modified DNA aptamers bind interleukin-6 with high affinity and inhibit signaling by blocking its interaction with interleukin-6 receptor[J]. J Biol Chem, 2014, 289(12): 8706-8719. DOI: 10.1074/jbc.M113.532580.
[24] HIROTA M, MURAKAMI I, ISHIKAWA Y, et al. Chemically modified interleukin-6 aptamer inhibits development of collagen-induced arthritis in cynomolgus monkeys[J]. Nucleic Acid Ther, 2016, 26(1): 10-19. DOI: 10.1089/nat.2015.0567.
[25] MITTELBERGER F, MEYER C, WAETZIG G H, et al. RAID3: an interleukin-6 receptor-binding aptamer with post-selective modification-resistant affinity[J]. RNA Biol, 2015, 12(9): 1043-1053. DOI: 10.1080/15476286.2015.1079681.
[26] ANDO T, YAMAMOTO M, TAKAMORI Y, et al. In vitro selection of an RNA aptamer yields an interleukin-6/interleukin-6 receptor interaction inhibitor[J]. Biosci Biotechnol Biochem, 2021, 85(5): 1170-1174. DOI: 10.1093/bbb/zbaa124.
[27] NEMOTO N, TSUTSUI C, YAMAGUCHI J, et al. Antagonistic effect of disulfide-rich peptide aptamers selected by cDNA display on interleukin-6-dependent cell proliferation[J]. Biochem Biophys Res Commun, 2012, 421(1): 129-133. DOI: 10.1016/j.bbrc.2012.03.130.
[28] TAKAMORI Y, ANDO T, FUJI D, et al. In vitro display evolution of IL-6R-binding unnatural peptides ribosomally initiated and cyclized with m-(chloromethyl)benzoic acid[J]. Biochem Biophys Res Commun, 2021, 535: 47-53. DOI: 10.1016/j.bbrc.2020.11.123.
[29] MILLS K H G. IL-17 and IL-17-producing cells in protection versus pathology[J]. Nat Rev Immunol, 2023, 23(1): 38-54. DOI: 10.1038/s41577-022-00746-9.
[30] KOLLS J K, LIND?N A. Interleukin-17 family members and inflammation[J]. Immunity, 2004, 21(4): 467-476. DOI: 10.1016/j.immuni.2004.08.018.
[31] HARUTA K, OTAKI N, NAGAMINE M, et al. A novel PEGylation method for improving the pharmacokinetic properties of anti-interleukin-17A RNA aptamers[J]. Nucleic Acid Ther, 2017, 27(1): 36-44. DOI: 10.1089/nat.2016.0627.
[32] DOBLE R, MCDERMOTT M F, CESUR ?, et al. IL-17A RNA aptamer: possible therapeutic potential in some cells, more than we bargained for in others [J]. J Invest Dermatol, 2014, 134(3): 852-855. DOI: 10.1038/jid.2013.399.
[33] HEKMATIMOGHADDAM S, IMAN M, SHAHDADI SARDO H, et al. Gelatin hydrogel containing cerium oxide nanoparticles covered by interleukin-17 aptamar as an anti- inflammatory agent for brain inflammation[J]. J Neuroimmunol, 2019, 326: 79-83. DOI: 10.1016/j.jneuroim.2018.11.011.
[34] ADACHI H, ISHIGURO A, HAMADA M, et al. Antagonistic RNA aptamer specific to a heterodimeric form of human interleukin-17A/F[J]. Biochimie, 2011, 93(7): 1081-1088. DOI: 10.1016/j.biochi.2011.04.003.
[35] POPA, NETEA M G, VAN RIEL P L, et al. The role of TNF-alpha in chronic inflammatory conditions, intermediary metabolism, and cardiovascular risk[J]. J Lipid Res, 2007, 48(4): 751-762. DOI: 10.1194/jlr.R600021-JLR200.
[36] ORAVA E W, JARVIK N, SHEK Y L, et al. A short DNA aptamer that recognizes TNFα and blocks its activity in vitro[J]. ACS Chem Biol, 2013, 8(1): 170-178. DOI: 10.1021/cb3003557.
[37] LAI W Y, WANG J W, HUANG B T, et al. A novel TNF-α-targeting aptamer for TNF-α-mediated acute lung injury and acute liver failure[J]. Theranostics, 2019, 9(6): 1741-1751. DOI: 10.7150/thno.30972.
[38] MASHAYEKHI K, GANJI A, SANKIAN M. Designing a new dimerized anti human TNF-α aptamer with blocking activity[J]. Biotechnol Prog, 2020, 36(4): e2969. DOI: 10.1002/btpr.2969.
[39] SHOBEIRI S S, DASHTI M, PORDEL S, et al. Topical anti-TNF-α ssDNA aptamer decreased the imiquimod induced psoriatic inflammation in BALB/c mice[J]. Cytokine, 2023, 172: 156406. DOI: 10.1016/j.cyto.2023.156406.
[40] KIM J, PARK H, SARAVANAKUMAR G, et al. Polymer/aptamer-integrated gold nanoconstruct suppresses the inflammatory process by scavenging ROS and capturing pro-inflammatory cytokine TNF-Α[J]. ACS Appl Mater Interfaces, 2021, 13(8): 9390-9401. DOI: 10.1021/acsami.0c15727.
[41] CHU X, DU X, YANG L, et al. Targeting tumor necrosis factor receptor 1 with selected aptamers for anti-inflammatory activity[J]. ACS Appl Mater Interfaces, 2023, 15(9): 11599-11608. DOI: 10.1021/acsami.3c00131.
[42] AN M, SHI M, SU J, et al. Dual-drug loaded separable microneedles for efficient rheumatoid arthritis therapy[J]. Pharmaceutics, 2022, 14(7): 1518. DOI: 10.3390/pharmaceutics14071518.
[43] LI M O, FLAVELL R A. TGF-beta: a master of all T cell trades[J]. Cell, 2008, 134(3): 392-404. DOI: 10.1016/j.cell.2008.07.025.
[44] HUANG C Y, CHUNG C L, HU T H, et al. Recent progress in TGF-β; inhibitors for cancer therapy[J]. Biomedecine Pharmacother, 2021, 134: 111046. DOI: 10.1016/j.biopha.
2020.111046.
[45] CAO J, ZHANG F, XIONG W. Discovery of aptamers and the acceleration of the development of targeting research in ophthalmology[J]. Int J Nanomedicine, 2023, 18: 4421-4430. DOI: 10.2147/IJN.S418115.
[46] LIN Q Y, LI X J, LENG Y, et al. Exosome-mediated aptamer S58 reduces fibrosis in a rat glaucoma filtration surgery model [J]. Int J Ophthalmol, 2022, 15(5): 690-700. DOI: 10.18240/ijo.2022.05.02.
[47] ZHU X, XU D, ZHU X, et al. Evaluation of chitosan/aptamer targeting TGF-β receptor II thermo-sensitive gel for scarring in rat glaucoma filtration surgery[J]. Invest Ophthalmol Vis Sci, 2015, 56(9): 5465-5476. DOI: 10.1167/iovs.15-16683.
[48] STEJSKALOV? A, OLIVA N, ENGLAND F J, et al. Biologically inspired, cell-selective release of aptamer-trapped growth factors by traction forces[J]. Adv Mater, 2019, 31(7): e1806380. DOI: 10.1002/adma.201806380.
[49] KANG J, LEE M S, COPLAND J A 3rd, et al. Combinatorial selection of a single stranded DNA thioaptamer targeting TGF-beta1 protein[J]. Bioorg Med Chem Lett, 2008, 18(6): 1835-1839. DOI: 10.1016/j.bmcl.2008.02.023.
[50] TAKAHASHI M, HASHIMOTO Y, NAKAMURA Y. Anti-TGF-β1 aptamer enhances therapeutic effect of tyrosine kinase inhibitor, gefitinib, on non-small cell lung cancer in xenograft model[J]. Mol Ther Nucleic Acids, 2022, 29: 969-978. DOI: 10.1016/j.omtn.2022.06.001.
[51] DINARELLO C A. Proinflammatory cytokines[J]. Chest, 2000, 118(2): 503-508. DOI: 10.1378/chest.118.2.503.
[52] MANJOOSHA Y R, MAMPALLIL D. Interferon-γ detection in point of care diagnostics: short review[J]. Talanta, 2022, 245: 123428. DOI: 10.1016/j.talanta.2022.123428.
[53] TULEUOVA N, JONES C N, YAN J, et al. Development of an aptamer beacon for detection of interferon-gamma[J]. Anal Chem, 2010, 82(5): 1851-1857. DOI: 10.1021/ac9025237.
[54] CAO B, HU Y, DUAN J, et al. Selection of a novel DNA aptamer for assay of intracellular interferon-gamma[J]. PLoS One, 2014, 9(5): e98214. DOI: 10.1371/journal.pone.0098214.
[55] CAO C, JIN R, WEI H, et al. Adaptive in vivo device for theranostics of inflammation: real-time monitoring of interferon-γ and aspirin[J]. Acta Biomater, 2020, 101: 372-383. DOI: 10.1016/j.actbio.2019.10.021.
[56] XU M, WANG Y, XIA R, et al. Role of the CCL2-CCR2 signalling axis in cancer: mechanisms and therapeutic targeting[J]. Cell Prolif, 2021, 54(10): e13115. DOI: 10.1111/cpr.
13115.
[57] HAO Q, VADGAMA J V, WANG P. CCL2/CCR2 signaling in cancer pathogenesis[J]. Cell Commun Signal, 2020, 18(1): 82. DOI: 10.1186/s12964-020-00589-8.
[58] CHARO I F, TAUBMAN M B. Chemokines in the pathogenesis of vascular disease[J]. Circ Res, 2004, 95(9): 858-866. DOI: 10.1161/01.RES.0000146672.10582.17.
[59] KULKARNI O, PAWAR R D, PURSCHKE W, et al. Spiegelmer inhibition of CCL2/MCP-1 ameliorates lupus nephritis in MRL-(Fas)lpr mice[J]. J Am Soc Nephrol, 2007, 18(8): 2350-2358. DOI: 10.1681/ASN.2006121348.
[60] CITRO A, PELLEGRINI S, DUGNANI E, et al. CCL2/MCP-1 and CXCL12/SDF-1 blockade by L-aptamers improve pancreatic islet engraftment and survival in mouse[J]. Am J Transplant, 2019, 19(11): 3131-3138. DOI: 10.1111/ajt.15518.
[61] M?CKEL D, BARTNECK M, NIEMIETZ P, et al. CCL2 chemokine inhibition primes the tumor vasculature for improved nanomedicine delivery and efficacy[J]. J Control Release, 2024, 365: 358-368. DOI: 10.1016/j.jconrel.2023.11.044.
[62] MARRO M L, DANIELS D A, MCNAMEE A, et al. Identification of potent and selective RNA antagonists of the IFN-gamma-inducible CXCL10 chemokine[J]. Biochemistry, 2005, 44(23): 8449-8460. DOI: 10.1021/bi048145w.
(责任编辑:林燕薇)