APP下载

基于元分析的新疆膜下滴灌棉田精量施氮研究

2024-05-29许琪宋在金李朝阳董晓梅黄童童宋战肖飞杨玉辉

棉花学报 2024年1期
关键词:元分析膜下滴灌通径分析

许琪 宋在金 李朝阳 董晓梅 黄童童 宋战 肖飞 杨玉辉

摘要:【目的】明確施氮对棉花产量及其构成因子的影响,并为氮肥的精量施用及棉花高产提供理论借鉴。【方法】以新疆膜下滴灌棉田为研究对象,采用元分析(meta-analysis,meta分析)和通径分析,研究不同施氮量、施氮方案、气候条件等对棉花产量的综合效应及影响机制。【结果】与不施氮相比,施氮能显著提高棉花产量,增产效应为43.38%。施氮量为360~480 kg·hm-2时,对棉花的增产效应最大;施氮量超过此范围,棉花产量不再显著增加,本研究推荐的经济施氮量为360~420 kg·hm-2。基肥20%,追肥80%且按照6%、8%、22%、25%、12%、7%的比例随水滴施6次的施氮方案对棉花的增产效应最大。对于年蒸发量>2 000 mm、年降水量<60 mm、年日照时间<2 864 h、年有效积温>4 000 ℃、无霜期>200 d的地区,且土壤为砂质土、土壤初始有机碳含量<5.8 g·kg-1、初始速效氮含量≤60 mg·kg-1的棉田,施氮的增产效应最明显。通径分析结果表明,施氮通过提高土壤硝态氮含量,从而增加棉花叶面积指数,对棉花产量的提升贡献最显著。【结论】建议新疆植棉区施氮量为360~420 kg·hm-2,采用上述优化方案合理施氮,可以实现膜下滴灌棉田的高产并降低环境风险。

关键词:精量施氮;施氮方案;膜下滴灌;棉花产量;元分析;通径分析

A study on precise nitrogen fertilization in drip irrigation cotton field under film in Xinjiang based on meta-analysis

Abstract: [Objective] The effect of nitrogen application on cotton yield and its constituent factors is clarified, aiming to provide theoretical reference for the precise application of nitrogen fertilizer and high cotton yield. [Methods] The comprehensive effects and influencing mechanisms of different nitrogen application rates, nitrogen application schemes, and climatic conditions on cotton yield are studied by meta-analysis and path analysis in Xinjiang. [Results] Compared with no nitrogen application, nitrogen application could significantly increase cotton yield with 43.38%. Nitrogen application of 360-480 kg·hm-2 had the greatest effect on cotton yield. Nitrogen application exceeding this range no longer increased cotton yield significantly, and the recommended economic nitrogen application rate in this study was 360-420 kg·hm-2. The nitrogen application scheme of 20% of basic fertilizer, 80% of supplementary fertilizer and 6 times of drip application with water at the rate of 6%, 8%, 22%, 25%, 12%, and 7% had the greatest effect on cotton yield. The greatest yield increase was achieved by the nitrogen fertilization program. The most obvious effect of nitrogen application was found in cotton fields with annual evaporation >2 000 mm, annual precipitation <60 mm, annual sunshine time <2 864 h, annual effective cumulative temperature >4 000 ℃, and frost-free period >200 d, and in fields with sandy soil, initial soil organic carbon content <5.8 g·kg-1, and initial soil available nitrogen content ≤60 mg·kg-1 . The results of the pathway analysis showed that nitrogen application contributed most significantly to the enhancement of cotton yield by increasing the soil nitrate nitrogen content, thereby increasing the cotton leaf area index. [Conclusion] It is suggested that nitrogen application rate of 360 - 420 kg·hm-2 with the above optimization scheme should be used in Xinjiang cotton area to achieve high cotton yield and reduce environmental risk in drip irrigation cotton fields under film.

Keywords: precise nitrogen application; nitrogen application scheme; drip irrigation cotton under film; cotton yield; meta-analysis;  path analysis

棉花是世界上重要的经济作物,在世界农业发展中占据重要地位[1]。中国的棉花种植主要分布在长江流域、黄河流域以及西北内陆地区。近年来,随着长江流域和黄河流域棉花种植面积的减少,新疆已成为我国最大的植棉区[2],新疆棉花产量约占全国总产量的90.2%[3]。棉花膜下滴灌是将滴灌技术和覆膜技术相结合,保证棉花生长适宜的水热环境,使棉花生育期提前,显著提高棉花产量[4]。肥料的投入是保证棉花高产的重要手段,不合理的氮肥施用导致氮素流失加剧、环境负担加重,不利于棉花的生长和产量形成[5]。精量施氮就是在经济的基础上采取最优的施氮方案实现棉花的高质高产,同时减少温室效应和地下水污染等环境问题,精量施氮作为精准农业的核心在可持续发展中发挥重要作用[6]。因此,研究精量施氮对棉花产量的影响及其关键作用因子对实现棉花高产具有重要意义。

施氮量对膜下滴灌棉花产量的影响已有众多研究,但由于种植地点和评价方法的多样性导致研究结论不一。在新疆阿瓦提县试验站的研究表明,当施氮量为0~220 kg·hm-2时,随着施氮量的增加,棉花对氮素养分的吸收量和产量显著增加[7]。在塔里木大学农学试验站的研究表明,施氮量为317~395 kg·hm-2时,棉花的氮素累积量随施氮量的增加而显著增加;根据皮棉产量与施氮量的二次方程计算发现皮棉产量最高的施氮量为361.2 kg·hm-2 [8];在石河子大学农学院试验站的研究表明,施氮能显著提高作物对氮素的吸收积累,棉花的合理施氮量为360 kg·hm-2 [9]。周燕等[10]通过元分析(meta-analysis,meta分析)方法评价了棉花产量和氮素吸收量对施氮的响应,但未对棉花的施氮方案及其他影响因素进行深入挖掘。众多研究中对于适宜施氮量的结论不一,为了探明施氮量对土壤理化特性、棉花生长及产量的影响,需要1种综合的分析方法对已有研究进行深度挖掘,以得到更加科学、准确且适用性强的结论。

独立的田间试验难以准确评价施氮对棉花产量的综合效应,且关于深入挖掘棉花产量影响因素的研究还鲜有报道。本研究以新疆膜下滴灌棉田为研究对象,基于meta分析方法,系统研究施氮量对膜下滴灌棉田土壤理化特性、棉花生理生长及产量的影响;利用线性回归模型进行通径分析,明确土壤氮素含量、棉花干物质积累量、氮素吸收量等指标对产量影响的相对重要性,确定适宜施氮量及施氮方案,为氮肥的精量施用及棉花高产提供理论借鉴。

1 材料与方法

1.1 数据来源

本研究采纳的文献数据来源于中国知网(www.cnki.net)和Web of Science(www.webofscience.com),在中国知网中采用主题词高级检索,文献检索关键词为:“棉花”AND“膜下滴灌+滴灌”AND“棉花产量+产量”;在Web of Science中采用主题词高级检索,文献检索关键词为:cotton + cotton yield + drip irrigation。排除咸水、微咸水、磁化水等灌水水质,筛选1960年1月1日-2022年12月31日学者发表的期刊论文及硕博士学位论文。根据研究主题的需要,文献筛选纳入需符合以下标准[11-15]:(1)试验为新疆的田间试验,盆栽及室内试验不考虑在内,试验对象为棉花。(2)试验重复数≥3。(3)文献中需包含不施氮处理作为对照。(4)研究案例中所记录的棉花产量为籽棉产量。(5)相同处理下的多次重复观测取平均值。(6)当试验中有附加因子影响的研究,则认为是独立的试验单独纳入数据库。(7)對于文献中同一地区的多年试验研究,认为是相互独立的试验单独纳入数据库。文献中的表格数据直接提取,柱状图和折线图中的数据采用软件Get Data 2.20将图像数值化后再提取。按照以上标准,筛选得到41篇文献和1 262组数据。

1.2 分组分析

由于气候条件、土壤肥力、品种等对棉花产量的影响较大,同时施氮量和施氮方案等诸多因素均对棉花产量有影响。因此本研究对文献数据进行分组:施氮量[16-18]、施氮方案、品种[7, 16, 19-24]、土壤质地[20, 25-27]、土壤速效氮含量[28]、土壤有机碳含量[28-29]、年降水量[30-31]、年蒸发量[32]、无霜期[33]、年有效积温[32]和年日照时间[34],检验这些因素对棉花产量的影响(表1)。

1.3 数据分析

为了确保研究的可靠性,本研究以权重响应比(response ratio, RR)为统计学指标,以权重响应比的自然对数(lnRR)表示某一驱动因子的影响程度,计算公式如下[35]:

整合分析每个研究的权重响应比进行加权,得出平均加权响应(weighted response ratio, RR++)。另外,方差(variance, V)、权重系数(weighted factor, W)、RR++标准差和95%的置信区间(confidence interval, CI)通过以下公式计算获得。

公式(3)中,m为分组数,例如不同土壤类型或不同施肥量的分组数,ki代表第i个分组的数据对数。公式(4)中,SDe2和SDc2代表施氮试验组和不施氮对照组的标准差,对于文献中缺失的SD值,以平均值的1/10进行代替;Ne和Nc代表试验组和对照组的样本数[37]。为了更好地理解meta分析的结果,95%CI通过(eRR++-1)×100%转化为变化百分数,当95%CI远离零线时,表明处理组的研究指标与对照组有显著差异(P<0.05);当95%CI与零线交集时,表明处理组的研究指标与对照组没有显著差异(P≥0.05)。

本研究利用线性回归模型,以棉花产量为因变量,以数据库中的土壤无机氮含量、土壤硝态氮含量、土壤铵态氮含量、干物质积累量、氮素吸收量、叶面积指数、净光合速率和株高等数据为自变量,按照meta分析中施氮量的不同亚组将上述指标进行分组开展通径分析,发掘实现棉花高产的关键影响因素[38]。对于上述指标存在一项研究中不同时期(苗期、蕾期、花铃期等)的多个观测值,本研究在多元回归分析中将每一项研究的不同观测值进行平均值处理。首先,利用逐步回归法对上述自变量与因变量(棉花产量)进行多元线性回归分析[39]。为了全面概括影响产量的关键因素,本研究将P<0.1(显著)的指标全部纳入进行分析。通径分析中间接通径系数计算公式[40]为:

Pij=rij×Pjy(8)

式中,Pij为间接通径系数(自变量i通过自变量j作用于因变量y),rij为i与j的相关系数,Pjy为j与因变量y的标准化系数(通径系数)。

对数据进行卡方检验,明确各研究之间是否存在明确的异质性。若P>0.05,说明各研究结果无明显差异,采用固定效应模型进行计算;否则采用随机效应模型进行计算。采用失安全系数法(fail-safe number,Nfs)进行偏倚性检验,若Nfs>5n+10,n为数据对数,则说明不存在发表偏倚,结论可信[41]。

1.4 统计分析

采用Microsoft Office 2016办公软件完成数据库的建立以及部分数据的计算;使用MetaWin 2.1采用随机效应模型的meta分析;使用GraphPad Prism 8和Origin 2021完成图形绘制;使用IBM SPSS Statistics 27进行线性回归分析。

2 结果与分析

2.1 施氮对棉田土壤、棉花生理生长及产量的效应分析

由图1可知,本研究数据的异质性检验结果显示,P值均小于0.05,说明不同研究之间存在异质性,故采用随机效应模型进行分析。图1中各指标失安全系数均大于5n+10,图2中棉花产量效应值的频数分布基本服从正态分布,说明本研究结果受发表偏倚的影响较小,结论可信。

如图1所示,与不施氮相比,施氮能显著增加土壤无机氮含量、土壤硝态氮含量和土壤铵态氮含量,效应值分别为43.80%(95%CI:34.66%~52.93%)、72.18%(95%CI:65.36%~79.00%)、10.72%(95%CI:0.39%~21.05%)。与不施氮相比,施氮能显著增加棉花干物质积累量、氮素吸收量、叶面积指数、净光合速率和株高,效应值分别为27.26%(95%CI:23.54%~30.99%)、51.68%(95%CI:47.33%~56.03%)、28.78%(95%CI:26.32%~31.25%)、16.65%(95%CI:14.00%~19.30%)和17.73%(95%CI:14.97%~20.49%)。与不施氮相比,施氮能显著增加棉花单株铃数和产量,效应值分别为27.45%(95%CI:23.95%~30.95%)和43.38%(95%CI:40.44%~46.33%)。综上所述,施氮对棉田土壤氮素含量、棉花生理生长及产量等指标均有显著促进效果。

2.2 棉花产量对施氮的响应及因素分析

不同施氮量对棉花增产的效应存在差异。施氮量为360~480 kg·hm-2时,施氮的效应值(48.54%,95%CI:41.50%~55.57%)高于施氮量为0~240 kg·hm-2的效应值(39.38%,95%CI:34.14%~44.62%)和施氮量为240~360 kg·hm-2的效应值(47.56%,95%CI:42.57%~52.56%);进一步增加施氮量(超过480 kg·hm-2),施氮对棉花增产的效应值反而降低(图3)。因此,施氮量为360~480 kg·hm-2的增产效应最明显。

对于不同棉花品种,施氮的增产效果也存在差异(图3)。施氮对新陆中26号的增产效应(81.83%,95%CI:63.83%~99.83%)高于其对中棉所49(77.82%,95%CI:63.38%~92.26%)、新陸中66号(64.66%,95%CI:50.57%~78.74%)和新陆早45号(43.00%,95%CI:30.79%~55.20%)的增产效应,而施氮对新陆早50号、新陆早84号、新陆中65号和新陆中88号的产量效应相对较小,分别为24.51%、23.68%、21.45%和12.51%。综合来看,施氮对新陆中26号的增产效应最明显,但由于新陆中26号育成时间较早,根据国家农作物优良品种推广目录(2023年)和中棉所49的品种特性[42-43],结合研究结果筛选出中熟棉品种中棉所49和新陆中66号适宜新疆中早熟棉区种植。

施氮对棉花产量的影响效果与土壤条件密切相关。施氮条件下,棉田为砂质土时增产效应最优,效应值为58.92%(95%CI:50.34%~67.50%),棉田为壤土和中壤土时增产效应相近,分别为33.31%(95%CI:28.81%~37.81%)和30.75%(95%CI:25.05%~36.45%)。随着土壤初始有机碳含量的增加,施氮较不施氮处理对棉花产量的效应值降低,具体表现为:土壤有机碳含量≤5.8 g·kg-1时增产效应为53.30%(95%CI:47.29%~59.31%)、土壤有机碳含量为5.8~11.6 g·kg-1时增产效应为44.02%(95%CI:39.83%~48.22%)。随着土壤初始速效氮含量的增加,施氮较不施氮处理对棉花产量的提升效应显著降低,具体表现为:土壤速效氮含量≤60 mg·kg-1时增产效应为52.91%(95%CI:48.62%~57.21%),土壤速效氮含量为60~120 mg·kg-1时增产效应为38.41%(95%CI:33.37%~43.46%)。因此,在土壤为砂质土、初始有机碳含量≤5.8 g·kg-1和初始速效氮含量≤60 mg·kg-1的棉田,施氮的增产效应最明显(图4)。

施氮对棉花产量的影响效果与气候条件密切相关。随着年蒸发量的增加,与不施氮相比,施氮对棉花产量的提升效应呈显著增加趋势,具体表现为:年蒸发量为1 500~2 000 mm时,施氮的产量效应值为39.16%(95%CI:35.41%~42.91%);年蒸發量≥2 000 mm时,施氮的产量效应值为71.90%(95%CI:64.59%~79.20%)。随着年降水量的增加,与不施氮相比,施氮对棉花产量的提升效应呈显著降低的趋势,具体表现为:年降水量<60 mm时,施氮的产量效应值为53.66%(95%CI:47.11%~60.21%),年降水量为60~200 mm时,施氮的产量效应值为35.83%(95%CI:29.94%~41.72%)。随着年平均日照时间的延长,与不施氮相比,施氮对棉花产量的提升效应呈显著降低趋势,具体表现为:年平均日照时间<2 864 h时,施氮的产量效应值为53.52%(95%CI:46.12%~60.93%);年平均日照时间≥2 864 h时,施氮的产量效应值为39.32%(95%CI:35.82%~42.82%)。随着年有效积温的增加,施氮对棉花产量的提升效应显著增加,具体表现为:年有效积温为3 000~4 000 ℃时,施氮的产量效应值为34.02%(95%CI:30.86%~37.18%);年有效积温>4 000 ℃时,施氮的产量效应值为64.66%(95%CI:57.08%~72.24%)。随着无霜期的增加,与不施氮相比,施氮对棉花产量的效应值略微增加,但差异不显著,具体表现为:无霜期为150~200 d时,施氮的产量效应值为40.56%(95%CI:37.20%~43.92%);无霜期>200 d时,施氮的产量效应值为41.93%(95%CI:36.84%~47.02%)。因此,在年蒸发量>2 000 mm、年降水量<60 mm、年平均日照时间<2 864 h、年有效积温>4 000 ℃、无霜期>200 d条件下,施氮的增产效应最明显(图5)。

2.3 膜下滴灌棉田施氮方案的优化分析

由图3可知,施氮量为360~480 kg·hm-2时,施氮对棉花产量的效应值最大;施氮量在240~360 kg·hm-2时对棉花增产的效应值与其相近,精量施氮要求将施氮量控制在1个较窄的范围以实现最高产量[44-45]。因此本研究继续优化施氮量进行亚组分析(表2),施氮量360~420 kg·hm-2对棉花产量的效应值为53.42%(95%CI:42.34%~64.50%)大于施氮量420~480 kg·hm-2对棉花产量的效应值43.60%(95%CI:32.48%~54.73%)。因此,在施氮量360~480 kg·hm-2范围内,最优的施氮量为360~420 kg·hm-2。

施氮方案同样影响棉花对氮肥的吸收利用,新疆植棉区的棉花施肥多以随水滴施为主,对不同施氮方案进行亚组分析,结果表明,氮肥20%基施能够有效提高棉花产量,棉花增产效应值为59.18%(95%CI:35.54%~82.81%),高于不设基肥和氮肥30%基施处理。用240~360 kg·hm-2施氮量的施氮方案进行亚组分析用于验证[46],结果表明,氮肥20%基施处理能够有效提高棉花产量,且棉花增产效应值比不设基肥和氮肥30%基施处理高。对不同追肥比例进行亚组分析,结果表明,棉花生育期追肥6次且每次追肥比例分别为6%、8%、22%、25%、12%、7%对棉花产量的效应值最大。综合来看,氮肥20%基施,其余80%分6次按6%、8%、22%、25%、12%、7%的比例随水滴施效果最好。

2.4 施氮对棉花产量影响因素的通径分析

众多研究中对于棉花产量的影响因素结论不一,多数研究仅探讨了施氮对棉花产量及个别指标的影响[27, 47],未对棉花产量的影响因素进行深度挖掘与全面概括。本研究采用线性回归模型开展通径分析,探究棉花高产的关键影响因素,通径分析结果如表3所示,对棉花产量影响显著的指标分别为叶面积指数、干物质积累量、土壤无机氮含量、土壤硝态氮含量和净光合速率。计算过程中逐步引入叶面积指数、干物质积累量、土壤无机氮含量、土壤硝态氮含量和净光合速率,回归方程决定系数r2为1.000,说明回归拟合效果较好,对棉花产量有影响的自变量引入较为完善。比较直接通径系数可知,叶面积指数对棉花产量的直接影响最大,干物质积累量对产量的直接影响最小。

为深入探讨施氮对棉花产量的影响途径,按照“施氮通过提高土壤氮素含量,从而促进棉花生理生长进而提高棉花产量”的逻辑,利用公式(8)计算土壤氮素指标与棉花生理生长指标的间接通径系数。计算结果如表4所示,施氮通过提高土壤硝态氮含量,从而增加棉花叶面积指数,对棉花产量的提升贡献最显著。

3 讨论

氮素对于作物产量的形成具有关键作用,合理施用氮肥是作物高产的重要措施[48-49]。施氮能促进土壤无机氮含量的增加,土壤铵态氮和土壤硝态氮作为良好氮源是棉花吸收利用的主要无机氮[50],氮素是促进植株生长发育最重要的营养元素。因此,增施氮肥能显著促进棉花生长并提高铃数和产量[51-52]。

精量施肥强调应根据不同类型的土壤、天气条件等因素,采用不同的施肥方法和施肥制度及施用量[53]。施氮在砂质土棉田的增产效果最优、黏土质地棉田次之。砂质土壤具有透气性能好、透水性强的优点,在砂质土壤中施氮能显著改善土壤环境[54],提高作物产量;黏土保肥性能强,能够对养分进行吸附固定,这可能是黏土增产高效的原因。不同的土壤初始肥力对棉花产量影响显著,土壤初始肥力过高会导致土壤中微生物活动旺盛,进而消耗土壤氧气,降低棉花产量,本研究表明在土壤初始有机碳含量≤5.8 g·kg-1、初始速效氮含量≤60 mg·kg-1时增产效应最明显。新疆植棉区气候为典型的温带大陆性干旱气候,降水少、蒸发量大,棉花具有较强的耐旱性。较高的气温环境有利于棉花的生长,低温会延长棉花生育期导致产量下降[55]。光照在棉花生长阶段具有重要作用,充足的光照有利于作物的光合作用、增加光合产物从而促进作物生长[56],在降水量适宜的情况下,施氮能显著提高棉花产量;降水过多会导致土壤氮素淋失、土壤水分蒸发增加。这均与本研究结论一致,本研究结果表明,在年蒸发量>2 000 mm、年降水量<60 mm、年平均日照时间<2 864 h、年有效积温>4 000 ℃和无霜期>200 d的情况下,施氮的增产效应最明显。

本研究结果表明,施氮量为360~480 kg·hm-2时,施氮对棉花增产的效应值最大,超过此范围棉花产量不再显著增加,本研究推荐的经济施氮量为360~420 kg·hm-2。徐海江等[18]在南疆阿瓦提縣的研究表明,过量施氮不利于提高棉花产量,当施氮量超过450 kg·hm-2时棉花产量不再显著增加,经氮肥效应方程计算出最高产量下的施氮量为427.832 kg·hm-2。李志强等[57]在北疆石河子进行的研究表明,施氮过量或者过低均难以获得高产,施氮量为360 kg·hm-2时,棉花产量最高;而施氮量超过392 kg·hm-2时,棉花产量显著降低。由此可见,本研究提出的经济施氮量适于新疆植棉区的棉花种植。新疆植棉区土壤普遍存在贫瘠化的现象。不合理的施氮方案不但会降低肥效,而且会造成严重的经济损失和环境污染[58]。对于膜下滴灌棉田,部分试验不设基肥处理,在棉花生长期间将氮肥随水滴施[7, 20];部分试验将20%或30%氮肥作基肥[16, 22]。适当基肥处理能够为棉花前期生长发育提供适宜的土壤肥力条件,也有改良土壤、培肥地力的作用。基肥缺乏会影响作物根系生长,导致植株发育后期营养不良,造成减产。基肥过量会导致植株营养失衡,抑制棉花生长,棉花也更容易发生病虫害。这可能是本研究中20%氮肥作基肥的增产效应优于无基肥处理和30%氮肥作基肥的原因。有研究表明,与低施肥频次(不大于5次)相比,高施肥频次(5次以上)更能充分发挥肥效,显著提高棉花产量[54]。这与本研究结论一致,本研究精量施氮方案为全生育期施氮360~420 kg·hm-2,且20%作基肥处理,剩余80%分6次作追肥处理,每次施用比例为6%、8%、22%、25%、12%和7%,在新疆植棉区根据施氮方案精量施氮是实现棉花高产的重要措施。

棉田土壤无机氮含量代表着土壤氮素水平,施用氮肥是无机氮积累的前提[59-60],而硝态氮作为无机氮的主要存在形式是棉花吸收利用的主要氮素形态。叶片作为棉花进行光合作用的主要器官,与产量的形成有着密不可分的关系[61],叶面积指数一定程度上能反映植株的生长发育情况。有研究表明在棉花快速生长时期,叶面积指数升高较快,干物质积累总量较高[62]。干物质积累是棉花产量的物质基础、增施氮肥会促进棉花的干物质积累和对氮素的吸收[63-64]。由此可见,叶面积指数对棉花产量构成有显著影响。通径分析结果表明,叶面积指数对棉花产量影响较大,施氮通过提高棉田土壤硝态氮含量,从而增加棉花叶面积指数,对棉花产量的提升贡献最大。

4 结论

本研究深入分析了施氮对棉花产量的综合效应及影响机制,通过元分析和通径分析研究表明,与不施氮相比,施氮能显著提高棉花产量,增产效应为43.38%;施氮量为360~480 kg·hm-2时增产效应最高,超过此用量,施氮对棉花产量的效应值反而降低,本研究推荐的经济施氮量为360~420 kg·hm-2。施氮方案为基肥20%,追肥80%且按照6%、8%、22%、25%、12%、7%的比例随水滴施6次。对于年蒸发量>2 000 mm、年降水量<60 mm、年日照时间<2 864 h、年有效积温>4 000 ℃、无霜期>200 d的地区,且土壤为砂质土质地、土壤初始有机碳含量<5.8 g·kg-1、土壤初始速效氮含量≤60 mg·kg-1的棉田,施氮增产效应最明显。棉花叶面积指数对棉花产量的直接影响较大,施氮通过提高棉田土壤硝态氮含量,从而增加植株叶面积指数,对棉花产量的提升贡献最显著。

参考文献:

[1] Tan Hong, Ma Qiong. A tentative discussion on the constraints on production and development of cotton and countermeasures[C/OL]//2017 International Conference on Frontiers in Educational Technologies and Management Sciences(FETMS 2017). Nanjing: [s. n.]. 2017: 280-283[2023-11-01]. https://doi.org/10.25236/fetms.2017.066.

[2] Yang Z, Tang J, Yu M, et al. Sustainable cotton production through increased competitiveness: analysis of comparative advantage and influencing factors of cotton production in Xinjiang, China[J/OL]. Agronomy, 2022, 12(10): 2239[2023-11-01]. https://doi.org/10.3390/agronomy12102239.

[3] 国家统计局关于2022年棉花产量的公告[N/OL]. 中国信息报, 2022-12-27(001)[2023-11-01]. https://doi.org/10.38309/n.cnki.nzgxx.2022.001214.

Announcement of national bureau of statistics on cotton production in 2022[N/OL]. China Information News, 2022-12-27(001)[2023-11-01]. https://doi.org/10.38309/n.cnki.nzgxx.2022.001214.

[4] 徐飞鹏, 李云开, 任树梅. 新疆棉花膜下滴灌技术的应用与发展的思考[J]. 农业工程学报, 2003, 19(1): 25-27.

Xu Feipeng, Li Yunkai, Ren Shumei. Investigation and discussion of drip irrigation under mulch in Xinjiang Uygur Autonomous Region[J]. Transactions of the Chinese Society of Agricultural Engineering, 2003, 19(1): 25-27.

[5] 孙志梅, 武志杰, 陈利军, 等. 农业生产中的氮肥施用现状及其环境效应研究进展[J/OL]. 土壤通报, 2006, 37(4): 782-786[2023-11-01]. https://doi.org/10.3321/j.issn:0564-3945.2006.04.037.

Sun Zhimei, Wu Zhijie, Chen Lijun, et al. Research advances in nitrogen fertilization and its environmental effects[J/OL]. Chinese Journal of Soil Science, 2006, 37(4): 782-786[2023-11-01]. https://doi.org/10.3321/j.issn:0564-3945.2006.04.037.

[6] Chen C, Pan J, Lam S K. A review of precision fertilization research[J/OL]. Environmental Earth Sciences, 2014, 71: 4073-4080[2023-11-01]. https://doi.org/10.1007/s12665-013-2792-2.

[7] 张宏, 曾雄, 王爱莲, 等. 不同施氮量对棉花产量、养分吸收及氮素利用的影响[J/OL]. 新疆农业科学, 2021, 58(9): 1656-1664[2023-11-01]. https://doi.org/10.6048/j.issn.1001-4330.2021.09.011.

Zhang Hong, Zeng Xiong, Wang Ailian, et al. Effects of different nitrogen application rates on yield, nutrient uptake and nitrogen utilization of cotton in southern Xinjiang[J/OL]. Xinjiang Agricultural Sciences, 2021, 58(9): 1656-1664[2023-11-01]. https://doi.org/10.6048/j.issn.1001-4330.2021.09.011.

[8] 杜夢旗, 卢锐, 张哲, 等. 不同施氮量对滴灌棉田氮素利用率的影响[J/OL]. 农业与技术, 2022, 42(4): 10-13[2023-11-01]. https://doi.org/10.19754/j.nyyjs.20220228103.

Du Mengqi, Lu Rui, Zhang Zhe, et al. Effect of different nitrogen application rates on nitrogen utilisation in drip-irrigated cotton fields[J/OL]. Agriculture & Technology, 2022, 42(4): 10-13[2023-11-01]. https://doi.org/10.19754/j.nyyjs.20220228103.

[9] 王肖娟, 危常州, 张君, 等. 灌溉方式和施氮量对棉田氮肥利用率及损失的影响[J/OL]. 应用生态学报, 2012, 23(10): 2751-2758[2023-11-01]. https://doi.org/10.13287/j.1001-9332.2012.0379.

Wang Xiaojuan, Wei Changzhou, Zhang Jun, et al. Effects of irrigation mode and N application rate on cotton field fertilizer N use efficiency and N losses[J/OL]. Chinese Journal of Applied Ecology, 2012, 23(10): 2751-2758[2023-11-01]. https://doi.org/10.13287/j.1001-9332.2012.0379.

[10] 周燕, 孙洋洋, 胡志伟, 等. 氮肥对棉花产量和氮素吸收量影响的Meta分析[J/OL]. 福建农业学报, 2022, 37(3): 317-325[2023-11-01]. https://doi.org/10.19303/j.issn.1008-0384.2022.003.006.

Zhou Yan, Sun Yangyang, Hu Zhiwei, et al. Meta analysis on effects of N-fertilization on yield and N-uptake of cotton plants[J/OL]. Fujian Journal of Agricultural Sciences, 2022, 37(3): 317-325[2023-11-01]. https://doi.org/10.19303/j.issn.1008-0384.2022.003.006.

[11] Ainsworth E A. Rice production in a changing climate: a metaanalysis of responses to elevated carbon dioxide and elevated ozone concentration[J/OL]. Global Change Biology, 2008, 14(7): 1642-1650[2023-11-01]. https://doi.org/10.1111/j.1365-2486.2008.01594.x.

[12] Feng Z, Shang B, Gao F, et al. Current ambient and elevated ozone effects on poplar: a global meta-analysis and response relationships[J/OL]. Science of the Total Environment, 2019, 654: 832-840[2023-11-01]. https://doi.org/10.1016/j.scitotenv.2018.11.179.

[13] de Graaff M A, van Groenigen K J, Six J, et al. Interactions between plant growth and soil nutrient cycling under elevated CO2: a meta-analysis[J/OL]. Global Change Biology, 2006, 12(11): 2077-2091[2023-11-01]. https://doi.org/10.1111/j.1365-2486.2006.01240.x.

[14] Liao C Z, Peng R H, Luo Y Q, et al. Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta-analysis[J/OL]. New Phytologist, 2008, 177(3): 706-714[2023-11-01]. https://doi.org/10.1111/j.1469-8137.2007.02290.x.

[15] Treseder K K. A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies[J/OL]. New Phytologist, 2004, 164(2): 347-355[2023-11-01]. https://doi.org/10.1111/j.1469-8137.2004.01159.x.

[16] 張泽, 马革新, 海兴岩, 等. 氮肥和土壤质地对滴灌棉花根系分布及产量的影响[J/OL]. 土壤, 2018, 50(3): 622-627[2023-11-01]. https://doi.org/10.13758/j.cnki.tr.2018.03.025.

Zhang Ze, Ma Gexin, Hai Xingyan, et al. Effect of nitrogen fertilization and soil texture on cotton root traits and yields under conventional drip irrigation[J/OL]. Soils, 2018, 50(3): 622-627[2023-11-01]. https://doi.org/10.13758/j.cnki.tr.2018.03.025.

[17] 董鹏. 棉花膜下滴灌氮素养分综合管理技术研究[D]. 石河子: 石河子大学, 2011.

Dong Peng. Research on integrated management technology of nitrogen and nutrients in cotton under membrane drip irrigation[D]. Shihezi: Shihezi University, 2011.

[18] 徐海江, 田立文, 林涛, 等. 施氮量对南疆膜下滴灌陆地棉干物质积累与分配的影响[J]. 新疆农业科学, 2012, 49(10): 1765-1772.

Xu Haijiang, Tian Liwen, Lin Tao, et al. Study on effect of dry matter accumulation and distribute on the nitrogen fertilizer applied to upland cotton using drip irrigation under plastic film in southern Xinjiang[J]. Xinjiang Agricultural Sciences, 2012, 49(10): 1765-1772.

[19] 杨媚, 吕新, 马露露, 等. 施氮量对不同品种滴灌棉花氮素利用率及产量的影响[J/OL]. 新疆农业科学, 2019, 56(7): 1223-1231[2023-11-01]. https://doi.org/10.6048/j.issn.1001-4330.2019.07.006.

Yang Mei, Lü Xin, Ma Lulu, et al. Effects of nitrogen application rate on nitrogen utilization efficiency and yield of different varieties of drip irrigation cotton (Gossypium hirsutum L.)[J/OL]. Xinjiang Agricultural Sciences, 2019, 56(7): 1223-1231[2023-11-01]. https://doi.org/10.6048/j.issn.1001-4330.2019.07.006.

[20] 廖欢, 甘浩天, 刘凯, 等. 机采棉氮素吸收及产量的最佳水氮组合[J/OL]. 植物营养与肥料学报, 2021, 27(12): 2229-2242[2023-11-01]. https://doi.org/10.11674/zwyf.2021180.

Liao Huan, Gan Haotian, Liu Kai, et al. Optimal water scheme and N rate for high N uptake and yield of machine-harvested cotton[J/OL]. Plant Nutrition and Fertilizer Science, 2021, 27(12): 2229-2242[2023-11-01]. https://doi.org/10.11674/zwyf.2021180.

[21] 邓忠, 白丹, 翟国亮, 等. 膜下滴灌水氮调控对南疆棉花产量及水氮利用率的影响[J/OL]. 应用生态学报, 2013, 24(9): 2525-2532[2023-11-01]. https://doi.org/10.13287/j.1001-9332.2013.0500.

Deng Zhong, Bai Dan, Zhai Guoliang, et al. Effects of water and nitrogen regulation on the yield and water and nitrogen use efficiency of cotton in south Xinjiang, Northwest China under plastic mulched drip irrigation[J/OL]. Chinese Journal of Applied Ecology, 2013, 24(9): 2525-2532[2023-11-01]. https://doi.org/10.13287/j.1001-9332.2013.0500.

[22] 林濤, 郭仁松, 崔建平, 等. 施氮对南疆荒漠绿洲滴灌棉田产量及棉纤维品质的影响[J/OL]. 西北农业学报, 2013, 22(11): 47-53[2023-11-01]. https://doi.org/10.7606/j.issn.1004-1389.2013.11.009.

Lin Tao, Guo Rensong, Cui Jianping, et al. Effects of nitrogen application on cotton yield and fiber quality under drip irrigation condition in oasis of south Xinjiang[J/OL]. Acta Agriculturae Boreali-occidentalis Sinica, 2013, 22(11): 47-53[2023-11-01]. https://doi.org/10.7606/j.issn.1004-1389.2013.11.009.

[23] 尔晨. 水氮耦合对机采棉根冠特性及水氮利用的影响[D]. 乌鲁木齐: 新疆农业大学, 2020.

Er Chen. Effects of water-nitrogen coupling on root-crown characteristics and water-nitrogen utilization of machine-picked cotton[D]. Urumqi: Xinjiang Agricultural University, 2020.

[24] 蒲胜海, 王则玉, 丁峰, 等. 膜下滴灌水氮空间调控对机采棉群体塑造及产量的影响[J/OL]. 新疆农业科学, 2022, 59(8): 1838-1846[2023-11-01]. https://doi.org/10.6048/j.issn.1001-4330.2022.08.003.

Pu Shenghai, Wang Zeyu, Ding Feng, et al. Machine-picked cotton population shaping and yield under mulch drip irrigation with different spatial distribution of water and nitrogen[J/OL]. Xinjiang Agricultural Sciences, 2022, 59(8): 1838-1846[2023-11-01]. https://doi.org/10.6048/j.issn.1001-4330.2022.08.003.

[25] 孟艳, 沈亚文, 孟维伟, 等. 生物炭施用对农田土壤团聚体及有机碳影响的整合分析[J/OL]. 环境科学, 2023(12): 1-13[2023-11-01]. https://doi.org/10.13227/j.hjkx.202210300.

Meng Yan, Shen Yawen, Meng Weiwei, et al. Effect of biochar on agricultural soil aggregates and organic carbon: a metaanalysis[J/OL]. Environmental Science, 2023(12): 1-13[2023-11-01]. https://doi.org/10.13227/j.hjkx.202210300.

[26] 王晓娇, 张仁陟, 齐鹏, 等. Meta分析有机肥施用对中国北方农田土壤CO2排放的影响[J/OL]. 农业工程学报, 2019, 35(10): 99-107[2023-11-01]. https://doi.org/10.11975/j.issn.1002-6819.2019.10.013.

Wang Xiaojiao, Zhang Renzhi, Qi Peng, et al. Meta-analysis on farmland soil CO2 emission in northern China affected by organic fertilizer[J/OL]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(10): 99-107[2023-11-01]. https://doi.org/10.11975/j.issn.1002-6819.2019.10.013.

[27] 郭金强, 危常州, 侯振安, 等. 施氮量对膜下滴灌棉花氮素吸收、积累及其产量的影响[J]. 干旱区资源与环境, 2008, 22(9): 139-142.

Guo Jinqiang, Wei Changzhou, Hou Zhenan, et al. Effect of N rates on N uptake, accumulation and yield of cotton under drip irrigation and mulch[J]. Journal of Arid Land Resources and Environment, 2008, 22(9): 139-142.

[28] 卞倩倩, 王雁楠, 陈金金, 等. 施钾对我国甘薯产量和土壤钾素平衡影响的Meta分析[J/OL]. 植物营养与肥料学报, 2022, 28(8): 1509-1519[2023-11-01]. https://doi.org/10.11674/zwyf.2021632.

Bian Qianqian, Wang Yannan, Chen Jinjin, et al. Effects of potassium application on yield and potassium balance of sweet potato field in China: a meta-analysis[J/OL]. Plant Nutrition and Fertilizer Science, 2022, 28(8): 1509-1519[2023-11-01]. https://doi.org/10.11674/zwyf.2021632.

[29] 吕春玲, 陈延华, 何文天, 等. 玉米种植体系土壤磷素有效性对有机肥长期施用响应的Meta分析[J/OL]. 农业环境科学学报, 2022, 41(9): 2011-2022[2023-11-01]. https://doi.org/10.11654/jaes.2022-0015.

Lü Chunling, Chen Yanhua, He Wentian, et al. Response of soil phosphorus availability to long-term application of organic fertilizer under maize cropping system: a meta-analysis[J/OL]. Journal of Agro-Environment Science, 2022, 41(9): 2011-2022[2023-11-01]. https://doi.org/10.11654/jaes.2022-0015.

[30] Wang Q, Zhai P M, Qin D H. New perspectives on 'warming-wetting' trend in Xinjiang, China[J/OL]. Advances in Climate Change Research, 2020, 11(3): 252-260[2023-11-01]. https://doi.org/10.1016/j.accre.2020.09.004.

[31] 中國科学院《中国自然地理》委员会. 中国自然地理: 气候[M]. 北京: 科学出版社, 1984.

Committee on Physical Geography of China, Chinese Academy of Sciences. Physical geography of China: climate[M]. Beijing: Science Press, 1984.

[32] Gu X B, Cai H J, Fang H, et al. Effects of degradable film mulching on crop yield and water use efficiency in China: a meta-analysis[J/OL]. Soil and Tillage Research, 2020, 202: 104676[2023-11-01]. https://doi.org/10.1016/j.still.2020.104676.

[33] Qin Y, Chai Y, Li R, et al. Evaluation of straw and plastic film mulching on wheat production: a meta-analysis in loess plateau of China[J/OL]. Field Crops Research, 2022, 275: 108333[2023-11-01]. https://doi.org/10.1016/j.fcr.2021.108333.

[34] 宫园, 徐玉婷, 潘友菊,等. 气候智慧型农业措施对中国农田土壤有机碳含量影响的Meta分析[J/OL]. 农业资源与环境学报, 2024, 41(1): 92-104[2023-11-01]. https://doi.org/10.13254/j.jare.2023.0152.

Gong Yuan, Xu Yuting, Pan Youju, et al. Effects of climate-smart agricultural measures on soil organic carbon content of farmland in China: a meta-analysis[J/OL]. Journal of Agricultural Resources and Environment, 2024, 41(1): 92-104[2023-11-01]. https://doi.org/10.13254/j.jare.2023.015.

[35] 赵鑫. 基于Meta-analysis对我国保护性耕作农田土壤固碳减排效应及其潜力的研究[D]. 北京: 中国农业大学, 2017.

Zhao Xin. Study on the effect of soil carbon sequestration and emission reduction and its potential of conservation tillage farmland in China based on meta-analysis[D]. Beijing: China Agricultural University, 2017.

[36] Dieleman W I J, Luyssaert S, Rey A, et al. Soil [N] modulates soil C cycling in CO2-fumigated tree stands: a meta-analysis[J/OL]. Plant, Cell & Environment, 2010, 33(12): 2001-2011[2023-11-01]. https://doi.org/10.1111/j.1365-3040.2010.02201.x.

[37] Chen H, Li X, Hu F, et al. Soil nitrous oxide emissions following crop residue addition: a meta-analysis[J/OL]. Global Change Biology, 2013, 19(10): 2956-2964[2023-11-01]. https://doi.org/10.1111/gcb.12274.

[38] 杜家菊, 陈志伟. 使用SPSS线性回归实现通径分析的方法[J/OL]. 生物学通报, 2010, 45(2): 4-6[2023-11-01]. https://doi.org/10.3969/j.issn.0006-3193.2010.02.002.

Du Jiaju, Chen Zhiwei. Method of path analysis with SPSS linear regression[J/OL]. Bulletin of Biology, 2010, 45(2): 4-6[2023-11-01]. https://doi.org/10.3969/j.issn.0006-3193.2010.02.002.

[39] Zhou L, Zhou X, Zhang B, et al. Different responses of soil respiration and its components to nitrogen addition among biomes: a meta-analysis[J/OL]. Global Change Biology, 2014, 20(7): 2332-2343[2023-11-01]. https://doi.org/10.1111/gcb.12490.

[40] 楊玉辉. 膜下滴灌盐渍化棉田暗管排水技术参数研究[D]. 北京: 中国农业科学院, 2021.

Yang Yuhui. Study on technical paramerers of subsurface drainage in saline cotton field with drip irrigation under mulch[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021.

[41] Yu L, Zhao X, Gao X, et al. Improving/maintaining water-use efficiency and yield of wheat by deficit irrigation: a global meta-analysis[J/OL]. Agricultural Water Management, 2020, 228: 105906[2023-11-01]. https://doi.org/10.1016/j.agwat.2019.105906.

[42] 中华人民共和国农业农村部. 国家农作物优良品种推广目录(2023年)[EB/OL]. (2023-03-02)[2023-11-01]. http://www.zzj.moa.gov.cn/gzdt/202303/t20230302_6422033.htm.

Ministry of Agriculture and Rural Affairs of the Peoples Republic of China. National crop variety promotion Catalog (2023)[EB/OL]. (2023-03-02)[2023-12-20]. http://www.zzj.moa.gov.cn/gzdt/202303/t20230302_6422033.htm.

[43] 王宁, 黄群, 匡猛, 等. 新育种方法在中棉所49选育中的应用[J/OL]. 中国棉花, 2015, 42(4): 25-26, 28[2023-11-01]. http://doi.org/10.11963/issn.1000-632X.201504008.

Wang Ning, Huang Qun, Kuang Meng, et al. Application of a new breeding method in the breeding of CCRI 49[J/OL]. China Cotton, 2015, 42(4): 25-26, 28[2023-11-01]. http://doi.org/10.11963/issn.1000-632X.201504008.

[44] Ladha J K, Pathak H, Krupink T J, et al. Efficiency of fertilizer nitrogen in cereal production: retrospects and prospects[J/OL]. Advances in Agronomy, 2005, 87: 85-156[2023-11-01]. https://doi.org/10.1016/S0065-2113(05)87003-8.

[45] Peng S, Buresh R J, Huang J, et al. Improving nitrogen fertilization in rice by sitespecific N management. A review[J/OL]. Agronomy for Sustainable Development, 2010, 30: 649-656[2023-11-01]. https://doi.org/10.1051/agro/2010002.

[46] Wittig V E, Ainiworth E A, Naidu S L, et al. Quantifying the impact of current and future tropospheric ozone on tree biomass, growth, physiology and biochemistry: a quantitative meta-analysis[J/OL]. Global Change Biology, 2009, 15(2): 396-424[2023-11-01]. https://doi.org/10.1111/j.1365-2486.2008.01774.x.

[47] 胡明芳, 田长彦, 吕昭智, 等. 氮肥施用量对新疆棉花产量及植株和土壤中硝態氮含量的影响[J/OL]. 西北农林科技大学学报(自然科学版), 2006, 34(4): 63-68[2023-11-01]. https://doi.org/10.3321/j.issn:1671-9387.2006.04.015.

Hu Mingfang, Tian Changyan, Lü Zhaozhi, et al. Effects of N rate on cotton yield and nitrate-N concentration in plant tissue and soil[J/OL]. Journal of Northwest A&F University (Natural Science Edition), 2006, 34(4): 63-68[2023-11-01]. https://doi.org/10.3321/j.issn:1671-9387.2006.04.015.

[48] Tang S, Zhang H, Liu W, et al. Nitrogen fertilizer at heading stage effectively compensates for the deterioration of rice quality by affecting the starch-related properties under elevated temperatures[J/OL]. Food Chemistry, 2019, 277: 455-462[2023-11-01]. https://doi.org/10.1016/j.foodchem.2018.10.137.

[49] Xiong D, Yu T, Ling X, et al. Sufficient leaf transpiration and nonstructural carbohydrates are beneficial for high-temperature tolerance in three rice (Oryza sativa) cultivars and two nitrogen treatments[J/OL]. Functional Plant Biology, 2014, 42(4): 347-356[2023-11-01]. https://doi.org/10.1071/FP14166.

[50] Mokhele B, Zhan X, Yang G, et al. Nitrogen assimilation in crop plants and its affecting factors[J/OL]. Canadian Journal of Plant Science, 2012, 92(3): 399-405[2023-11-01]. https://doi.org/10.1139/CJPS2011-135.

[51] 孟妍君, 馬鑫颖, 宋晨, 等. 水氮调控对棉花生理性状及产量的影响[J/OL]. 中国生态农业学报(中英文), 2023, 31(9): 1379-1391[2023-11-01]. https://doi.org/10.12357/cjea.20230002.

Meng Yanjun, Ma Xinying, Song Chen, et al. Effects of water and nitrogen regulation on physiological characteristics and yield of cotton[J/OL]. Chinese Journal of Eco-Agriculture, 2023, 31(9): 1379-1391[2023-11-01]. https://doi.org/10.12357/cjea.20230002.

[52] Dong H, Li W, Eneji A E, et al. Nitrogen rate and plant density effects on yield and late-season leaf senescence of cotton raised on a saline field[J/OL]. Field Crops Research, 2012, 126: 137-144[2023-11-01]. https://doi.org/10.1016/j.fcr.2011.10.005.

[53] Peng S, Garcia F V, Laza R C, et al. Increased N-use efficiency using a chlorophyll meter on high-yielding irrigated rice[J/OL]. Field Crops Research, 1996, 47(2/3): 243-252[2023-11-01]. https://doi.org/10.1016/0378-4290(96)00018-4.

[54] 蔡焕杰, 李府阳, 赵政鑫, 等. 施氮对中国棉田产量和水分利用效率影响的Meta分析[J]. 农业机械学报, 2023, 54(12): 316-326.

Cai Huanjie, Li Fuyang, Zhao Zhengxin, et al. A meta-analysis of the effects of nitrogen application on cotton yield and water use efficiency in China[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(12): 316-326.

[55] 贾耀宇, 黄伟斌, 杨北方, 等. 亏缺灌溉对中国棉花产量和灌溉水分生产力影响的元分析[J/OL]. 棉花学报, 2023, 35(3): 195-210[2023-11-01]. https://doi.org/10.11963/cs20220065.

Jia Yaoyu, Huang Weibin, Yang Beifang, et al. A meta-analysis of yield and irrigation water productivity of cotton under deficit irrigation in China[J/OL]. Cotton Science, 2023, 35(3): 195-210[2023-11-01]. https://doi.org/10.11963/cs20220065.

[56] 王振华, 朱延凯, 张金珠, 等. 水氮调控对轻度盐化土滴灌棉花生理特性与产量的影响[J/OL]. 农业机械学报, 2018, 49(6): 296-308[2023-11-01]. https://doi.org/106401/j.issn.1000.1298.2018.06.035.

Wang Zhenhua, Zhu Yankai, Zhang Jinzhu, et al. Effects of water and nitrogen fertilization on physiological characteristics and yield of cotton under drip irrigation in mildly salinized soil[J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(6): 296-308[2023-11-01]. https://doi.org/106401/j.issn.1000.1298.2018.06.035.

[57] 李志强, 杨永林, 刘洪亮, 等. 不同施肥量对北疆高产棉花冠层结构、养分吸收和产量构成的影响[J/OL]. 中国农学通报, 2014, 30(33): 105-109[2023-11-01]. https://doi.org/10.11924/j.issn.1000-6850.2014-1497.

Li Zhiqiang, Yang Yonglin, Liu Hongliang, et al. Effect of different fertilizer on canopy structure, nutrient absorption and yield formation of high-yield cotton in north xinjiang, China[J/OL]. Chinese Agricultural Science Bulletin, 2014, 30(33): 105-109[2023-11-01]. https://doi.org/10.11924/j.issn.1000-6850.2014-1497.

[58] 巨晓棠, 张翀. 论合理施氮的原则和指标[J/OL]. 土壤学报, 2021, 58(1): 1-13[2023-11-01]. https://doi.org/10.11766/trxb202006220322.

Ju Xiaotang, Zhang Chong. The principles and indicators of rational N fertilization[J/OL]. Acta Pedologica Sinica, 2021, 58(1): 1-13[2023-11-01]. https://doi.org/10.11766/trxb202006220322.

[59] 娄善伟, 马兴旺, 托乎提·艾买提, 等. 棉花施氮阈值与产量、无机氮储量的关系研究[J/OL]. 新疆农业科学, 2016, 53(12): 2217-2224[2023-11-01]. https://doi.org/10.6048/j.issn.1001-4330.2016.12.008.

Lou Shanwei, Ma Xingwang, Tuohuti Aimaiti, et al. Study on the relationship between nitrogen application threshold and yield and total inorganic nitrogen[J/OL]. Xinjiang Agricultural Sciences, 2016, 53(12): 2217-2224[2023-11-01]. https://doi.org/10.6048/j.issn.1001-4330.2016.12.008.

[60] 李玮. 缓释尿素对土壤无机氮及棉花和玉米产量的影响[D].石河子: 石河子大学, 2016.

Li Wei. Effect of slow-release urea on soil inorganic nitrogen and yield of cotton and maize[D]. Shihezi: Shihezi University, 2016.

[61] 王全九, 王康, 苏李君, 等. 灌溉施氮和种植密度对棉花叶面积指数与产量的影响[J/OL]. 农业机械学报, 2021, 52(12): 300-312[2023-11-01]. https://doi.org/10.6041/j.issn.1000-1298.2021.12.032.

Wang Quanjiu, Wang kang, Su Lijun, et al. Effect of irrigation amount, nitrogen application rate and planting density on cotton leaf area index and yield[J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(12): 300-312[2023-11-01]. https://doi.org/10.6041/j.issn.1000-1298.2021.12.032.

[62] 李慧, 万华龙, 田立文, 等. 晚播增密对棉花群体光合及干物质积累与分配的影响[J/OL]. 棉花学报, 2020, 32(4): 339-347[2023-11-01]. https://doi.org/10.11963/1002-7807.lhlcd.20200622.

Li Hui, Wan Hualong, Tian Liwen, et al. The effects of increased-density on canopy apparent photosynthesis, dry matter accumulation and distribution of cotton under late-sown condition[J/OL]. Cotton Science, 2020, 32(4): 339-347[2023-11-01]. https://doi.org/10.11963/1002-7807.lhlcd.20200622.

[63] 王士紅, 杨中旭, 史加亮, 等. 增密减氮对棉花干物质和氮素积累分配及产量的影响[J/OL]. 作物学报, 2020, 46(3): 395-407[2023-11-01]. https://doi.org/10.3724/SP.J.1006.2020.94074.

Wang Shihong, Yang Zhongxu, Shi Jialiang, et al. Effects of increasing planting density and decreasing nitrogen rate on dry matter, nitrogen accumulation and distribution, and yield of cotton[J/OL]. Acta Agronomica Sinica, 2020, 46(3): 395-407[2023-11-01]. https://doi.org/10.3724/SP.J.1006.2020.94074.

[64] 李伶俐, 房卫平, 谢德意, 等. 施氮量对杂交棉干物质积累、分配和氮磷钾吸收、分配与利用的影响[J]. 棉花学报, 2010, 22(4): 347-353.

Li Lingli, Fang Weiping, Xie Deyi, et al. Effects of nitrogen application rate on dry matter accumulation and N, P, K uptake and distribution in different organs and utilization of hybrid cotton under high-yield cultivated condition[J]. Cotton Science, 2010, 22(4): 347-353.

猜你喜欢

元分析膜下滴灌通径分析
玉米膜下滴灌栽培技术探析
烤烟追肥对光合效应与细胞液浓度的影响
护理实践教学中在线学习效果的元分析
信任性别差异的元分析
浅议太仆寺旗地区发展玉米膜下滴灌的必要性
精河沙区土壤酶分布特征及其对土壤理化性状的响应
大学生主观幸福感变迁的元分析研究
毕节市苦荞种质资源农艺性状的鉴定与评价
湖南主要辣椒品种产量与主要农艺性状的相关性及通径分析
洮南市秉承膜下滴灌技术促节水增粮