外源γ-氨基丁酸和外源褪黑素处理对红酥宝梨果实品质及糖代谢相关酶的影响
2024-06-30邓晗张向展王苏珂张振修苏艳丽杨健薛华柏王龙
邓晗 张向展 王苏珂 张振修 苏艳丽 杨健 薛华柏 王龙
摘 要:【目的】研究外源γ-氨基丁酸和外源褪黑素处理后,红酥宝梨果实不同发育阶段的糖代谢相关酶活性及果实糖含量的变化规律,明晰影响红酥宝梨果实糖积累的关键酶类,为红酥宝梨果实品质调控技术研发提供理论依据。【方法】以红酥宝梨为试验材料,于果实膨大期用5 mmol·L-1、10 mmol·L-1、20 mmol·L-1的γ-氨基丁酸(γ-aminobutyric acid,GABA)溶液和50 μmol·L-1、100 μmol·L-1、200 μmol·L-1的褪黑素(melatonin,MT)溶液进行叶面喷施,对照为叶面喷施蒸馏水,研究其对梨果实发育过程中果实品质相关指标以及糖代谢相关酶活性的影响。【结果】适宜浓度的外源GABA处理和外源MT处理显著提高了红酥宝梨果实品质,其中,50 μmol·L-1 MT处理显著提高了单果质量、增强了果实阳面着色效果、果肉硬度和蔗糖、山梨醇、果糖、总糖含量,以及甜度值和糖酸比。适宜浓度外源处理还能显著提高红酥宝梨发育过程中糖代谢相关酶类的活性,其中10 mmol·L-1 GABA处理对可溶性酸性转化酶(S-AI)活性、5 mmol·L-1 GABA处理对中性转化酶(NI)活性、200 μmol·L-1 MT处理对蔗糖合成酶(分解方向)(SS-Ⅰ)活性、20 mmol·L-1 GABA处理对蔗糖合成酶(合成方向)(SS-Ⅱ)活性、50 μmol·L-1 MT处理对蔗糖磷酸合成酶(SPS)活性均有显著提高。【结论】利用50 μmol·L-1浓度的褪黑素溶液对红酥宝梨进行叶面喷施,可显著提高单果质量、色差、可溶性固形物含量等果实经济性状和蔗糖磷酸合成酶活性,提高梨果实中蔗糖、山梨醇、果糖和有机酸含量、增加糖酸比和果实甜度,进而提高果实品质。
关键词:梨;γ-氨基丁酸;褪黑素;果实品质;糖酸代谢
中图分类号:S661.2 文献标志码:A 文章编号:1009-9980(2024)06-1094-17
A study on the effects of exogenous γ-aminobutyric acid and exogenous melatonin treatment on fruit quality and sugar metabolism-related enzymes in Hongsubao pear
DENG Han1, ZHANG Xiangzhan1, WANG Suke1, ZHANG Zhenxiu3, SU Yanli1, YANG Jian1, XUE Huabai1, 2, WANG Long1, 2*
(1Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, Henan, China; 2Chuxiong Yunfruit Industry Technology Research Institute, Chuxiong 675000, Yunnan, China; 3Administration Committee of Shangqiu National Agricultural Science and Technology Park, Shangqiu 476000, Henan, China)
Abstract: 【Objective】 The economic characteristics of pears, including fruit size, skin color, sugar and acid composition, sugar-to-acid ratio, and fruit firmness, significantly impact the commercial value of pear fruit and are of interest to various stakeholders such as producers, traders, consumers, and researchers. Glucose, fructose, sucrose, and sorbitol are the primary soluble sugars in pears, while malic acid, citric acid, tartaric acid, and quinic acid are the major organic acids, with fructose and sucrose playing crucial roles in determining fruit sweetness. Therefore, enhancing these traits is fundamental for pear production. Current strategies for improving fruit quality focus on enhancing environmental conditions like water availability, soil quality, nutrient levels, and light exposure. While studies have explored the use of external agents for foliar application to enhance fruit quality, there remains a research gap concerning the pivotal enzymes that regulate sugar and acid metabolism, impacting sugar and acid levels in the fruit. This research deficiency impedes the development of effective quality enhancement products and the establishment of a robust theoretical framework. γ-aminobutyric acid (GABA) and melatonin (MT) are naturally occurring compounds with reported potential in regulating fruit quality, yet limited research has been conducted on their exogenous application to enhance red-skinned pear quality. This study investigates the effects of exogenous GABA and MT treatments on Hongsubao red-skinned pears, analyzing changes in the activity of sugar metabolism-associated enzymes (soluble acid invertase, neutral invertase, sucrose synthase, and sucrose phosphate synthase) and sugar content at various fruit development stages. The objective is to elucidate the key enzymes influencing sugar accumulation in Hongsubao pear and provide a theoretical foundation for developing quality control strategies for this pear variety. 【Methods】 Experimental materials in this study consisted of Hongsubao pear fruit sourced from the Zhengzhou Fruit Tree Research Institute of the Chinese Academy of Agricultural Sciences, specifically from the National Horticultural Germplasm Resource Library Zhengzhou Pear Sub-library. During the fruit enlargement phase, pear fruit were given treatments with GABA solutions at concentrations of 5 mmol·L-1 (G1), 10 mmol·L-1 (G2), and 20 mmol·L-1 (G3), or with melatonin (MT) solutions at concentrations of 50 μmol·L-1 (M1), 100 μmol·L-1 (M2), and 200 μmol·L-1 (M3) via foliar application. Foliar spraying with distilled water served as the control (CK). The impacts on individual fruit weight, longitudinal and transverse diameters, coloration of the sun-exposed fruit surface, peel firmness, soluble solid content, sugar and acid levels, sugar-to-acid ratio, and activities of sugar metabolism-related enzymes were assessed throughout the developmental stages of pear fruits. 【Results】 The optimal concentrations of exogenous GABA and melatonin (MT) treatments notably improved various characteristics of Hongsubao pears, encompassing individual fruit weight, fruit coloration on the sunlit side, fruit firmness, soluble solid content, sugar and acid contents, and sugar-acid ratio. Particularly, treatment M1 significantly increased individual fruit weight, sunlit side coloration, firmness, sucrose, sorbitol, fructose, and total sugar contents, sweetness value, and sugar-acid ratio by 18.48%, 351%, 12.21%, 176.62%, 52.24%, 57.21%, 50.81%, 54.99%, and 25.54%, respectively. Treatment M2 notably increased soluble solids by 11.79%, while treatment G1 enhanced glucose by 32.74%. Exogenous treatments also substantially elevated the activities of sugar metabolism-related enzymes during the development of Hongsubao pears. For instance, G2 treatment raised soluble acid invertase (S-AI) activity by 69.21% at 66 days after full bloom (DAF); G1 treatment increased neutral invertase (NI) activity by 81.44% at 66 DAF; M3 treatment enhanced sucrose synthase (degradation direction) (SS-Ⅰ) activity by 72.53% at 108 DAF; G3 treatment increased sucrose synthase (synthesis direction) (SS-Ⅱ) activity by 17.77% at 94 DAF; and M1 treatment augmented sucrose phosphate synthase (SPS) activity by 79.42% at 154 DAF. 【Conclusion】 Foliar application of a 50 μmol·L-1 melatonin solution significantly improved individual fruit weight, color differentiation, and soluble solid content of Hongsubao pears, key economic traits of the fruit. Moreover, it notably increased sucrose phosphate synthase activity, leading to elevated levels of fructose, sorbitol, sucrose, and organic acids in pear fruit, thereby increasing sugar-acid ratio, sweetness, and overall fruit quality.
Key words: Pear; γ-aminobutyric acid; Melatonin; Fruit quality; Sugar-acid metabolism
梨(Pyrus L.)是中国第三大水果,除海南省外,全国各省份都有栽培[1]。据FAO统计,2021年中国梨生产面积和产量分别为98.15万hm2和1 887.89万t,分别占世界梨生产面积和产量的70.13%和73.57%。
果实大小、果皮颜色、糖酸含量、糖酸比、果实硬度等是影响梨果实品质的重要指标,也决定梨果实的商品价值,是生产者、中间商、消费者和科研工作者共同关注的焦点。梨果实中主要的可溶性糖为葡萄糖、果糖、蔗糖、山梨醇,而有机酸主要为苹果酸、柠檬酸、莽草酸和奎宁酸,此外还有少量的酒石酸和琥珀酸[2],其中果糖和蔗糖是影响果实甜度的主要糖类,因此研究如何改善这些果实性状对提高梨果实生产水平具有重要意义。
目前,在水果生产过程中主要通过利用综合措施改善水分[3]、土壤[4]、营养[5-6]、光照[7-10]等条件来提高果实品质;但也有研究表明,采用单一措施,如利用一些外源物质在果实发育关键时期进行叶面喷施也能提高果实品质。韩春红等[11]利用0.5 mmol·L-1茉莉酸甲酯和0.5 mmol·L-1二氢茉莉酸丙酯溶液对红玛瑙、红酥宝和红香酥梨进行叶面喷施,可显著提高花色苷、可溶性糖含量和糖酸比,改善果实着色;胡真[12]在苹果盛花期喷施250 mg·L-1调环酸钙可显著提高单果质量、果实硬度、可溶性固形物含量,并促进了果实着色;蔡莉萍[13]采用30 mg·L-1 Na2SeO3溶液对草莓进行叶面喷施,显著提高了草莓果实的可溶性糖、有机酸、抗坏血酸含量以及糖酸比、果形指数和单果质量。关于采用外源物进行叶面喷施提升果实品质的研究报道较多,但外源物是通过对何种糖酸代谢的关键酶类起调控作用,从而影响糖酸代谢,最终导致果实中糖酸含量变化的研究较少,研究的广度和深度不够,也难以为生产中提高果实品质的产品开发奠定充分的理论基础。γ-氨基丁酸又称4-氨基丁酸(GABA),是一种天然存在于动植物体内的四碳非蛋白氨基酸[14],褪黑素(MT)是普遍存在于生物体内的一种吲哚胺类化合物,目前在葡萄、柑橘、桃等多种果树中,叶面喷施外源GABA或外源MT在调节植物种子萌发、果实成熟、抗逆、抗氧化、采后果实品质等方面已被广泛报道,同时在果实品质调控方面也有相关报道,叶面喷施这两种外源物可以有效改善果实品质或维持采后果实品质[15-22]。但在利用外源GABA和MT处理改善红皮梨果实品质方面仍鲜有报道。
红酥宝梨是中国农业科学院郑州果树研究所培育的红皮梨新品种,具有广阔的市场前景,但其着色面积和糖酸比仍有提升的潜力,这两个性状也是提升其商品价值的关键。基于此,笔者以红皮梨新品种红酥宝为试验材料,在红酥宝梨关键的果实发育时期进行不同浓度的GABA和MT外源喷施处理,调控果实糖酸含量和果皮颜色,同时测定相关酶的生物活性,探究梨果实糖酸合成及其积累过程的关键时期和关键酶类,为红皮梨果实品质提升关键技术的研发提供理论依据。
1 材料和方法
1.1 试验材料
试验于2023年5—8月在中国农业科学院郑州果树研究所梨种质资源圃(国家园艺种质资源库郑州梨分库)开展,供试品种为10年生梨品种红酥宝梨,树势健康,生长势一致。试验药剂为γ-氨基丁酸(BR,纯度≥99.0%),上海源叶生物科技有限公司;褪黑素(BR,纯度≥99.0%),北京索莱宝科技有限公司。
1.2 试验设计
试验共设计3个MT浓度梯度:50 μmol·L-1、100 μmol·L-1、200 μmol·L-1和3个GABA浓度梯度:5 mmol·L-1、10 mmol·L-1、20 mmol·L-1,以清水处理作为空白对照(CK),每个处理设置3次重复,每个重复2株,完全随机排列。
外源物处理于盛花后(DAF)52 d开始,处理选在晴朗无风的上午进行,采取叶面喷施的方法,以叶片均匀布满雾状水滴为止。每隔14 d处理1次,共计5次,成熟期前再处理1次。
1.3 取样方法
在树冠中部外围随机摘取大小均一、无病虫危害、无机械损伤的10个果实,采后立即带回实验室,进行果实外观品质测定,然后对果肉进行取样,用液氮速冻研磨之后于-80 ℃冰箱保存。
1.4 试验方法
果实单果质量用电子天平称量,记录结果,取平均值,单位g。果实纵横径用数显式电子游标卡尺测定,记录结果,取平均值,单位mm。
果实色差采用标准黑色白色校准过的彩谱便携式色差仪(CS-10,中国科学院大连化学物理研究所),测定L*、a*、b*值,其中 L*表示果皮颜色亮度,取值范围为[l,100],L*值越大,表示果面亮度越高,值越小颜色越暗。a*、b*表示色度空间组分,取值范围为[-60,60],a*值为正值时代表红色,负值为绿色,且绝对值越大颜色越深;b*值为正值时表示黄色,负值时为蓝色,且绝对值越大颜色越深[23]。
果实硬度采用物性测试仪(TA-XTplus,英国Stable Micro System公司)测定,P5探头,测定深度为5 mm,测定速度为1 mm·s-1,在果实赤道处选取等距离的3个点测定果实硬度,以牛顿(N)为单位。使用PAL-1型手持式糖度计测定果实可溶性固形物含量。
可溶性糖和有机酸含量的测定参考姚改芳[2]的方法,称取3.5~4.0 g研磨的果肉,装入15 mL离心管,加入5 mL dd H2O,摇匀后,98 ℃水浴30 min,室温超声提取15 min后4000 r·min-1离心15~20 min,将上清液转移至25 mL容量瓶,3次重复后定容至25 mL。取2 mL溶液,12 000 r·min-1离心5 min,取上清液过0.45 μm微孔滤膜后进行高效液相色谱(HPLC)分析。
可溶性糖含量测定色谱条件:色谱柱为Waters Sugar-PAK1(6.5 mm×300 mm,10 μm),示差检测器(Waters 2414,USA),柱温80 ℃,样品池温度30 ℃,流动相为50 mg·L-1 EDTA二钠钙溶液,流速0.5 mL·min-1,进样量10 μL。总糖含量[24-25]和甜度值[26]参考前人方法:总糖含量=果糖含量+蔗糖含量+葡萄糖含量+山梨醇含量;甜度值=葡萄糖×0.7+山梨醇×0.4+蔗糖×1.00+果糖×1.75。果糖、葡萄糖、蔗糖和山梨醇的标准曲线分别为y=116 432x +15 351,R2=1;y=110 858x+11 533,R2=0.999 9;y=113 933x-822.52,R2=0.999 9;y=151 581x-7 722.4,R2=0.999 1。
有机酸含量测定色谱条件:色谱柱为Waters XSelect HSS HPLC(4.6 mm × 250 mm,5 μm),示差检测器(Waters 2489,USA),柱温30 ℃,流动相为0.02 mol·L-1磷酸氢二铵溶液(pH=2.4),流速1 mL·min-1,进样量10 μL,检测波长210 nm。总酸含量参考前人方法[24-25]:总酸含量=苹果酸含量+柠檬酸含量+草酸含量+莽草酸含量+奎宁酸含量+琥珀酸含量。苹果酸、柠檬酸、草酸、莽草酸、奎宁酸和琥珀酸的标准曲线分别为y=529 512x-5 406.5,R2=0.998 6;y=655 221x-6 289.8,R2=0.999 7;y=8E+06x-2 358.2,R2=0.999 1;y=3E+07x-44 392,R2=0.999 4;y=296 407x-154.69,R2=0.999 6;y=350 511x-1 912.9,R2=0.999 9。
可溶性酸性转化酶测定:参照文献[27-28]中的酶标法测定可溶性酸性转化酶(S-AI)活性;参照文献[29]中的酶标法测中性转化酶(NI)活性;参照文献[30]中的酶标法测定蔗糖合成酶(分解方向)(SS-Ⅰ)活性;参照文献[31]中的酶标法测定蔗糖合成酶(合成方向)(SS-Ⅱ)和蔗糖磷酸合成酶(SPS)活性。
1.5 数据分析
采用Excel和IBM SPSS Statistics 27软件分别进行数据整理和分析,通过ANOVA进行单因素方差分析,并进行邓肯假定等方差分析。
2 结果与分析
2.1 外源处理对红酥宝梨果实外观品质的影响
在红酥宝果实发育过程中,果实单果质量和纵横径随时间增长而逐渐增加,盛花后52~80 d增长速度缓慢,在盛花后80 ~154 d增长速度最快,在盛花后154 d达到最大值。
至红酥宝梨果实成熟,与对照相比,除10 mmol·L-1 GABA处理外,其他处理均提高了红酥宝梨果实单果质量(图1-A),其中,50 μmol·L-1 MT处理对果实单果质量的提升效果最好,比对照显著提高18.48%。
与对照相比,外源物处理对果实纵横径无显著影响(图1-B~C),其中50 μmol·L-1 MT处理对红酥宝梨果实纵横径提升效果最好,相较于对照,纵径增加了9.47%,横径增加了2.36%。
50 μmol·L-1 MT处理显著改善了红酥宝梨果实色泽(图1-D~F)。至红酥宝梨果实成熟,外源物处理均显著增强了果实阳面色泽,其中50 μmol·L-1 MT处理效果最好,与对照相比,50 μmol·L-1 MT处理的a*显著提升了3.51倍,且显著降低了红酥宝梨的L*值和b*值。
以上结果表明,外源GABA和MT处理在果实发育前期对红酥宝梨硬度、可溶性固形物含量均无显著影响,接近成熟期时对果肉硬度和可溶性固形物含量提升效果显著。
2.2 外源处理对红酥宝梨果实硬度、可溶性固形物含量的影响
在红酥宝梨果实发育过程中,随着果实的生长发育,果肉果皮硬度下降,盛花后52~80 d下降速度缓慢,在盛花后80~154 d下降速度最快,在盛花后154 d达到最小值。
至红酥宝梨果实成熟,与对照相比,外源处理对红酥宝梨果实的果皮硬度无显著影响,50 μmol·L-1 MT和10 mmol·L-1 GABA处理对红酥宝梨果实的果皮和果肉硬度均显著提高(图2-A~B),其中50 μmol·L-1 MT处理对果皮和果肉硬度提升效果最好,相较于对照分别增加了10.68%和12.21%。
与对照相比,50 μmol·L-1 MT、100 μmol·L-1 MT处理均显著提高了红酥宝梨果实可溶性固形物含量(图2-C)。其中100 μmol·L-1 MT处理对可溶性固形物含量提升效果最为显著,相较于对照显著提高了11.79%。
以上结果表明,外源处理在果实发育前期对红酥宝梨硬度、可溶性固形物含量均无显著影响,接近成熟期时效果明显提升。
2.3 外源处理对红酥宝梨果实糖酸含量的影响
至果实成熟,与对照相比,除10 mmol·L-1 GABA处理外,其他处理均提高了果实总糖和总酸含量(表1,表2,图3,图4)。
除10 mmol·L-1 GABA和20 mmol·L-1 GABA处理外,其他处理的蔗糖、葡萄糖、果糖、总糖和甜度均有显著提升,各处理的山梨醇含量在一定范围内波动,无明显的积累过程。至果实成熟,与对照相比,50 μmol·L-1 MT处理的果实蔗糖、山梨醇、果糖、总糖含量和甜度值分别显著提高了176.62%、52.24%、57.21%、12.01%、50.81%和54.99%;5 mmol·L-1 GABA处理的果实葡萄糖含量显著提高了32.74%。在试验浓度范围内,50 μmol·L-1 MT处理对果实糖含量的提升效果好于5 mmol·L-1 GABA处理。
与对照相比,所有处理均未显著降低成熟期红酥宝梨果实总酸含量,各处理成熟期果实的苹果酸、莽草酸和总酸含量均高于对照,各处理成熟期果实的草酸含量均显著低于对照。与对照相比,50 μmol·L-1 MT处理的果实糖酸比提高了25.54%,但差异不显著。
2.4 外源处理对红酥宝梨果实糖代谢相关酶活性的影响
各个处理的S-AI活性(图5-A)在盛花后52~66 d较高,活性在250~450 μg·g-1·min-1之间,盛花后80 d后活性呈断崖式下跌,直至盛花后154 d该酶活性一直处于100 μg·g-1·min-1之下(只有盛花后80 d的50 μmol·L-1 MT处理在100 μg·g-1·min-1之上);在各个时期,只有个别处理与对照有显著差异,如盛花后66 d的10 mmol·L-1 GABA处理,盛花后80 d的50 μmol·L-1 MT处理,盛花后94 d的200 μmol·L-1 MT处理,盛花后154 d的10 mmol·L-1 GABA处理,分别比对照显著提高69.21%、948.17%、368.63%、99.08%。
如图5-B所示,NI活性总体上一直处于较低水平,整个果实发育时期酶活性处于25 μg·g-1·min-1以下,说明该酶不是红酥宝梨果实发育中糖积累的关键酶。
红酥宝梨果实发育过程中对照处理的SS-Ⅰ活性呈先上升后下降再上升的变化趋势(图5-C),SS-Ⅰ活性在盛花后52~80 d无明显变化,然后在盛花后80~94 d迅速上升,在盛花后94 d达到最高点,除5 mmol·L-1 GABA处理外,其余各处理的活性均达到果实发育期最大值,活性在380~600 μg·g-1·min-1之间,随后盛花后94~108 d活性迅速下降,最后在盛花后108~154 d活性稍有上升,盛花后94 d后SS-Ⅰ的活性始终处于350 μg·g-1·min-1之下。与对照相比,200 μmol·L-1 MT处理的SS-Ⅰ活性在盛花后94 d差异较大,比对照提高17.77%。
在果实发育过程中,对照处理的SS-Ⅱ活性呈先上升后下降再上升然后急速下降的变化趋势,除盛花后154 d外,其余各时期SS-Ⅱ活性始终在500~2000 μg·g-1·min-1之间(图5-D)。各处理的SS-Ⅱ活性均在盛花后108 d达到最大值,且外源物质处理均显著高于对照,其中20 mmol·L-1 GABA处理的SS-Ⅱ活性最高,比对照显著提高72.53%。
如图5-E所示,红酥宝梨果实的SPS活性先下降后上升的变化趋势:在盛花后52~94 d缓慢下降,然后在盛花后94~154 d期间呈上升趋势,除盛花后154 d的50 μmol·L-1 MT处理外,其余处理的SPS活性始终处于350 μg·g-1·min-1之下。与对照相比,50 μmol·L-1 MT处理的SPS活性在盛花后154 d差异最为显著,比对照显著提高79.42%。
3 讨 论
果实硬度、可溶性固形物含量、单果质量、果皮色泽、可溶性糖含量、有机酸含量和糖酸比是梨果实重要的品质性状,直接影响果实的商品价值。目前有关外源物处理对果实品质影响的研究较多,前人在番茄[32-35]、苹果[36-38]、苦荞[39]、柿[40]、石榴[41]、葡萄[42-43]、桃[44-45]、梨[46-47]、草莓[48]、西瓜[49]等作物中,分别利用MT溶液或GABA溶液进行叶面喷施,均显著提高了上述作物果实的品质性状。笔者使用50 μmol·L-1褪黑素于果实膨大期进行叶面喷施也得到了相同的结果,显著提高了红酥宝梨果实单果质量、果实色泽、果肉硬度、可溶性固形物含量、可溶性糖含量、有机酸含量和糖酸比。在本试验中,测定结果与已有研究相比,果实内酸含量有明显下降、糖酸比有显著上升,这可能是由于环境或采收期等因素的不同[50-51],导致其各酸组分、总酸以及糖酸比有明显变化,其具体的形成机制有待验证、挖掘。但其具体调控的分子通路及其作用机制仍不清楚,后续需进一步研究。
SS、SPS、S-AI、NI等蔗糖代谢酶与果实糖分积累相关[52],确定糖组分的含量与蔗糖代谢酶活性之间的关系至关重要。前人研究表明,在果实发育过程中S-AI、NI、SS-Ⅰ(蔗糖分解酶)共同催化蔗糖的分解,SS-Ⅱ和SPS(蔗糖合成酶)共同催化蔗糖的合成,在果实发育前期,即盛花后90 d前,果实内蔗糖分解酶活性较高,蔗糖合成酶活性较低,蔗糖在蔗糖分解酶的催化下分解为果糖和葡萄糖;果实进入快速膨大期(盛花后90~110 d)后,蔗糖分解酶活性与发育前期相比逐渐下降,蔗糖合成酶活性显著上升,蔗糖逐渐积累;成熟期(盛花后110 d)果实内蔗糖含量显著上升,SPS活性升高但SS-Ⅱ活性急剧下降;山梨醇无明显积累过程,含量在一定范围内波动[53-56]。与对照相比,在果实发育前中期(果实膨大期),200 μmol·L-1 MT处理提高了S-AI、NI和SS-Ⅰ活性;在果实发育后期(果实膨大期和成熟期),50 μmol·L-1 MT处理显著提高了SPS活性,5 mmol·L-1 GABA和20 mmol·L-1 GABA处理提高了SS-Ⅱ活性,同时果实内可溶性糖含量有显著上升,但红酥宝梨果实中蔗糖代谢相关酶活性与果实内糖含量的具体分子调控机制仍不明确,需要进一步研究。
4 结 论
在本试验浓度范围内,与对照相比,叶面喷施50 μmol·L-1的MT溶液对红酥宝梨果实大小、果皮颜色、果实硬度等果实品质有显著提升,同时通过提升蔗糖代谢相关酶和转化酶活性,提高了糖酸含量和糖酸比。
参考文献 References:
[1] TENG Y W. The pear industry and research in China[J]. Acta Horticulturae,2011,909:161-170.
[2] 姚改芳. 不同栽培种梨果实糖酸含量特征及形成规律研究[D]. 南京:南京农业大学,2011.
YAO Gaifang. Conformation and characteristics of sugar and acid in pear fruits of cultivated species[D]. Nanjing:Nanjing Agricultural University,2011.
[3] 李永红. 冠层喷水微气候条件对满天红梨果实品质的影响[J]. 岳阳职业技术学院学报,2023,38(4):83-87.
LI Yonghong. The impact of the microclimate conditions created by the canopy spraying of water on the fruit quality of mantianhong pear[J]. Journal of Yueyang Vocational Technical College,2023,38(4):83-87.
[4] 宋欣怡,陈波,叶永明,徐凯. 生草栽培对云和雪梨果实品质的影响[J]. 中南农业科技,2023,44(9):31-34.
SONG Xinyi,CHEN Bo,YE Yongming,XU Kai. The effect of raw grass cultivation on the fruit quality of Yunhe Snow Pear[J]. South-Central Agricultural Science and Technology,2023,44(9):31-34.
[5] 刘爱龙,刘丹霞,殷东升,练瀚,张轶婷,陈日远. 极少排液与营养液浓度调控对番茄果实品质的影响[J]. 中国蔬菜,2021(10):66-78.
LIU Ailong,LIU Danxia,YIN Dongsheng,LIAN Han,ZHANG Yiting,CHEN Riyuan. Effects of extremely low drainage rate and nutrient solution concentration regulating on tomato fruit quality[J]. China Vegetables,2021(10):66-78.
[6] 韩亚萍. 硒与酵素混施对番茄与菠菜生长及品质的影响研究[D]. 泰安:山东农业大学,2020.
HAN Yaping. Effect of selenium mixed with enzyme on growth and quality of tomato and spinach[D]. Taian:Shandong Agricultural University,2020.
[7] 张驰. 套袋对红皮梨果实品质的影响及果实着红色差异分析[D]. 阿拉尔:塔里木大学,2023.
ZHANG Chi. Effect of bagging on fruit quality of red pear and difference analysis of peel redness[D]. Alaer:Tarim University,2023.
[8] 李刚波,赵林,张婷,张梅,杨艳,王福建,杨峰. 不同纸袋套袋对早熟梨果实生长特性及糖酸的影响[J]. 江西农业学报,2018,30(2):38-41.
LI Gangbo,ZHAO Lin,ZHANG Ting,ZHANG Mei,YANG Yan,WANG Fujian,YANG Feng. Effects of different paper-bag bagging on fruit growth characteristics and sugar,acid content of early-maturing pear[J]. Acta Agriculturae Jiangxi,2018,30(2):38-41.
[9] 黄保平. “避雨+套袋”栽培对‘翠玉梨果实品质的影响[J]. 东南园艺,2023,11(2):103-107.
HUANG Baoping. Effects of cultivation of rain shelter combined with bagging on fruit quality of ‘Cuiyu pear[J]. Southeast Horticulture,2023,11(2):103-107.
[10] 姚依林. 光调控和避雨栽培对蓝莓生理生化及果实品质的影响[D]. 贵阳:贵州大学,2022.
YAO Yilin. Effects of light regulation and rain shelter cultivation on physiology,biochemistry and fruit quality of blueberry[D]. Guiyang:Guizhou University,2022.
[11] 韩春红,李博,杨英军,姜伟,张向展,王倩,陈迪新,薛华柏. MeJA和PDJ对3个红皮梨品种果实着色及糖酸含量的影响[J]. 中国果树,2022(12):14-19.
HAN Chunhong,LI Bo,YANG Yingjun,JIANG Wei,ZHANG Xiangzhan,WANG Qian,CHEN Dixin,XUE Huabai. Effects of MeJA and PDJ on fruit coloration,sugar and acid content of three red pear cultivars[J]. China Fruits,2022(12):14-19.
[12] 胡真. 调环酸钙对‘长富2号苹果生长及果实品质的影响[D]. 乌鲁木齐:新疆农业大学,2021.
HU Zhen. Effect of prohexadione-Ca on growth and fruit quality of ‘Changfu 2 apple[D]. Urumqi:Xinjiang Agricultural University,2021.
[13] 蔡莉萍. 硒对草莓果实品质的影响及其调控果实ASA积累的生理机制[D]. 新乡:河南科技学院,2020.
CAI Liping. Effects of selenium on strawberry fruit quality and its physiological mechanism of regulating fruit ascorbic acid accumulation[D]. Xinxiang:Henan Institute of Science and Technology,2020.
[14] 宁亚维,马梦戈,杨正,侯琳琳,赵忠情,陈艺,王志新,贾英民. γ-氨基丁酸的制备方法及其功能食品研究进展[J]. 食品与发酵工业,2020,46(23):238-247.
NING Yawei,MA Mengge,YANG Zheng,HOU Linlin,ZHAO Zhongqing,CHEN Yi,WANG Zhixin,JIA Yingmin. Research progress in the enrichment process and functional foods of γ-aminobutyric acid[J]. Food and Fermentation Industries,2020,46(23):238-247.
[15] 王宇航,韩爱民,张立梅,李斗,金鑫,王春恒,冯丽丹,杨江山. 外源γ-氨基丁酸对蛇龙珠葡萄果实糖酸代谢的影响[J]. 果树学报,2023,40(4):699-711.
WANG Yuhang,HAN Aimin,ZHANG Limei,LI Dou,JIN Xin,WANG Chunheng,FENG Lidan,YANG Jiangshan. Effects of exogenous γ-aminobutyric acid spray on sugar and acid metabolism in Cabernet Gernischet grape berries[J]. Journal of Fruit Science,2023,40(4):699-711.
[16] 王春恒,韩爱民,张立梅,李斗,王宇航,金鑫,冯丽丹,杨江山. 外源γ-氨基丁酸对蛇龙珠葡萄叶片碳氮代谢的影响[J]. 果树学报,2023,40(7):1386-1398.
WANG Chunheng,HAN Aimin,ZHANG Limei,LI Dou,WANG Yuhang,JIN Xin,FENG Lidan,YANG Jiangshan. Effects of γ-aminobutyric acid on carbon and nitrogen metabolism in leaves of Cabernet Gernischt grape[J]. Journal of Fruit Science,2023,40(7):1386-1398.
[17] 韩爱民,杨江山,张立梅,王宇航,冯丽丹,王春恒,金鑫,李斗. 外源γ-氨基丁酸对葡萄光合色素、内源激素和品质的影响[J]. 甘肃农业大学学报,2023,58(2):83-92.
HAN Aimin,YANG Jiangshan,ZHANG Limei,WANG Yuhang,FENG Lidan,WANG Chunheng,JIN Xin,LI Dou. Effects of exogenous γ-aminobutyric acid on photosynthetic pigments,endogenous hormones and grape quality[J]. Journal of Gansu Agricultural University,2023,58(2):83-92.
[18] HIJAZ F,NEHELA Y,KILLINY N. Application of gamma-aminobutyric acid increased the level of phytohormones in Citrus sinensis[J]. Planta,2018,248(4):909-918.
[19] 陈秀,罗震宇,张亚男,杨雪珍,余志汇,向妙莲,陈金印,陈明. 外源GABA处理对采后靖安椪柑果实品质和保鲜效果的影响[J]. 果树学报,2022,39(4):652-661.
CHEN Xiu,LUO Zhenyu,ZHANG Yanan,YANG Xuezhen,YU Zhihui,XIANG Miaolian,CHEN Jinyin,CHEN Ming. Effects of exogenous γ-aminobutyric acid treatment on fruit quality and preservation of postharvest Jingan ponkan[J]. Journal of Fruit Science,2022,39(4):652-661.
[20] 宋春波. 外源GABA和褪黑素减轻桃果实采后冷害的机理研究[D]. 上海:上海海洋大学,2016.
SONG Chunbo. Mechanism study of exogenous γ-aminobutyric acid and melatonin alleviates chilling injury in postharvest peach fruit[D]. Shanghai:Shanghai Ocean University,2016.
[21] 方筱琴,徐利伟,朱婷婷,柴吉钏,余凡,施丽愉,陈伟,杨震峰. γ-氨基丁酸对低温胁迫下桃果实蔗糖代谢的影响[J]. 核农学报,2020,34(7):1470-1479.
FANG Xiaoqin,XU Liwei,ZHU Tingting,CHAI Jichuan,YU Fan,SHI Liyu,CHEN Wei,YANG Zhenfeng. Effects of γ-aminobutyric acid on sucrose metabolism of peach fruit under stress of low temperature[J]. Journal of Nuclear Agricultural Sciences,2020,34(7):1470-1479.
[22] GAO T T,LIU X M,TAN K X,ZHANG D N,ZHU B L,MA F W,LI C. Introducing melatonin to the horticultural industry:Physiological roles,potential applications,and challenges[J]. Horticulture Research,2022,9:uhac094.
[23] MCGUIRE R G. Reporting of objective color measurements[J]. HortScience,1992,27(12):1254-1255.
[24] 于年文,李俊才,郭修武,王家珍,蔡忠民,沙守峰,李宏军. 南果梨果实糖、酸变化规律[J]. 西北农业学报,2010,19(11):131-134.
YU Nianwen,LI Juncai,GUO Xiuwu,WANG Jiazhen,CAI Zhongmin,SHA Shoufeng,LI Hongjun. Dynamic of sugar and acid content in Nanguo pear[J]. Acta Agriculturae Boreali-Occidentalis Sinica,2010,19(11):131-134.
[25] 姚改芳,张绍铃,吴俊,曹玉芬,刘军,韩凯,杨志军. 10个不同系统梨品种的可溶性糖与有机酸组分含量分析[J]. 南京农业大学学报,2011,34(5):25-31.
YAO Gaifang,ZHANG Shaoling,WU Jun,CAO Yufen,LIU Jun,HAN Kai,YANG Zhijun. Analysis of components and contents of soluble sugars and organic acids in ten cultivars of pear by high performance liquid chromatography[J]. Journal of Nanjing Agricultural University,2011,34(5):25-31.
[26] 姚改芳,张绍铃,曹玉芬,刘军,吴俊,袁江,张虎平,肖长城. 不同栽培种梨果实中可溶性糖组分及含量特征[J]. 中国农业科学,2010,43(20):4229-4237.
YAO Gaifang,ZHANG Shaoling,CAO Yufen,LIU Jun,WU Jun,YUAN Jiang,ZHANG Huping,XIAO Changcheng. Characteristics of components and contents of soluble sugars in pear fruits from different species[J]. Scientia Agricultura Sinica,2010,43(20):4229-4237.
[27] HUANG Y,XIONG Z T,DAI L P,GAO J Q. Effect of Cu stress on the invertase activity and root growth in two populations of Rumex dentatus L. with different Cu tolerance[J]. Environmental Toxicology,2008,23(4):443-450.
[28] HUANG Y W,NIE Y X,WAN Y Y,CHEN S Y,SUN Y,WANG X J,BAI J G. Exogenous glucose regulates activities of antioxidant enzyme,soluble acid invertase and neutral invertase and alleviates dehydration stress of cucumber seedlings[J]. Scientia Horticulturae,2013,162:20-30.
[29] MIRON D,SCHAFFER A A. Sucrose phosphate synthase,sucrose synthase,and invertase activities in developing fruit of Lycopersicon esculentum Mill. and the sucrose accumulating Lycopersicon hirsutum Humb. and Bonpl[J]. Plant Physiology,1991,95(2):623-627.
[30] LOWELL C A,TOMLINSON P T,KOCH K E. Sucrose-metabolizing enzymes in transport tissues and adjacent sink structures in developing citrus fruit[J]. Plant Physiology,1989,90(4):1394-1402.
[31] SCHRADER S,SAUTER J J. Seasonal changes of sucrose-phosphate synthase and sucrose synthase activities in poplar wood (Populus × canadensis Moench ‘Robusta) and their possible role in carbohydrate metabolism[J]. Journal of Plant Physiology,2002,159(8):833-843.
[32] 豆建华,张洋,袁鸿,王光正,王俊文,汪洁,武玥,唐中祺,郁继华. 外源褪黑素对番茄果实品质和挥发性物质的影响[J]. 干旱地区农业研究,2023,41(4):83-95.
DOU Jianhua,ZHANG Yang,YUAN Hong,WANG Guangzheng,WANG Junwen,WANG Jie,WU Yue,TANG Zhongqi,YU Jihua. Effects of exogenous melatonin on fruit quality and volatile compounds of tomatoes[J]. Agricultural Research in the Arid Areas,2023,41(4):83-95.
[33] 冀胜鑫. γ-氨基丁酸诱导番茄SlBAT1s基因表达和提高果实品质关键技术研究[D]. 保定:河北农业大学,2021.
JI Shengxin. Study on the exogenous GABA inducing tomato SlBAT1s gene expression and key technology of improving fruit quality[D]. Baoding:Hebei Agricultural University,2021.
[34] 赵海亮,左璐,马长恩,白龙强,胡晓辉,侯雷平. 果实膨大期叶面喷施褪黑素对番茄品质的影响[J]. 北方园艺,2021(17):15-21.
ZHAO Hailiang,ZUO Lu,MA Changen,BAI Longqiang,HU Xiaohui,HOU Leiping. Effects of foliar spraying melatonin on fruit quality of tomato during fruit expansion[J]. Northern Horticulture,2021(17):15-21.
[35] 姚棋,韩天云,梁祎,石玉,侯雷平,张毅. 外源钙和EBR处理对番茄果实品质特性的影响[J]. 中国瓜菜,2021,34(10):74-79.
YAO Qi,HAN Tianyun,LIANG Yi,SHI Yu,HOU Leiping,ZHANG Yi. Effects of exogenous calcium and EBR on fruit quality characteristics of tomato[J]. China Cucurbits and Vegetables,2021,34(10):74-79.
[36] 赵开. 外源褪黑素和多巴胺对苹果果实生长发育的影响[D]. 杨凌:西北农林科技大学,2021.
ZHAO Kai. Effects of exogenous melatonin and dopamine on fruit growth and development of apple[D]. Yangling:Northwest A & F University,2021.
[37] 李伊涵. 采后褪黑素处理对“金冠” 苹果贮藏品质和苯丙烷代谢的影响[D]. 锦州:渤海大学,2021.
LI Yihan. Effects of postharvest melatonin treatment on the storage quality and phenylpropanoid metabolism of apple fruit (cv. Golden delicious)[D]. Jinzhou:Bohai University,2021.
[38] CHENG P D,YUE Q Y,ZHANG Y T,ZHAO S,KHAN A,YANG X Y,HE J Q,WANG S C,SHEN W Y,QIAN Q,DU W S,MA F W,ZHANG D H,GUAN Q M. Application of γ-aminobutyric acid (GABA) improves fruit quality and rootstock drought tolerance in apple[J]. Journal of Plant Physiology,2023,280:153890.
[39] 马仲炼,龚健福,马永翠,田虹,刘德福,杨顺强. 外源褪黑素对苦荞生理特性、产量及品质的影响[J]. 河南农业科学,2024,53(1):41-47.
MA Zhonglian,GONG Jianfu,MA Yongcui,TIAN Hong,LIU Defu,YANG Shunqiang. Effects of exogenous melatonin on physiological characters,yield and quality of Tartary buckwheat[J]. Journal of Henan Agricultural Sciences,2024,53(1):41-47.
[40] NIAZI Z,RAZAVI F,KHADEMI O,AGHDAM M S. Exogenous application of hydrogen sulfide and γ-aminobutyric acid alleviates chilling injury and preserves quality of persimmon fruit (Diospyros kaki cv. Karaj) during cold storage[J]. Scientia Horticulturae,2021,285:110198.
[41] LORENTE-MENTO J M,GUILL?N F,MART?NEZ-ROMERO D,CARRI?N-ANTOLI A,VALERO D,SERRANO M. γ-aminobutyric acid treatments of pomegranate trees increase crop yield and fruit quality at harvest[J]. Scientia Horticulturae,2023,309:111633.
[42] 徐变变,范嘉林,孙剑,党伟,王芳,谢一鸣. 外源褪黑素对葡萄生理特性、果实品质及养分吸收的影响[J]. 江苏农业科学,2023,51(17):152-157.
XU Bianbian,FAN Jialin,SUN Jian,DANG Wei,WANG Fang,XIE Yiming. Effects of exogenous melatonin on physiological characteristics,fruit quality and nutrient absorption of grape[J]. Jiangsu Agricultural Sciences,2023,51(17):152-157.
[43] 贾润普,王玥,李勃,李蓥男,姚玉新. 外源褪黑素处理对‘阳光玫瑰葡萄果实品质的影响[J]. 植物生理学报,2022,58(10):2034-2044.
JIA Runpu,WANG Yue,LI Bo,LI Yingnan,YAO Yuxin. Effects of exogenous melatonin treatment on quality of ‘Shine Muscat grape berries[J]. Plant Physiology Journal,2022,58(10):2034-2044.
[44] 李思纯,杜雅珉,李书悦,傅茂润,赵韩栋,焦文晓,姜爱莉. 外源褪黑素处理对油桃采后品质的影响[J]. 中国果菜,2021,41(5):50-56.
LI Sichun,DU Yamin,LI Shuyue,FU Maorun,ZHAO Handong,JIAO Wenxiao,JIANG Aili. Effects of exogenous melatonin on postharvest quality of nectarines[J]. China Fruit & Vegetable,2021,41(5):50-56.
[45] 吴彩芳,李红艳,刘琴,廖明安,刘磊,吕秀兰,梁东,王进,夏惠,林立金,陈栋,涂美艳. 外源褪黑素对桃生长及果实品质的影响[J]. 果树学报,2021,38(1):40-49.
WU Caifang,LI Hongyan,LIU Qin,LIAO Mingan,LIU Lei,L? Xiulan,LIANG Dong,WANG Jin,XIA Hui,LIN Lijin,CHEN Dong,TU Meiyan. Effects of exogenous melatonin on growth and fruit quality of peach (Prunus persica)[J]. Journal of Fruit Science,2021,38(1):40-49.
[46] ZHAO L L,YAN S,WANG Y F,XU G X,ZHAO D Y. Evaluation of the effect of preharvest melatonin spraying on fruit quality of ‘Yuluxiang pear based on principal component analysis[J]. Foods,2023,12(18):3507.
[47] 刘建龙. 外源褪黑素对梨果实发育、采后品质和抗轮纹病的影响及其调控机制研究[D]. 杨凌:西北农林科技大学,2019.
LIU Jianlong. Regulatory function of exogenous melatonin on fruit development,postharvest fruit quality and ring rot disease resistance in pears[D]. Yangling:Northwest A & F University,2019.
[48] 李恭峰,高亚新,马万成,张振兴,刘益克,李宁,李青云. 叶喷褪黑素对草莓生长、光合及果实品质的影响[J]. 中国蔬菜,2022(12):80-85.
LI Gongfeng,GAO Yaxin,MA Wancheng,ZHANG Zhenxing,LIU Yike,LI Ning,LI Qingyun. Effects of foliar spraying melatonin on strawberry growth,photosynthesis and fruit quality[J]. China Vegetables,2022(12):80-85.
[49] 高文华. 外源褪黑素处理对西瓜生长及产量和品质的影响[D]. 杨凌:西北农林科技大学,2019.
GAO Wenhua. The effects of exogenous melatonin on the growth and yield and quality of watermelon[D]. Yangling:Northwest A & F University,2019.
[50] 张子申. 果实发育天数与着果位置对梨果实品质影响[D]. 邯郸:河北工程大学,2021.
ZHANG Zishen. Effects of harvest time and fruit location on fruit quality of pear[D]. Handan:Hebei University of Engineering,2021.
[51] 赵丹. 新疆库尔勒香梨品质评价及产地鉴别研究[D]. 乌鲁木齐:新疆农业大学,2023.
ZHAO Dan. Quality evaluation and geographical origin identification of Xinjiang Korla fragrant pear[D]. Urumqi:Xinjiang Agricultural University,2023.
[52] TANASE K,YAMAKI S. Sucrose synthase isozymes related to sucrose accumulation during fruit development of Japanese pear (Pyrus pyrifolia Nakai)[J]. Engei Gakkai Zasshi,2000,69(6):671-676.
[53] 张虎平. 梨果实内糖的转运及积累特性研究[D]. 南京:南京农业大学,2011.
ZHANG Huping. Study on characteristic of transport and accumulation of sugar in developing Pyrus ssp. fruit[D]. Nanjing:Nanjing Agricultural University,2011.
[54] UMER M J,BIN SAFDAR L,GEBREMESKEL H,ZHAO S J,YUAN P L,ZHU H J,KASEB M O,ANEES M,LU X Q,HE N,GONG C S,LIU W G. Identification of key gene networks controlling organic acid and sugar metabolism during watermelon fruit development by integrating metabolic phenotypes and gene expression profiles[J]. Horticulture Research,2020,7:193.
[55] ZHANG H P,WU J Y,QIN G H,YAO G F,QI K J,WANG L F,ZHANG S L. The role of sucrose-metabolizing enzymes in pear fruit that differ in sucrose accumulation[J]. Acta Physiologiae Plantarum,2014,36(1):71-77.
[56] WIND J,SMEEKENS S,HANSON J. Sucrose:Metabolite and signaling molecule[J]. Phytochemistry,2010,71(14/15):1610-1614.
收稿日期:2024-01-16 接受日期:2024-03-27
基金项目:国家重点研发计划项目(2021YFD1200202);中国农业科学院科技创新工程项目(CAAS-ASTIP);国家梨产业技术体系建设专项(CARS-28-06);河南省重点研发项目(241111113500)
作者简介:邓晗,男,在读硕士研究生,研究方向为果实品质。E-mail:15639018248@163.com
*通信作者 Author for correspondence. E-mail:wanglong02@caas.cn