APP下载

大兴安岭北部主要乔木树种叶片-土壤碳氮磷生态化学计量特征

2024-07-10景继鑫,陈灿阳,满秀玲,韩昭郅

森林工程 2024年3期
关键词:樟子松叶片土壤

景继鑫,陈灿阳,满秀玲,韩昭郅

摘要:以大兴安岭北部多年冻土区典型森林群落主要乔木为研究对象,分析叶片和土壤碳(C)、氮(N)、磷(P)含量及生态化学计量特征,探讨叶片和土壤C、N、P生态化学计量之间的关系,为该地区森林生态系统养分循环研究提供理论依据。结果表明,4种乔木叶片C∶N范围为25.66~47.92,C∶P范围为323.83~603.86,N∶P为10.21~20.59,兴安落叶松叶片C∶P和N∶P均最低,樟子松叶片C∶N和C∶P均最高,白桦C∶N最低,山杨N∶P最高;4种乔木叶片C∶N和C∶P都高于全球植物平均水平,表明这些乔木叶片具有较高的N、P利用效率,同时山杨叶片N∶P>20,其生长主要受P素限制;不同的群落土壤C∶N为13.89~18.46,C∶P为35.43~77.19,N∶P为1.96~5.26,山杨林C∶P和N∶P均为最高,而C∶N最低。白桦林C∶N最高,N∶P最低。樟子松林C∶P最低。冗余分析结果显示,4种乔木叶片C、N、P生态化学计量与土壤之间存在显著相关关系,土壤C、N、P含量及化学计量对乔木固碳及氮磷吸收具有显著影响。由此可见,我国寒温带4种乔木具有较高的N、P利用效率,但山杨生长受到P的限制,叶片C、N、P生态化学计量与土壤生态化学计量显著相关。

关键词:大兴安岭北部地区;兴安落叶松;樟子松;生态化学计量;土壤;叶片

中图分类号:S714文献标识码:A文章编号:1006-8023(2024)03-0001-10

The Foliar-soil Ecostoichiometric Characteristics of the Principal Arboreal Species in the Northern Region of the Greater Hinggan Mountains

JING Jixin, CHEN Canyang, MAN Xiuling*, HAN Zhaozhi

(College of Forestry, Northeast Forestry University, Harbin 150040, China)

Abstract:In this study, the main trees of typical forest communities in permafrost area of northern Greater Khingan Mountains were selected as the research objects, the contents of carbon (C), nitrogen (N) and phosphorus (P) in leaves and soil and their ecological stoichiometric characteristics were analyzed, and the relationship between leaves and soil C, N and P ecological stoichiometry was discussed to provide theoretical basis for the study of nutrient cycling in forest ecosystem in this area. Results indicated that the C∶N ratio of four tree leaves ranged from 25.66 to 47.92, the C∶P ratio ranged from 323.83 to 603.86, and the N:P ratio ranged from 10.21 to 20.59. Larix gmelini exhibited the lowest C∶N and N∶P ratios, while Pinus sylvestris var mongolica had the highest C∶N and C∶P ratios, Betula platyphylla had the lowest C∶N ratio and  Populus davidiana had the highest N∶P ratio. The C∶N and C∶P ratios of all four tree species exceeded the global average, suggesting efficient utilization of N and P. Nevertheless, the leaf N∶P >20 of  Populus davidiana was primarily limited by P in its growth. The soil C∶N ratio of different communities ranged from 13.89 to 18.46, the C∶P ratio ranged from 35.43 to 77.19, and the N∶P ratio ranged from 1.96 to 5.26. Populus davidiana forests exhibited the highest C∶P and N∶P ratios, while having the lowest C∶N ratio. Betula platyphylla had the highest C∶N ratio and the lowest N∶P ratio. Pinus sylvestris var mongolica displayed the lowest C∶P ratio. The redundancy analysis results showed that there was a significant correlation between the ecological stoichiometry of C, N, and P in the leaves of four trees and the soil. The content and stoichiometry of soil C, N, P had a significant impact on the carbon fixation and nitrogen and phosphorus absorption of trees. It can be seen that the four types of trees in the cold temperate zone of China have high N and P utilization efficiency, but the growth of Populus davidiana is limited by P. The ecological stoichiometry of leaf C, N, and P is significantly correlated with soil ecological stoichiometry.

Keywords:Northern Greater Hinggan Mountains; Larix gmelini; Pinus sylvestris var mongolica; ecological stoichiometry; soil; foliage

0引言

生态化学计量学作为一门对生态系统中能量循环过程和多种化学元素平衡深入探究的学科[1-2],对分析生态循环中碳(C)、氮(N)、磷(P)等元素间相互耦合关系发挥着重要作用[3]。目前,C∶N∶P化学计量特征对于植物养分利用[4]、营养元素限制[5]、群落结构功能稳定性[6]、凋落物分解[7]和微生物调节[8]等方面的研究都有广泛应用。通过叶片的生态化学计量可以反映植物的生长和营养限制的情况,而叶片的C∶N和C∶P则可以表现出植物的碳同化速率,并用于评估其营养利用的效率[9],而叶片N∶P用于评价植物生长过程N、P养分限制状况[10]。在不同季节[11]、生长阶段[12]和演替阶段[13],植物生长发育情况亦会有所不同,并通过不同的生态化学计量特征呈现。影响植物生长发育的一个关键决定性因素是土壤可利用的N和P[14],其含量高低和土壤矿化程度可以通过土壤C∶N和C∶P来反映[15],其中N∶P是评估植物生长受N、P限制情况的重要指标[16]。Güsewell等[17]认为陆地植物的N∶P在10以下时,植物生长受N限制,在10~20时,N和P对植物生长无影响,超过20则受P限制。一般来说,温带和北方森林主要受N限制,而热带和亚热带森林则普遍受P限制[18-19]。在不同的生态系统中,植物叶片-土壤化学计量关系也有所不同,这是由于植物需要对不同的环境做出相应的适应策略[20]。因此,生态化学计量学研究对于生态系统养分供给研究具有重要意义。

大兴安岭北部作为我国唯一的寒温带林区,该地区,冬季漫长且寒冷,年均气温约为-4.5 ℃且无霜期仅约90 d。这些独特的气候条件对植物生长产生了重大影响,可能改变其对养分的需求水平和养分适应策略。因此,本研究选择大兴安岭北部多年冻土区的典型森林群落作为研究对象,探究其主要乔木叶片与土壤C、N、P化学计量特征及其影响因子,以期为大兴安岭地区森林养分循环研究提供科学依据。

1研究区概况与研究方法

1.1研究区概况

研究区位于大兴安岭地区的漠河市北极村镇,坐落在黑龙江上游的大兴安岭山脉北麓,黑龙江上游(50°10′~53°33′N,121°7′~124°20′E)。该地为寒温带大陆性季风气候,四季分明,冬季长且寒冷,夏季短而温热,年均气温-4.9 ℃,6—9月的平均气温为7.5~18.1 ℃。海拔300~700 m,年均降水量350~500 mm,年无霜期90 d左右,是我国多年冻土主要分布区。本区顶级群落是以兴安落叶松(Larix gmelini)为主的明亮针叶林,其他森林类型有白桦(Betula platyphylla)、樟子松(Pinus sylvestris var. mongolica)和山杨(Populus davidiana)等,林下灌木主要有兴安杜鹃(Rhododendron dauricum)、杜香(Ledum palustre)和越橘(Vaccinium vitis-idaea)等。地带性土壤为棕色针叶林土,且有多年冻土的分布。

1.2样品采集与分析方法

在前期踏查的基础上,于2022年7月选择4种典型森林群落,即兴安落叶松林、樟子松林、白桦林和山杨林,在每一群落中选典型地段设置3块面积为20 m×30 m的调查样地,对样地进行每木检尺,样地基本情况见表1。在每个样地内选择3株标准

木为调查样木,在每个标准木的东南西北4个方位,分别剪取树冠内部和外部相同部位无病虫害成熟的叶片混匀,每个标准木获得3份样本,共108个样本,用于C、N和P含量的检测。叶片采集的同时,在每个样地内随机选取3个点,挖掘土壤剖面,在去除凋落物后,分别按照0~5、5~10、10~20 cm进行分层采集土壤样品,将同一土层不同点的土壤样品混匀,每块样地同一土层取3个样本,4个林型共108个样本,用于测定土壤养分含量。同时,用环刀取原状土,测定土壤容重和含水量。

1.3土壤及叶片C、N、P含量测定

将取回的新鲜土壤挑去根系和石砾等杂物,放置在阴凉通风处自然风干,风干后土样用研钵研磨并过0.149 mm筛,用于测定土壤有机碳(soil organic carbon, SOC)、全氮(total nitrogen, TN)和全磷(total phosphorus, TP)含量。新鲜叶片置于烘箱中经过105 ℃ 2 h杀青后,在65 ℃烘干至恒重,粉碎后过100目筛,用于测定叶片C、N和P含量。土壤和植物叶片有机C含量均采用重铬酸钾-硫酸外加热法测定;采用凯氏定氮法测定N含量,钼锑抗比色法测定P含量。

1.4数据统计与分析

使用Excel 2020和SPSS 16.0软件对数据进行统计分析。首先对数据进行K-S检验,对P<0.05的数据进行对数转换,使其符合正态分布。采用单因素方差分析比较不同样地叶片和土壤以及不同土层间C、N、P、C∶N、C∶P、N∶P含量差异性。用R4.0.5完成冗余分析(Redundancy Analysis, RDA)检验乔木叶片与土壤C、N、P含量及化学计量比之间的相关关系。化学计量比为质量分数比,0~20 cm土层数据由加权平均获得,数据表示均为平均值±标准差。

2结果与分析

2.1不同树种叶片C、N、P含量及其化学计量比特征

由表2可知,大兴安岭北部4种乔木叶片TC含量变化幅度为455.53~487.00 g/kg,其中兴安落叶松叶片TC含量最低,白桦叶片最高,二者差异显著(P<0.05)。4种乔木叶片TN含量在9.88~18.99 g/kg范围内波动,由大到小表现为白桦、山杨、兴安落叶松和樟子松。其中,白桦叶片TN含量是樟子松叶片的1.70倍,差异极显著(P<0.01);叶片TP含量为0.81~1.43 g/kg,由大到小表现为兴安落叶松、白桦、山杨和樟子松,兴安落叶松叶片TP含量显著高于樟子松(P<0.05)。总结来看,兴安落叶松叶片TP含量最高,TC含量最低,樟子松叶片TN和TP含量均最低,而白桦叶片TC和TN均最高,山杨叶片TC、TN和TP含量则处于中间水平。

不同树种叶片C∶N范围为25.66~47.92,樟子松叶片C∶N显著高于其他3个树种,白桦叶片最低,而白桦和山杨叶片差异不显著(P>0.05);4种乔木叶片C∶P范围在323.83~603.86,4种乔木间差异并不显著;叶片N∶P范围在10.21~20.59,山杨叶片N∶P为兴安落叶松叶片的2.02倍,差异显著(P<0.05)。由此可见,兴安落叶松叶片C∶P和N∶P均最低,樟子松叶片C∶N和C∶P均最高,白桦叶片C∶N最低,山杨叶片N∶P最高,且4种乔木叶片C∶P差异均不显著。

2.2不同群落类型土壤C、N、P含量及其化学计量比特征

由表3可知,不同群落类型土壤SOC含量呈现随土层加深而逐渐减少的趋势,不同土层波动范围为9.59~37.87 g/kg,白桦林0~20 cm土层SOC含量(26.14 g/kg)极显著高于樟子松林(14.23 g/kg)(P<0.01)。4种群落类型0~20 cm土壤TN含量在0.96~1.71 g/kg变化,其中,由大到小排序为山杨林、白桦林、兴安落叶松林和樟子松林,山杨林土壤TN含量在所有土层中均显著高于其他3种群落类型;兴安落叶松林TP含量随土层下降而增加,但各土层之间差异不显著,且10~20 cm土层TP含量显著高于其他3种群落类型。白桦林0~20 cm土壤TP含量(0.71 g/kg)为山杨林(0.32 g/kg)的2.22倍,差异极显著(P<0.01)。由此可见,白桦林土壤SOC和TP含量均最高,山杨林土壤TN最高而TP最低,樟子松林土壤SOC和TN均最低,兴安落叶松林土壤SOC和TP在0~5 cm和5~10 cm含量相对较低,但10~20 cm含量显著高于其他群落类型。

不同群落类型土壤C∶N在13.89~18.46,由大到小表现为白桦林、兴安落叶松林、樟子松林和山杨林,而樟子松林和山杨林之间差异不显著;4种群落0~20 cm土壤C∶P在35.43~77.19,樟子松林和白桦林差异不显著,同时,樟子松林在不同土层之间由大到小表现为10~20、0~5、5~10 cm,其在10~20 cm土层C∶P最高,其余群落类型均为0~5 cm最高;各群落N∶P范围在1.96~5.26,山杨林显著高于白桦林,兴安落叶松林和樟子松林为中等水平且差异不显著。樟子松林N∶P表现为随土层加深而升高的趋势,其余群落类型表现相反。由此可见,山杨林C∶P和N∶P均为最高,而C∶N最低。白桦林C∶N最高,N∶P最低。樟子松林C∶P最低。

2.3叶片化学计量特征与土壤因子之间的关系

为更深入地揭示大兴安岭地区主要树种叶片化学计量特征与土壤因子之间的相互关系,本研究采用冗余分析(RDA)方法进行分析。RDA分析能够在一张图上同时对叶片化学计量特征和土壤因子进行排序,更能直观显示二者之间的关系,二者夹角为锐角则为正相关,夹角为钝角则为负相关。锐角越小,正相关性越大。钝角越大,则负相关越大。同时,土壤因子箭头越长,说明其对叶片化学计量影响越明显。

由图1可知,落叶松林、樟子松林、白桦林和山杨林所测得的0~20 cm土壤因子分别对其叶片化学计量前两轴的总解释信息量分别为78.44%、74.67%、83.45%和72.34%。落叶松和樟子松叶片TC均与土壤TP、C∶P和N∶P显著正相关,而白桦和山杨叶片TC与C∶P和N∶P显著负相关。4种乔木叶片TN与土壤C∶N和C∶P显著正相关。白桦叶片TP与C∶N、C∶P、N∶P显著负相关,其余3种乔木TP与C∶N、C∶P、N∶P呈显著正相关。落叶松和山杨叶片C∶N、C∶P和N∶P与土壤C∶N、C∶P和N∶P显著负相关。樟子松和白桦C∶N与土壤C∶N、C∶P和N∶P显著负相关。土壤pH与4种乔木叶片C、N、P大多呈显著负相关。

3讨论

3.1不同乔木叶片C、N、P含量及化学计量特征

植物体内C、N、P相互耦合,共同调控植物的生长发育[21]。本研究表明,大兴安岭地区4种乔木叶片C含量(455.53~487.00 g/kg)高于我国暖温带(451 g/kg)[22]、温带(438 g/kg)[23]和热带(452.3 g/kg)[24],而叶片TN含量(9.88~18.99 g/kg)和TP含量(0.81~1.43 g/kg)均低于我国植物叶片TN含量均值19.7 g/kg和TP含量均值2.0 g/kg[19]。植物养分含量及其吸收利用和效率在不同温度[25]、湿度[26]和海拔[27]条件下均表现出差异。因此,本研究4种乔木在大兴安岭地区独特的低温环境下,产生了与其他地区不同的养分吸收利用策略。本研究中樟子松叶片TC含量(473.33 g/kg)高于兴安落叶松和山杨叶片,其主要原因在于常绿树种叶片更新速度较慢,大量C素被光合作用所固定并积累储存在叶片中[28]。相比之下,白桦叶片TC含量(487 g/kg)最高,说明在大兴安岭地区,白桦叶片具有较高的C储能力。有研究结果表明,较高的叶片TN使其具有更快的光合速率,加速植物生长[29],而针叶树种与阔叶树种由于叶片结构的差异产生了不同的叶片生理功能,导致针叶树种向光合器官中分配的氮素比例较低[30],同时,常绿植物吸收的氮素大多用于构建生长所必需的结构蛋白[31],从而N含量由小到大表现为樟子松叶片、兴安落叶松、2种阔叶树种。

植物C∶N和C∶P通常能表示植物对N、P的利用效率[32]。本研究中4种乔木树种C∶N(13.89~18.46)和C∶P(35.43~77.19)高于全球植物平均C∶N(22.5)和C∶P(233.2)[19],说明研究区4种乔木叶片具有较高的P利用效率,而N利用效率较低。由于针叶树种叶片氮素周转较阔叶树种更慢,且淋洗过程中氮素损失量更低[33],使樟子松和落叶松叶片氮利用效率显著高于山杨和白桦叶片。陆地植物在N∶P<10时受N限制,在大于20时受P限制[11],山杨叶片N∶P为20.59,说明山杨生长可能受P素限制,然而植物叶片化学计量特征由环境与遗传因子共同决定,具有种内变异且生态策略趋异性[34],因此大兴安岭北部地区山杨生长是否受P素限制还需开展进一步研究。白桦叶片C、N最高,兴安落叶松叶片TP含量最高,樟子松叶片C∶N和C∶P最高,山杨叶片N∶P最高,这也反映了不同树种对养分分配及其利用效率存在差异[35]。

3.2不同群落类型土壤C、N、P含量及化学计量特征

大兴安岭地区4种典型森林类型土壤SOC和TN含量均表现为随土层深度的增加而降低,而TP含量在不同土层间差异不明显,这是因为土壤SOC、TN和TP含量在垂直分布上主要是由于C、N、P来源不同所决定的。土壤N来源途径多样,主要包括植物凋落物归还和大气沉降补充[36-37],而P来源相对单一,主要由岩石风化和淋洗补充,这些过程相对困难[38]。因此,表层土壤N含量较高,而P在垂直分布中均一性较好。土壤SOC、TN和TP主要来源于凋落物分解,然后被植物吸收[39],这些元素经过淋溶后向下层土壤迁移,同时也受植物根系的吸收和利用影响[40]。依据全国第二次土壤普查养分分级标准,山杨林土壤TN含量处于二级水平,兴安落叶松林和白桦林属于三级,而樟子松林则属于四级。白桦林TP含量为三级,兴安落叶松林和樟子松林为四级,山杨林仅为五级水平。大兴安岭地区森林土壤N和P含量较低,在一定程度上影响了植物生长[41],比如P素缺乏可能对山杨生长产生了限制。

土壤C、N、P化学计量比是反映土壤养分和土壤养分有效性的关键性指标[4]。在本研究中,4种林型土壤C∶N在土壤剖面中随深度增加而降低。同一土层中土壤C∶N值越低,意味着土壤矿化作用越快,土壤中速效氮含量也较高[42-43]。然而,这4种林型C∶N均高于中国土壤C∶N的平均值(11.9)[44],这可能是由于本研究位于大兴安岭北部,冬季漫长而寒冷,导致凋落物分解速率相对较慢,归还土壤的N素量相对较低[45]。土壤C∶P会显著影响到土壤微生物的C和P,当C∶P>200时微生物进行磷净固持,当C∶P<200时进行磷净矿化[46]。此外,土壤C∶P也可以表示土壤磷的有效性,二者之间呈负相关[42]。兴安落叶松林、白桦林和樟子松林土壤C∶P均低于我国平均值61[44],而山杨林高于平均值,这表明山杨林土壤磷有效性相对较低,可能受P素限制。作为诊断土壤氮磷养分限制饱和度的指标,土壤N∶P能够反映植物生长过程中土壤养分的供给情况[16],本研究中,山杨土壤N∶P(5.26)显著高于其余3种群落类型(1.96~2.55),同时高于我国平均值5.1[44],并且其N含量在4个群落类型中最高,说明土壤磷元素可能是山杨生长的一个重要限制因素,即土壤中N素有效性较高,而磷素的有效性不足以与之平衡,因此会影响树木生长发育和生理功能[47]。

3.3叶片化学计量与土壤因子之间的关系

大兴安岭北部4种群落类型土壤C、N、P对叶片化学计量特征变化的贡献较低,说明在植物生长过程中C、N、P之间相互耦合,共同影响植物发育[48]。土壤因子中土壤含水对叶片化学计量特征变化的贡献最大,落叶松林和樟子松林土壤含水与叶片TP呈正相关,与叶片C∶P和N∶P显著负相关,这是由于土壤水分通过影响土壤微生物[49-50]的活性与种类进而间接影响植物对磷素的吸收和利用。土壤pH上升,硝化细菌活性被抑制,矿化氮有向氨化转变的趋势,从而提高植物氮利用效率[51],使落叶松林和樟子松林土壤pH与叶片C∶N正相关。樟子松林土壤C∶N与叶片C∶N正相关,白桦林土壤C∶N和C∶P均与叶片C∶P呈正相关,这与部分研究中,在养分匮乏的环境下,植物的养分利用效率较高的观点一致[52]。而樟子松林和白桦林土壤C∶N与叶片C∶N负相关,这可能是由于土壤中氮含量超过植物的最大吸收量,氮含量下降会对植物生长发育产生负面影响[53]。

4 结论

本研究深入分析了大兴安岭北部4种乔木叶片和土壤生态化学计量特征,结果表明,4种乔木叶片C∶N>25,兴安落叶松叶片显著高于其他3个树种,白桦叶片最低,叶片C∶P>600,但4种乔木间差异不显著,叶片N∶P在10.21~20.59,兴安落叶松最低,山杨叶片N∶P最高,且>20,表明其生长可能受到磷限制。4种林型土壤C∶N均高于我国土壤C∶N的平均值(11.9)。兴安落叶松林、白桦林和樟子松林土壤C∶P均低于我国平均值(61),而山杨林高于平均值。同时山杨土壤N∶P(5.26)显著高于其余3种群落类型(1.96~2.55),说明土壤磷元素可能是山杨生长一个重要的限制因素。樟子松林土壤C∶N与叶片C∶N正相关,白桦林土壤C∶N和C∶P均与叶片C∶P呈正相关,樟子松林和白桦林土壤C∶N与叶片C∶N负相关,说明植物养分利用效率主要受土壤中养分含量所影响,且不同植物对环境会作出相应的适应策略。

【参考文献】

[1]张继辉,蔡道雄,卢立华,等.不同林龄柚木人工林土壤生态化学计量特征[J].生态学报,2020,40(16):5718-5728.

ZHANG J H, CAI D X, LU L H, et al. Soil ecological stoichiometry of different aged Teak (Tectona grandis) plantations[J]. Acta Ecologica Sinica, 2020, 40(16): 5718-5728.

[2]拓卫卫,范家伟,周雅洁,等.毛乌素沙地樟子松林植物-土壤生态化学计量特征演变关系[J].水土保持研究,2023,30(6):177-186.

TUO W W, FAN J W, ZHOU Y J, et al. Evolutionary relationship of ecological stoichiometric characteristics between soil and plant of Pinus sylvestris forest in Mu Us sandy land[J]. Research of Soil and Water Conservation, 2023, 30(6): 177-186.

[3]周念清,吴延浩,蔡奕,等.湿地关键带中磷与氮、碳循环联动耦合机制[J].地球科学与环境学报,2022,44(1):91-101.

ZHOU N Q, WU Y H, CAI Y, et al. Coupling mechanism of phosphorus and nitrogen, carbon cycles in critical zone of wetland[J]. Journal of Earth Sciences and Environment, 2022, 44(1): 91-101.

[4]孙连伟,陈静文,邓琦.全球变化背景下陆地植物N/P生态化学计量学研究进展[J].热带亚热带植物学报,2019,27(5):534-540.

SUN L W, CHEN J W, DENG Q. Research progress of terrestrial plants N/P ecological stoichiometry under global change[J]. Journal of Tropical and Subtropical Botany, 2019, 27(5): 534-540.

[5]LIU J, FANG L C, QIU T Y, et al. Disconnection between plant-microbial nutrient limitation across forest biomes[J]. Functional Ecology, 2023, 37(8): 2271-2281.

[6]HE Y Q, ZHANG Q C, JIANG C Y, et al. Mixed planting improves soil aggregate stability and aggregate-associated C-N-P accumulation in subtropical China[J]. Frontiers in Forests and Global Change, 2023, 6: 1141953.

[7]LI J N, NIU X M, WANG P, et al. Soil degradation regulates the effects of litter decomposition on soil microbial nutrient limitation: evidence from soil enzymatic activity and stoichiometry[J]. Frontiers in Plant Science, 2023, 13: 1090954.

[8]QIU L J, LI Y J, ZHONG Q, et al. Adaptation mechanisms of the soil microbial community under stoichiometric imbalances and nutrient-limiting conditions in a subtropical nitrogen-saturated forest[J]. Plant and Soil, 2023, 489(1): 239-258.

[9]俞月凤,彭晚霞,宋同清,等.喀斯特峰丛洼地不同森林类型植物和土壤C、N、P化学计量特征[J].应用生报,2014,25(4):947-954.

YU Y F, PENG W X, SONG T Q, et al. Stoichiometric characteristics of plant and soil C, N and P in different forest types in depressions between Karst hills, southwest China[J]. Chinese Journal of Applied Ecology, 2014, 25(4): 947-954.

[10]JIANG J, WANG Y P, YANG Y H, et al. Interactive effects of nitrogen and phosphorus additions on plant growth vary with ecosystem type[J]. Plant and Soil, 2019, 440(1): 523-537.

[11]郁国梁,王军强,马紫荆,等.博斯腾湖湖滨湿地优势植物叶片碳、氮、磷化学计量特征的季节动态及其影响因子[J].植物资源与环境学报,2022,31(5):9-18.

YU G L, WANG J Q, MA Z J, et al. Seasonal dynamics of carbon, nitrogen, and phosphorus stoichiometric characteristics of leaves of dominant plants in the lakeside wetland of Bosten Lake and their influencing factors[J]. Journal of Plant Resources and Environment, 2022, 31(5): 9-18.

[12]冀盼盼,张健飞,张玉珍,等.不同林龄华北落叶松人工林生态化学计量特征[J].南京林业大学学报(自然版),2020,44(3):126-132.

JI P P, ZHANG J F, ZHANG Y Z, et al. Ecological stoichiometry characteristics of Larix principis-rupprechtii plantations at different ages[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2020, 44(3): 126-132.

[13]宋语涵,张鹏,金光泽.阔叶红松林不同演替阶段灌木叶片碳氮磷化学计量特征及其影响因素[J].植物生报,2021,45(9):952-960.

SONG Y H, ZHANG P, JIN G Z. Characteristics of shrub leaf carbon, nitrogen and phosphorus stoichiometry and influencing factors in mixed broadleaved-Korean pine forests at different successional stages[J]. Chinese Journal of Plant Ecology, 2021, 45(9): 952-960.

[14]李红琴,张法伟,仪律北.高寒草甸表层土壤和优势植物叶片的化学计量特征对降水改变和氮添加的响应[J].报,2023,47(7):922-931.

LI H Q, ZHANG F W, YI L B. Stoichiometric responses in topsoil and leaf of dominant species to precipitation change and nitrogen addition in an alpine meadow[J]. Chinese Journal of Plant Ecology, 2023, 47(7): 922-931.

[15]张萍,章广琦,赵一娉,等.黄土丘陵区不同森林类型叶片-凋落物-土壤生态化学计量特征[J].生态学报,2018,38(14):5087-5098.

ZHANG P, ZHANG G Q, ZHAO Y P, et al. Ecological stoichiometry characteristics of leaf-litter-soil interactions in different forest types in the loess hilly-gully region of China[J]. Acta Ecologica Sinica, 2018, 38(14): 5087-5098.

[16]王振宇,王涛,邹秉章,等.不同生长阶段杉木人工林土壤C∶N∶P化学计量特征与养分动态[J].应用生报,2020,31(11):3597-3604.

WANG Z Y, WANG T, ZOU B Z, et al. Soil C: N: P stoichiometry and nutrient dynamics in Cunninghamia lanceolata plantations during different growth stages[J]. Chinese Journal of Applied Ecology, 2020, 31(11): 3597-3604.

[17]GSEWELL S, KOERSELMAN W, VERHOEVEN J T A. Biomass N:P ratios as indicators of nutrient limitation for plant populations in wetlands[J]. Ecological Applications, 2003, 13(2): 372-384.

[18]CAMENZIND T, HATTENSCHWILER S, TRESEDER K K, et al. Nutrient limitation of soil microbial processes in tropical forests[J]. Ecological Monographs, 2018, 88(1): 4-21.

[19]EOSTERTAG R, DIMANNO N M. Detecting terrestrial nutrient limitation: a global meta-analysis of foliar nutrient concentrations after fertilization[J]. Frontiers in Earth Science, 2016, 4: 23.

[20]ABIS L, LOUBET B, CIURARU R, et al. Reduced microbial diversity induces larger volatile organic compound emissions from soils[J]. Scientific Reports, 2020, 10(1): 6104.

[21]ZHANG W, LIU W C, XU M P, et al. Response of forest growth to C: N: P stoichiometry in plants and soils during Robinia pseudoacacia afforestation on the Loess Plateau, China[J]. Geoderma, 2019, 337: 280-289.

[22]韩文轩,吴漪,汤璐瑛,等.北京及周边地区植物叶的碳氮磷元素计量特征[J].北京大学学报(自然科学版),2009,45(5):855-860.

HAN W X, WU Y, TANG L Y, et al. Leaf carbon, nitrogen and phosphorus stoichiometry across plant species in Beijing and its periphery[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2009, 45(5): 855-860.

[23]郑淑霞,上官周平.黄土高原地区植物叶片养分组成的空间分布格局[J].自然科学进展,2006,16(8):965-973.

ZHENG S X, SHANGGUAN Z P. The spatial distribution pattern of nutrient composition in plant leaves in the Loess Plateau region[J]. Progress in Natural Science, 2006, 16(8):965-973.

[24]张亚兴,朱丽薇,刘楠.海南不同生活型植物叶片和根系C、N、P化学计量特征[J].热带亚热带植物学报,2020,28(2):131-135.

ZHANG Y X, ZHU L W, LIU N. C, N, and P concentrations and their stoichiometry of leaves and roots with different life forms in Hainan Province[J]. Journal of Tropical and Subtropical Botany, 2020, 28(2): 131-135.

[25]胡星,刘庆,赵春章,等.不同增温模式对西南亚高山针叶林云杉养分及其化学计量特征的影响[J/OL].应用与环境生物学报,2023:1-12.

HU X, LIU Q, ZHAO C Z, et al. Effects of different warming patterns on nutrients and stoichiometric characteristics of Spruce in alpine coniferous forests of Southwest Asia[J/OL]. Chinese Journal of Applied and Environmental Biology, 2023:1-12.

[26]卢同平,王艳飞,王黎明,等.西双版纳热带雨林土壤与叶片生态化学计量特征的干湿度效应[J].生态学报,2018,38(7):2333-2343.

LU T P, WANG Y F, WANG L M, et al. Effect of the humidity/aridity gradient on the ecological stoichiometry of soil and leaves in Xishuangbanna tropical rainforest[J]. Acta Ecologica Sinica, 2018, 38(7): 2333-2343.

[27]吴欣阳,邵静,陈晓萍,等.武夷山不同海拔阔叶树叶片养分含量及再吸收效率[J].应用生态学报,2023,34(9):2305-2313.

WU X Y, SHAO J, CHEN X P, et al. Nutrient content and resorption efficiency of leaves of broad-leaved trees along altitudes in Wuyi Mountains, China[J]. Chinese Journal of Applied Ecology, 2023, 34(9): 2305-2313.

[28]蔡艳,张毅,刘辉,等.峨眉山常绿阔叶林常绿和落叶物种叶片C、N、P研究[J].浙江林业科技,2009,29(3):9-13.

CAI Y, ZHANG Y, LIU H, et al. Study on C, N, P content in leaf of evergreen and deciduous trees in evergreen broad-leaved forest at E'mei Mountain[J]. Journal of Zhejiang Forestry Science and Technology, 2009, 29(3): 9-13.

[29]胡启武,聂兰琴,郑艳明,等.沙化程度和林龄对湿地松叶片及林下土壤C、N、P化学计量特征影响[J].生态学报,2014,34(9):2246-2255.

HU Q W, NIE L Q, ZHENG Y M, et al. Effects of desertification intensity and stand age on leaf and soil carbon, nitrogen and phosphorus stoichiometry in Pinus elliottii plantation[J]. Acta Ecologica Sinica, 2014, 34(9): 2246-2255.

[30]BYTNEROWICZ T A, FUNK J L, MENGE D N L, et al. Leaf nitrogen affects photosynthesis and water use efficiency similarly in nitrogen-fixing and non-fixing trees[J]. Journal of Ecology, 2023, 111(11): 2457-2471.

[31]LI R S, YU D, ZHANG Y K, et al. Investment of needle nitrogen to photosynthesis controls the nonlinear productivity response of young Chinese fir trees to nitrogen deposition[J]. The Science of the Total Environment, 2022, 840: 156537.

[32]李鸿博,陈诗,黄耀华,等.横断山脉亚高山带高山栎叶片生态化学计量及内稳性特征[J].植物研究,2023,43(6):923-931.

LI H B, CHEN S, HUANG Y H, et al. Ecological stoichiometry and homeostasis of alpine Quercus semicarpifolia leaves in subalpine zone of Hengduan Mountains[J]. Bulletin of Botanical Research, 2023, 43(6): 923-931.

[33]GURMESA G A, ZHANG S S, WANG A, et al. Within-site difference in nitrogen status between mixed forests and larch plantations: evidence from multiple indicators[J]. Ecosphere, 2023, 14(1): e4358.

[34]XU R, CHENG S D, ZHOU J, et al. Intraspecific variations in leaf functional traits of Cunninghamia lanceolata provenances[J]. BMC Plant Biology, 2023, 23(1): 92.

[35]张楠,杨智杰,胥超,等.中亚热带森林转换对凋落物养分归还及养分利用效率的影响[J].应用生态学报,2022,33(2):321-328.

ZHANG N, YANG Z J, XU C, et al. Effects of forest conversion on litterfall nutrient return and nutrient use efficiency in Mid-subtropical China[J]. Chinese Journal of Applied Ecology, 2022, 33(2): 321-328.

[36]陈立新,姜一,段文标,等.红松混交林凋落物氮储量及分解释放对土壤氮的影响[J].生态学杂志,2015,34(1):114-121.

CHEN L X, JIANG Y, DUAN W B, et al. Effect of litter nitrogen storage and nitrogen release of litter decomposition on soil nitrogen in Pinus koraiensis mixed forests[J]. Chinese Journal of Ecology, 2015, 34(1): 114-121.

[37]DUAN L, CHEN X, MA X X, et al. Atmospheric S and N deposition relates to increasing riverine transport of S and N in southwest China: implications for soil acidification[J]. Environmental Pollution, 2016, 218: 1191-1199.

[38]HERRERA D, MYLAVARAPU R S, HARRIS W G, et al. Soil phosphorus sources and their relative water solubility and extractability[J]. Communications in Soil Science and Plant Analysis, 2022, 53(12): 1445-1455.

[39]刘姝萱,安慧,张馨文,等.氮磷添加对荒漠草原植物-凋落物-土壤生态化学计量特征的影响[J].生态学报,2022,42(21):8773-8783.

LIU S X, AN H, ZHANG X W, et al. Effects of nitrogen and phosphorus addition on the ecological stoichiometry of plant-litter-soil in desert grassland[J]. Acta Ecologica Sinica, 2022, 42(21): 8773-8783.

[40]张英鹏,孙明,李彦,等.根系调控对设施西葫芦产量、品质及土壤氮磷淋溶损失的影响[J].山东农业科学,2020,52(11):90-94.

ZHANG Y P, SUN M, LI Y, et al. Effects of different root regulation on yield and quality of summer squash and soil nitrogen and phosphorus leaching loss in greenhouse[J]. Shandong Agricultural Sciences, 2020, 52(11): 90-94.

[41]林秋燕,钟全林,李宝银,等.氮磷添加对刨花楠幼林生长与叶性状及土壤养分关系影响[J/OL].应用与环境生物学报,2023:1-13.

LIN Q Y, ZHONG Q L, LI B Y, et al. Effect of nitrogen and phosphorus addition on the relationship between leaf traits-soil nutrients and the growth of Machilus pauhoi young plantation[J/OL]. Chinese Journal of Applied and Environmental Biology, 2023:1-13.

[42]曹娟,闫文德,项文化,等.湖南会同3个林龄杉木人工林土壤碳、氮、磷化学计量特征[J].林业科学,2015,51(7):1-8.

CAO J, YAN W D, XIANG W H, et al. Stoichiometry characterization of soil C, N, and P of Chinese fir plantations at three different ages in Huitong, Hunan Province, China[J]. Scientia Silvae Sinicae, 2015, 51(7): 1-8.

[43]周士锋,赵敏娟.粗枝云杉根系及树冠中的碳氮磷化学计量特征研究[J].西部林业科学,2022,51(1):42-48.

ZHOU S F, ZHAO M J. Stoichiometric characteristics of carbon, nitrogen and phosphorus in different root and crown of Picea crassifolia[J]. Journal of West China Forestry Science, 2022, 51(1): 42-48.

[44]刘婕,勾晓华,刘建国,等.甘南黄河流域4种典型林分土壤C、N、P化学计量特征[J].生态学报,2023,43(13):5627-5637.

LIU J, GOU X H, LIU J G, et al. The stoichiometric characteristics of soil C, N and P in four typical forest stands in the Yellow River Basin in Gannan[J]. Acta Ecologica Sinica, 2023, 43(13): 5627-5637.

[45]梁蕾,马秀枝,韩晓荣,等.模拟增温下凋落物对大青山油松人工林土壤温室气体通量的影响[J].生态环报,2022,31(3):478-486.

LIANG L, MA X Z, HAN X R, et al. Effects of litter on soil greenhouse gas flux of Pinus tabulaeformis plantation in Daqing Mountain under simulated warming[J]. Ecology and Environmental Sciences, 2022, 31(3): 478-486.

[46]何高迅,王越,彭淑娴,等.滇中退化山地不同植被恢复下土壤碳氮磷储量与生态化学计量特征[J].生态报,2020,40(13):4425-4435.

HE G X, WANG Y, PENG S X, et al. Soil carbon, nitrogen and phosphorus stocks and ecological stoichiometry characteristics of different vegetation restorations in degraded mountainous area of central Yunnan, China[J]. Acta Ecologica Sinica, 2020, 40(13): 4425-4435.

[47]ZHAO C T, LIN Q H, TIAN D, et al. Nitrogen addition promotes conservative resource-use strategies via aggravating phosphorus limitation of evergreen trees in subtropical forest[J]. The Science of the Total Environment, 2023, 889: 164047.

[48]MA X M, ZHOU Z, CHEN J, et al. Long-term nitrogen and phosphorus fertilization reveals that phosphorus limitation shapes the microbial community composition and functions in tropical montane forest soil[J]. The Science of the Total Environment, 2023, 854: 158709.

[49]张静,温仲明,李鸣雷,等.外来物种刺槐对土壤微生物功能多样性的影响[J].生态学报,2018,38(14):4964-4974.

ZHANG J, WEN Z M, LI M L, et al. Effects of the exotic black locust on the functional diversity of soil microorganisms[J]. Acta Ecologica Sinica, 2018, 38(14): 4964-4974.

[50]王泽西,陈倩妹,黄尤优,等.川西亚高山森林土壤呼吸和微生物生物量碳氮对施氮的响应[J].生态学报,2019,39(19):7197-7207.

WANG Z X, CHEN Q M, HUANG Y Y, et al. Response of soil respiration and microbial biomass carbon and nitrogen to nitrogen application in subalpine forests of western Sichuan[J]. Acta Ecologica Sinica, 2019, 39(19): 7197-7207.

[51]杨楚童,邹显花,孙雪莲,等.不同磷利用效率杉木在低磷胁迫下的形态及养分分配差异[J].西北林学院报,2021,36(4):94-102.

YANG C T, ZOU X H, SUN X L, et al. Differences in morphology and nutrient distribution of Chinese fir with different phosphorus use efficiency under low phosphorus stress[J]. Journal of Northwest Forestry University, 2021, 36(4): 94-102.

[52]雷泽勇,白津宁,周凤艳,等.辽宁章古台地区不同年龄樟子松固沙林对土壤pH值的影响[J].生态学杂志,2019,38(11):3264-3272.

LEI Z Y, BAI J N, ZHOU F Y, et al. Effects of Pinus sylvestris var. mongolica sand-fixation plantations with different ages on soil pH in Zhanggutai, Liaoning Province[J]. Chinese Journal of Ecology, 2019, 38(11): 3264-3272.

[53]刘俊英,回金峰,孙梦瑶,等.施磷水平和接种AMF与解磷细菌对苜蓿产量及磷素利用效率的影响[J].农报,2020,36(19):142-149.

LIU J Y, HUI J F, SUN M Y, et al. Effects of phosphorus application and inoculation arbuscular mycorrhizae fungi(AMF) and phosphate solubilizing bacteria on dry matter yield and phosphorus use efficiency of alfalfa[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(19): 142-149.

猜你喜欢

樟子松叶片土壤
月季叶片“雕刻师”
土壤
两种喷涂方法在TRT叶片上的对比应用及研究
灵感的土壤
识破那些优美“摆拍”——铲除“四风”的土壤
塞罕坝樟子松幼林抚育与管理
初探北方樟子松栽培关键技术
我眼中的樟子松
灵感的土壤
基于CFD/CSD耦合的叶轮机叶片失速颤振计算