APP下载

煤炭原位开发地质保障

2024-05-03王双明,孙强,胡鑫,耿济世,薛圣泽,刘浪,师庆民,魏江波

关键词:煤炭资源原位气化

王双明,孙强,胡鑫,耿济世,薛圣泽,刘浪,师庆民,魏江波

摘要:“雙碳”目标下,面对“缺油、少气、相对富煤”的资源禀赋特征,煤炭在一段时期内仍占据中国的主体能源地位,但煤炭的低碳、清洁开发转型势在必行。地下原位热解、气化、干馏、制氢等方式有望成为未来煤炭开发的重要抓手。当前对煤炭原位开发已有较多探索,但地质选址和开发过程的地质安全性、可靠性和环保性仍是制约其规模化和商业化的科学难题。因此,煤炭原位开发地质保障的理论和技术研究亟待深入。秉持“安全、经济、环保、可持续”原则,从煤炭资源禀赋特征和地质条件出发,分析了煤炭原位开发研究现状;基于煤炭开发全生命周期的科学理念,提出了“煤炭原位开发地质保障”的科学内涵;在查明采前地质条件的基础上,从物理机制角度揭示深部原位开发过程中围岩地质体响应特征和损害规律,阐明原位开发中岩体工程地质力学行为,构建原位开发地质条件动态评价模型,形成原位开发减损保障策略和方法,提出原位开发空间的再利用途径,并以煤炭地下气化和地下热解2种开发模式为例阐述了原位开发阶段性,明确了原位开发区设计的地质条件要素,强调开发过程中实时动态监测和评价围岩地质体响应保证开发区密封性与安全性,实现地质条件时空演化的评价及地质风险可控性,此外注重协同开发深部热能与共伴生资源,实现残余资源利用和地下空间再利用。煤炭原位地质保障研究体现了资源赋存条件、地质环境约束、原位开发技术、地质风险防控、资源协同开发等层面的要求,突出了原位扰动条件下的地质条件变化,强调开发扰动与地质体结构的整体研究,理解原位开发时空效应范畴的多相场耦合损伤机制,从多圈层角度揭示原位开发扰动效应下地质风险模式,破解资源开发与地质环境制约之间矛盾,对于推动未来煤炭低碳开发,实现煤炭工业高质量发展具有重要的理论和实践指导意义。

关键词:深埋煤层;原位开发;碳中和;地质储能

中图分类号:TD 823文献标志码:A

文章编号:1672-9315(2024)01-0001-11

DOI:10.13800/j.cnki.xakjdxxb.2024.0101开放科学(资源服务)标识码(OSID):

Geological guarantee for in-situ development of coal

WANG Shuangming1,2,3,SUN Qiang1,2,3,HU Xin1,2,3,GENG Jishi1,2,3,

XUE Shengze1,2,3,LIU Lang4,SHI Qingmin1,2,3,WEI Jiangbo1,2,3(1.Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation,

Xian University of Science and Technology,Xian 710054,China;

2.Geological Research Institute for Coal Green Mining,Xian University of Science and Technology,Xian  710054,China;

3.College of Geology and Environment,Xian University of Science and Technology,Xian 710054,China;

4.College of  Energy Science and Engineering,Xian  University of Science and Technology,Xian 710054,China)

Abstract:Under the “dual carbon” target,faced with the resource endowment characteristics of “shortage of oil,scarcity of gas,and relative abundance of coal”,coal still occupies a dominant position in Chinas primary energy sector for a certain period.And it is imperative to develop the low-carbon and clean  transformation of coal.Underground in-situ pyrolysis,gasification,dry distillation,hydrogen production and other methods are expected to become important approaches for future coal development.At present,there have been many explorations on in-situ coal development第1期王双明,等:煤炭原位开发地质保障,but the geological safety,reliability,and environmental protection of geological site selection and development process are still scientific challenges that constrain its scale and commercialization.Therefore,the theoretical and technical research on geological guarantee for in-situ coal development  needs to be deepened urgently.Adhering to the principles of “safety,economy,environmental protection,and sustainability”,this paper analyzes the current research status of coal in-situ development,starting from the characteristics of coal resource endowment and geological conditions.Based on the scientific concept of the entire life cycle of coal development,the scientific connotation of “geological guarantee for coal in-situ development” is proposed.By identifying pre-mining geological conditions,the response characteristics and damage laws of surrounding rock geological bodies during the deep in-situ development process are revealed from the perspective of physical mechanisms,clarify the geological and mechanical behavior of rock mass engineering in in-situ development,construct a dynamic evaluation model for geological conditions in in-situ development,form a loss reduction guarantee strategy and method for in-situ development,and propose ways to reuse in-situ development space.Taking two development models of underground coal gasification and underground pyrolysis as examples,this paper elaborates on the phased nature of in-situ development,clarifies the geological conditions elements of in-situ Development Zone  design,emphasizes real-time dynamic monitoring and evaluation of surrounding rock geological response during the development process to ensure the sealing and safety of the development zone,and achieves the evaluation of geological conditionsspatiotemporal evolution and geological risk controllability.In addition,the emphasis is placed on collaborative development of deep thermal energy and co-associated resources,achieving the utilization of residual resources and the reuse of underground space.The research on in-situ geological guarantee of coal reflects the requirements of resource occurrence conditions,geological environment constraints,in-situ development technology,geological risk prevention and control,and resource collaborative development.It attaches importance on  the changes in geological conditions under in-situ disturbance conditions,emphasizes the overall study of development disturbance and geological body structure,and recognizes the multiphase field coupling damage mechanism in the field of spatiotemporal effects of in-situ development.To reveal the geological risk mode under the disturbance effect of in-situ development from a multi layer perspective,and to identify the contradiction between resource development and geological environmental constraints has important theoretical and practical guiding significance for promoting low-carbon coal development in the future and achieving high-quality development of the coal industry.

Key words:deep-buried coal seams;in-situ development;carbon neutrality;geological energy-storage

0引言

面对“缺油、少气、相对富煤”的资源禀赋特征,煤炭成为中国国民经济发展和能源战略安全的兜底保障[1],在未来一段时期仍将占据能源消费结构主体地位[2-5]。然而,随着煤炭资源的开采,浅埋煤炭资源日益减少,开采地球深部煤炭资源成为中国战略能源开发必将面临的挑战[6-8]。习近平总书记指出,地表至地下10 000 m范围内均为可利用的成矿空间,目前世界先进水平勘探开采深度可达2 500~4 000 m,国内大多小于500 m。而据统计,中国53%的煤炭埋深在千米以下,深部丰富的煤炭资源还有待开发利用[9-10]。目前煤矿开采深度以每年8~12 m的速度增加,预计未来几十年中国很多煤矿将进入到1 000~1 500 m的深度[11],但深部煤炭开发存在勘探难度大、地温高、地应力大等问题[12-14]。同时,随着东部煤炭资源逐渐枯竭,西部生态脆弱区已成为中国煤炭开采的主战场[15]。传统煤炭开采方法面临着保护煤柱、极薄煤层等资源难以利用的问题,且对地质环境条件扰动损害大。为实现习近平总书记提出的“绿水青山就是金山银山”的生态文明发展理念,推动煤炭工业高质量发展,必须协调煤炭开发与“绿水青山”生态文明建设的矛盾,减损开采已成大势所趋[16-18]。

自2020年中国提出“碳达峰、碳中和”目标以来,煤炭工业必然朝着“绿色低碳减排、清洁高效利用”发展路径推进,对常规采煤工艺转型提出了严峻的要求[19],探索与应用新的开采技术愈加重要[20-23]。煤炭原位开发是通过把煤炭资源原位转化为气态和液态物质(如CH4、H2、CO、低碳烷烃、焦油等)进而开发利用的方法,包括原位热解、气化、干馏、制氢等,具有预防地面塌陷、实现煤炭高效利用、降低生产成本、空间封存CO2等优势[24-26],为深部煤炭资源高效、安全、清洁开发提供了好的思路,能够有效提升资源的利用率,也响应了低碳的时代主题[27-29]。

在阐明煤炭原位开发模式的基础上,论述了煤炭原位开发地质保障的科学内涵,理清了煤炭原位开发与地质条件的约束关系,提出了煤炭原位开采减损地质保障理论研究的关键科学问题,构建了原位开发地质保障体系,服务于煤炭资源原位开发全过程,破解国家能源需求与地质条件损害的矛盾。

1原位开发地质保障内涵

“碳达峰、碳中和”国家战略目标的落地和实施,将推动国家能源生产与消费体系变革。如何在低碳目标要求下增强中国能源自给能力,保障能源安全,筑牢强国和可持续发展基石,是当前能源科技领域亟待攻关的重要议题。面对“缺油、少气、相对富煤”的能源禀赋条件,未来一段时期内,煤炭在中国的能源结构中依然占据主体地位,但逐渐转向清洁高效开发利用[30]。当前,西部煤炭基地已经成为中国煤炭开发的主战场,传统开采面临着生态环境脆弱,地质条件损害严重的难题。因此,煤炭开发利用需要根本性变革,才能在“双碳”背景下实现中国能源的安全、绿色与可持续供给[31-32],同时实现“绿水青山”的生态文明建设要求。

煤炭原位开发(In-Situ Coal Development,ISCD)是变革性开发途径,有望成为实现煤炭清洁低碳开发的重要抓手[33]。ISCD的开发理念是指在适宜的地质条件下,构建原位开发区(In-Situ Development Zone,ISDZ),将深部煤炭资源原位转化为气态和液态物质(如CH4、H2、CO、低碳烷烃、焦油等)进而开发利用,同时实现深部取热、储能以及碳封存等(图1)。前人在原位开发领域进行了大量开发利用试验和探索工作,其主要开发方式如图2所示。

地质条件是制约ISCD推广的重要因素之一,其中原位开发区的封闭性、安全性、环保性、经济性和可靠性是亟待解决的科学问题。原位开发时,岩层结构会随着开发时间与空间出现显著的变化,造成地质条件和功能的损害[34-36],体现在原位开发区的封闭性和地质环境协调性,进而影响工程的可靠和安全性(图3),这也是制约深部煤炭资源原位安全开发的瓶颈。

原位开发地质保障的科学内涵主要体现在:以深部煤炭原位开发为背景,采取理论研究、室内试验和数值分析相结合的方法,从物理机制角度揭示深部原位开發过程中围岩地质体响应特征和损害规律,阐明原位开发中岩体工程地质力学行为,提出原位开发地质条件动态评价模型,形成原位开发减损保障策略和方法,提出空间的再利用途径,为原位安全开采提供系统性的基础理论支撑。

2原位开发模式的地质约束

原位开发是深部煤炭资源减损利用的重要抓手,关于煤炭原位开发的途径已有探讨,如图1、图2所示,目前对煤炭原位气化和原位热解已有探索性工程试验研究[37-38],原位生物气化和液化开发多集中在试验阶段,这里以原位气化(Underground Coal Gasification,UCG)和热解(Underground Coal Pyrolysis,UCP)为例阐释原位开发模式 。

2.1原位开发地质条件

与传统井工开采相比,原位开发受到更为严格的地质条件制约。地质构造、岩(煤)层空间组合和展布特征、地应力、煤及围岩力学性质、水文地质、地质环境等构成了原位开发核心地质要素,体现在资源禀赋特征和开发条件约束2个方面。因此,煤炭原位开发地质条件研究包含了开发前地质结构精准探查与评价(图4),开发过程中围岩地质结构响应机制与风险调控技术、开发后残留资源开发与环境保护3个层面的内容,需要对开发前静态地质条件和开发扰动地质条件进行探索(图5)。

2.2煤炭原位开发模式

2.2.1煤炭原位气化

煤炭地下气化(UCG)通过对地下煤炭进行有控制地燃烧,在高温热作用及化学作用下产生可利用的CH4、H2、CO等气体的煤炭开发方式(图6)[39-41]。在煤炭地下原位气化的开发过程中,主要包括建设前评价、气化设施建设、煤炭气化和产物分级处理4个阶段。建设前评价阶段主要是基于煤炭赋存地质条件的精细勘查,对地质条件进行系统评价,揭示煤炭地下原位气化场地内煤、岩、水赋存特征及其与周边生态环境的时空联系。依据注入孔与出气孔的位置来选址建设气化设施,煤炭气化过程和产物分级处理如图7所示。

2.2.2煤炭原位热解

煤炭原位热解是将热量导入地下煤层并对其直接加热,煤炭的固态有机质受热发生裂解后,将产生的液态和气态有机质提取至地面进行处理加工的过程[42-43](图8)。与煤炭地下气化相似,煤炭地下热解过程中煤层在热效应下的物理力学性质变化也会导致煤层围岩损害,从而引起岩层开裂失稳,热解区封闭性失效,影响热解进程的连续性和安全性,因此,深入研究煤及围岩在原位地应力、地层温度、地质结构等赋存环境下对热解的响应行为和评价方法极为关键(图9)。

2.3原位开发阶段划分及保障系统

煤炭原位开发分为采前、采中、采后3个阶段(图10)。采前阶段需要结合地质条件因素根据战略需求、资源数量、资源禀赋、开发模式对原位开发战略进行评价与规划。依据地质勘探结果设计原位开发区,保证开发区的密封性与安全性。采中阶段监测原位开发过程中围岩地质体响应,及时预测与防控地质风险。协同开发热能与共伴生能源,提升资源利用率的同时保障原位开发的顺畅性与产物洁净性。原位开发采后阶段回收利用残余资源,依据采后地质条件评价空间封闭性与可储性,探索资源可持续性[45-46]。做到煤炭原位开发全生命周期与地质条件的紧密结合,保障资源安全、经济、环保、可持续开发。

煤炭原位开发地质保障是涉及到多学科的系统性研究[47-52]。煤炭原位开发需要做到地质条件透明化、信息反馈实时化、分析监控全程化、潜在风险可控化、开发过程信息化、科学研究系统化(图11)。

2.3.1透明化

原位开发前应精细查明场地范围内的地质条件与地质环境,在开发区域内的地表及地下反应区建立可视化监控测试体系,健全数据共享及全面评价体系,为地质保障技术的应用与实施提供专业支持,便于全面深入研究原位开发过程中涉及的演化机制,有利于提高原位开发技术水平,优化开发进程。

2.3.2实时化

实时监测原位开发全过程中的地质条件变化信息,根据地质环境特征随开发进程的演化规律,构建三维可视化地质模型,结合数值模拟手段和监测数据进行实时反演和超前预测,准确评价原位开发过程中各参数的变化特征及稳定性。

2.3.3全程化

确保对煤炭原位开发的地质保障在原位开发前、中、后各阶段贯穿始终。在开发前开展精准深入的地质条件及风险评价工作[53];在开发过程中建立全面有效的动态实时监测体系,坚持“持续监测—及时反馈—精准调控”的原则,对原位开发全过程进行科学保障。

2.3.4可控化

根据“井下无人”的指导原则,建立针对煤炭原位开发全过程的地上智能操控系统,针对覆岩变形破坏特征、煤炭开发进程、安全性评价指标等建立监测预警防控机制[54]。根据实时数据对原位开发进程进行精细化参数调整与过程控制,及时有效处置突发情况,确保原位开发进程安全稳定推進。

2.3.5信息化

按照时间顺序,对原位开发全过程中的各项信息进行数据化整理与存储,建立可根据开发进程、评价指标参数和开发区域进行索引的分类分级数据库,便于研究过程中随时调取各项数据进行对比分析。

2.3.6系统化

根据煤炭原位开发过程中收集到的各指标数据,对原位开发过程中的地质演化过程及围岩高温热损伤机制进行准确阐述与揭示。针对原位开发过程中的宏观变化特征,结合数值模拟预测结果,有针对性地采用科学技术手段为煤炭原位开发保驾护航。

3原位开发地质保障科学问题

煤炭开发地质保障体系的科学研究主要表现为6个方面。①原位开发静态基础地质条件分析与评价研究;②煤系与岩层结构精细刻画及力学、水文参数研究;③开发条件下围岩地质体动态演化规律及损伤机制;④原位开发地质风险模式及判识方法;⑤地质风险应对策略及关键减损技术;⑥污染-废弃物(固-液-气)防控与剩余资源再利用。上述6个方面体现了资源赋存条件、地质环境约束、原位开发技术、地质风险防控、资源协同开发等层面的要求,突出原位扰动条件下的地质条件变化,强调开发扰动与地质体结构整体研究;理解原位开发时空效应范畴的多相场耦合损伤机制(图12)。从多圈层角度揭示原位开发扰动效应下地质风险模式,提出原位开发剩余资源开发策略,破解资源开发与地质环境制约的矛盾(图13)。

4结论

1)随着中国“双碳”战略实施和生态文明建设的推进以及煤炭开采深度的增加,亟待创新煤炭开发方式。以煤炭地下气化、热解、制氢、发电等代表的原位开发模式有望成为未来煤炭开发利用的重要抓手,但受煤炭赋存地质条件的复杂性和开发过程中潜在的围岩地质体损伤诱发地质风险影响,原位开发地质选址、评价和开发全生命周期的安全性、可靠性和环保性仍是制约其规模化和商业化的关键瓶颈。

2)基于“安全、经济、环保、可持续”原则,煤炭原位开发地质保障的科学内涵体现在:煤炭开发全生命周期的地质条件的精细探查和评价,深部围岩地质体动态响应特征的实时监测与反演,煤岩工程地质力学行为及时空演化模式的分析,原位开发地质条件动态评价模型的构建,包含残留资源及空间再利用途径的开发减损保障策略和方法的形成。

3)原位开发地质保障涵盖了资源赋存条件、地质环境约束、原位开发技术、地质风险防控、资源协同开发等层面要求,强调原位开发过程中原位开发区设计的地质条件要素构成,明确动态监测和评价围岩地质体响应是保证开发区密封性与开发安全性的核心内容,突出原位扰动条件下的地质条件变化,破解资源开发与地质环境制约的矛盾。煤炭原位开发地质保障研究对于推动未来煤炭低碳开发,实现煤炭工业高质量发展具有重要的理论和实践指导意义。

参考文献(References):

[1]刘耀彬,吴学平,傅春.中国煤炭城市分类及其经济运行轨迹分析[J].资源科学,2007,29(3):2-7.

LIU Yaobin,WU Xueping,FU Chun.Classification and economic development track of coal mining cities in China[J].Resources Science,2007,29(3):2-7.

[2]張建强,宁树正,陈美英,等.我国煤炭资源开发前景及对策[J].地质论评,2020,66(S1):143-145.

ZHANG Jianqiang,NING Shuzheng,CHEN Meiying,et al.Prospects and countermeasures of coal resources development in China[J].Geological Review,2020,66(S1):143-145.

[3]谢和平,任世华,谢亚辰,等.碳中和目标下煤炭行业发展机遇[J].煤炭学报,2021,46(7):2197-2211.

XIE Heping,REN Shihua,XIE Yachen,et al.Development opportunities of the coal industry towards the goal of carbon neutrality[J].Journal of China Coal Society,2021,46(7):2197-2211.

[4]来兴平,方贤威.“双碳”目标驱动西部煤炭分阶控碳减熵增效与协同发展路径[J].西安科技大学报,2022,42(5):841-848.

LAI Xingping,FANG Xianwei.Exploration of carbon control,entropy reducton,effcency increase and their coordinated development for coal in Western China under “Dual Carbon” target[J].Journal of Xian University of Science and Technology,2022,42(5):841-848.

[5]张吉雄,张强,巨峰,等.深部煤炭资源采选充绿色化开采理论与技术[J].煤炭学报,2018,43(2):377-389.

ZHANG Jixiong,ZHANG Qiang,JU Feng,et al.Theory and technique of greening mining integrating mining,separating and backfilling in deep coal resources[J].Journal of China Coal Society,2018,43(2):377-389.

[6]孙强,张卫强,耿济世,等.利用煤炭开发地下空间储能的技术路径与地质保障[J].煤田地质与勘探,2023,51(2):229-242.

SUN Qiang,ZHANG Weiqiang,GENG Jishi,et al.Technological path and geological guarantee for energy storage in underground space formed by coal mining[J].Coal Geology & Exploration,2023,51(2):229-242.

[7]侯梅芳.碳中和目标下中国能源转型和能源安全的现状、挑战与对策[J].西南石油大学学报(自然科学版),2023,45(2):1-10.

HOU Meifang.Current situation,challenges and countermeasures of Chinas energy transformation and energy security under the goal of carbon neutrality[J].Journal of Southwest Petroleum University(Science & Technology Edition),2023,45(2):1-10.

[8]TENG J W,QIAO Y H,SONG P H.Analysis of exploration,potential reserves and high efficient utilization of coal in China[J].Chinese Journal of Geophysics,2016,59(12):4633-4653.

[9]刘淑琴,畅志兵,刘金昌.深部煤炭原位气化开采关键技术及发展前景[J].矿业科学学报,2021,6(3):261-270.

LIU Shuqin,CHANG Zhibing,LIU Jinchang.Key technologies and prospect for in-situ gasification mining of deep coal resources[J].Journal of Mining Science and Technology,2021,6(3):261-270.

[10]魏迎春,夏永翊,武玉良,等.深部煤炭资源探采对比与勘探方法探讨[J].煤田地质与勘探,2016,44(4):25-29.

WEI Yingchun,XIA Yongxu,WU Yuliang,et al.Comparison of exploration and exploitation of coal resources and discussion on exploration methods[J].Coal Geology & Exploration,2016,44(4):25-29.

[11]JIANG L L,CHEN S S,CHEN Y P,et al.Underground coal gasification modelling in deep coal seams and its implications to carbon storage in a climate-conscious world[J].Fuel,2023,332:126016.

[12]袁亮.破解深部煤炭开采重大科技难题的思考与建议[J].科技导报,2016,34(2):1.

YUAN Liang.Thoughts and suggestions on solving major scientific and technological difficulties in deep coal mining[J].Science & Technology Review,2016,34(2):1.

[13]王永,王佟,康高峰,等.中国可供性煤炭资源潜力分析[J].中国地质,2009,36(4):845-852.

WANG Yong,WANG Tong,KANG Gaofeng,et al.A potential analysis of the availability of coal resources in China[J].Geology in China,2009,36(4):845-852.

[14]彭苏萍.深部煤炭资源赋存规律与开发地质评价研究现状及今后发展趋势[J].煤,2008,17(2):1-11,27.

PENG Suping.Present study and development trend of the deepen coal resource distribution and mining geologic evaluation[J].Coal,2008,17(2):1-11,27.

[15]林建法.试析煤炭资源的安全保证问题[J].煤田地质与勘探,2006,34(4):6-9.

LIN Jianfa.Analysis of coal resource guarantee[J].Coal Geology & Exploration,2006,34(4):6-9.

[16]谢和平,高峰,鞠杨,等.深地煤炭资源流态化开采理论与技术构想[J].煤炭学报,2017,42(3):547-556.

XIE Heping,GAO Feng,JU Yang,et al.Theoretical and technological conception of the fluidization mining for deep coal resources[J].Journal of China Coal Society,2017,42(3):547-556.

[17]CUI J F,WANG W J,YUAN C.Application of stability analysis in surrounding rock control and support model of deep roadway[J].International Journal of Oil,Gas and Coal Technology,2022,29(2):180-192.

[18]王双明,申艳军,孙强,等.西部生态脆弱区煤炭减损开采地质保障科学问题及技术展望[J].采矿与岩层控制工程学报,2020,2(4):5-19.

WANG Shuangming,SHEN Yanjun,SUN Qiang,et al.Scientific issues of coal detraction mining geological assurance and their technology expectations in ecological fragile mining areas of Western China[J].Journal of Mining and Strata Control Engineering,2020,2(4):5-19.

[19]王双明,段中会,马丽,等.西部煤炭綠色开发地质保障技术研究现状与发展趋势[J].煤炭科学技术,2019,47(2):1-6.

WANG Shuangming,DUAN Zhonghui,MA Li,et al.Research status and future trends of geological assurance technology for coal green development in Western China[J].Coal Science and Technology,2019,47(2):1-6.

[20]WANG B,CUI C Q,ZHAO Y X,et al.Climate change mitigation in the coal mining industry:low-carbon pathways and mine safety indicators[J].Natural Hazards,2019,95,25-38.

[21]王双明,孙强,乔军伟,等.论煤炭绿色开采的地质保障[J].煤炭学报,2020,45(1):8-15.

WANG Shuangming,SUN Qiang,QIAO Junwei,et al.Geological guarantee of coal green mining[J].Journal of China Coal Society,2020,45(1):8-15.

[22]于海洋,许永彬,陈智明,等.双碳目标下煤炭深部流态化开采及前景[J].洁净煤技术,2023,29(1):15-32.

YU Haiyang,XU Yongbin,CHEN Zhiming,et al.Deep fluidized coal mining and its prospect under the target of carbon peak and carbon neutralization[J].Clean Coal Technology,2023,29(1):15-32.

[23]易同生,秦勇,周永峰,等.煤炭地下气化项目技术经济评价研究进展述评[J].煤田地质与勘探,2023,51(7):1-16.

YI Tongsheng,QIN Yong,ZHOU Yongfeng,et al.Research advances on the techno-economic evaluation of UCG projects[J].Coal Geology & Exploration,2023,51(7):1-16.

[24]潘月军.新形势下我国煤炭资源高效清洁利用途径分析[J].洁净煤技术,2023,29(S2):807-809.

PAN Yuejun.Analysis on the approaches of efficient and clean utilization of Chinas coal resources under the new situation[J].Clean Coal Technology,2023,29(S2):807-809.

[25]葛世荣.深部煤炭化学开采技术[J].中国矿业大学学报,2017,46(4):679-691.

GE Shirong.Chemical mining technology for deep coal resources[J].Journal of China University of Mining & Technology,2017,46(4):679-691.

[26]BAI B,QIANG L Y,ZHANG S S,et al.Influence of coal structure change caused by different pretreatment me-thods on Shengli lignite pyrolysis[J].Fuel,2023,332:126089.

[27]王双明,申艳军,孙强,等.“双碳”目标下煤炭开采扰动空间CO2地下封存途径与技术难题探索[J].煤炭学报,2022,47(1):45-60.

WANG Shuangming,SHEN Yanjun,SUN Qiang,et al.Underground CO2 storage and technical problems in coal mining area under the“dual carbon” target[J].Journal of China Coal Society,2022,47(1):45-60.

[28]孔令峰,东振,陈艳鹏,等.基于中深层煤原位清洁转化技术构建低碳能源生态圈[J].天然气工业,2022,42(9):166-175.

KONG Lingfeng,DONG Zhen,CHEN Yanpeng,et al.Construction of low-carbon energy ecosystem based on in-situ clean conversion technology of medium-deep coal[J].Natural Gas Industry,2022,42(9):166-175.

[29]刘峰,郭林峰,赵路正.双碳背景下煤炭安全区间与绿色低碳技术路径[J].煤炭学报,2022,47(1):1-15.

LIU Feng,GUO Linfeng,ZHAO Luzheng.Research on coal safety range and green low-carbon technology path under the dual-carbon background[J].Journal of China Coal Society,2022,47(1):1-15.

[30]卞正富,伍小杰,周跃进,等.煤炭零碳开采技术[J].煤炭学报,2023,48(7):2613-2625.

BIAN Zhengfu,WU Xiaojie,ZHOU Yuejin,et al.Coal mining technology with net zero carbon emission[J].Journal of China Coal Society,2023,48(7):2613-2625.

[31]王雙明,耿济世,李鹏飞,等.煤炭绿色开发地质保障体系的构建[J].煤田地质与勘探,2023,51(1):33-43.

WANG Shuangming,GENG Jishi,LI Pengfei,et al.Construction of geological guarantee system for green coal mining[J].Coal Geology & Exploration,2023,51(1):33-43.

[32]CHANG S Y,ZHUO J K,MENG S,et al.Clean coal technologies in China:Current status and future perspectives[J].Engineering,2016,2(4),447-459.

[33]王双明,申艳军,宋世杰,等.“双碳”目标下煤炭能源地位变化与绿色低碳开发[J].煤炭学报,2023,48(7):2599-2612.

WANG Shuangming,SHEN Yanjun,SONG Shijie,et al.Change of coal energy status and green and low-carbon development under the “dual carbon” goal[J].Journal of China Coal Society,2023,48(7):2599-2612.

[34]ZHONG C,DONG F L,GENG Y,et al.Toward carbon neutrality:The transition of the coal industrial chain in China[J].Frontiers in Environmental Science,2022,10:962257.

[35]谢和平,王金华,王国法,等.煤炭革命新理念与煤炭科技发展构想[J].煤炭学报,2018,43(5):1187-1197.

XIE Heping,WANG Jinhua,WANG Guofa,et al.New ideas of coal revolution and layout of coal science and technology development[J].Journal of China Coal Society,2018,43(5):1187-1197.

[36]谢和平,鞠杨,高明忠,等.煤炭深部原位流态化开采的理论与技术体系[J].煤炭学报,2018,43(5):1210-1219.

XIE Heping,JU Yang,GAO Mingzhong,et al.Theories and technologies for in-situ fluidized mining of deep underground coal resources[J].Journal of China Coal Society,2018,43(5):1210-1219.

[37]秦勇,王作棠,韩磊.煤炭地下气化中的地质问题[J].煤炭学报,2019,44(8):2516-2530.

QIN Yong,WANG Zuotang,HAN Lei.Geological problems in underground coal gasification[J].Journal of China Coal Society,2019,44(8):2516-2530.

[38]LI H Z,GUO G L,ZHA J F,et al.Research on the surface movement rules and prediction method of underground coal gasification[J].Bulletin of Engineering Geology and the Environment,2016,75:1133-1142.

[39]LAOUAFA F,FARRET R,VIDAL-GILBERT S,et al.Overview and modeling of mechanical and thermomechanical impact of underground coal gasification exploitation[J].Mitigation and Adaptation Strategies for Global Change,2016,21:547-576.

[40]张金华,张梦媛,陈艷鹏,等.煤炭地下气化现场试验进展与启示[J].煤炭科学技术,2022,50(2):213-222.

ZHANG Jinhua,ZHANG Mengyuan,CHEN Yanpeng,et al.Progresses and revelation of underground coal gasification field test[J].Coal Science and Technology,2022,50(2):213-222.

[41]MOCEK P,PIESZCZEK M,WIADROWSKI J,et al.Pilot-scale underground coal gasification(UCG)experiment in an operating Mine “Wieczorek” in Poland[J].Energy,2016,111:313-321.

[42]步学朋,忻仕河,王鹏,等.煤炭气化发展及应用中的热点问题探讨[J].洁净煤技术,2007,13(2):37-41.

BU Xuepeng,XIN Shihe,WANG Peng,et al.Discussion of the hotspot in the development and application of coal gasification[J].Clean Coal Technology,2007,13(2):37-41.

[43]邱立新,雷仲敏,周田君.洁净煤技术的评价方法研究——以煤炭气化技术的分析与评价为例[J].洁净煤技术,2006,12(1):5-8.

QIU Lixin,LEI Zhongmin,ZHOU Tianjun.Research on the evaluation method of clean coal technology:Taking the analysis and evaluation of coal gasification technology as an example[J].Clean Coal Technology,2006,12(1):5-8.

[44]MICHAEL GRecent developments and current position of underground coal gasification[J].Proceedings of the Institution of Mechanical Engineers,Part A:Journal of Power and Energy,2018,232(1):39-46.

[45]王双明,师庆民,王生全,等.富油煤的油氣资源属性与绿色低碳开发[J].煤炭学报,2021,46(5):1365-1377.

WANG Shuangming,SHI Qingmin,WANG Shengquan,et al.Resource property and exploitation concepts with green and low-carbon of tar-rich coal as coal-based oil and gas[J].Journal of China Coal Society,2021,46(5):1365-1377.

[46]马丽,段中会,杨甫,等.“双碳”背景下煤炭原位地下热解采油意义研究[J].中国煤炭地质,2022,34(4):5-7.

MA Li,DUAN Zhonghui,YANG Fu,et al.Study on the significance of coal in-situ underground pyrolytic oil production under carbon peaking and carbon neutrality background[J].Coal Geology of China,2022,34(4):5-7.

[47]SCHIFFRIN D J.The feasibility of in situ geological sequestration of supercritical carbon dioxide coupled to underground coal gasification[J].Energy & Environmental Science,2015,8(8):2330-2340.

[48]刘潇鹏.煤炭地下气化高温烧变围岩移动破坏机制研究[J].岩石力学与工程学报,2022,41(7):1512.

LIU Xiaopeng.Study on high temperature burnt surrounding rock movement and failure mechanism in underground coal gasification[J].Chinese Journal of Rock Mechanics and Engineering,2022,41(7):1512.

[49]钱鸣高,缪协兴,许家林.资源与环境协调(绿色)开采[J].煤炭学报,2007,32(1):1-7.

QIAN Minggao,MIAO Xiexing,XU Jialin.Green mining of coal resources harmonizing with environment[J].Journal of China Coal Society,2007,32(1):1-7.

[50]钱鸣高.加强煤炭开采理论研究 实现科学开采[J].采矿与安全工程学报,2017,34(4):615.

QIAN Minggao.Strengthening theoretical research on coal mining to achieve scientific mining[J].Journal of Mining & Safety Engineering,2017,34(4):615.

[51]SHI J H,FENG Z C,ZHOU D,et al.Analysis of fracture structure evolution of bituminous coal subjected to in situ steam pyrolysis combined with in situ micro-computed tomography technology[J].Energy Sources,Part A:Recovery,Utilization,and Environmental Effects,2023,45(2):6010-6026.

[52]JU Y,ZHU Y,ZHOU H W,et al.Microwave pyrolysis and its applications to the in situ recovery and conversion of oil from tar-rich coal:An overview on fundamentals,methods,and challenges[J].Energy Reports,2021(7):523-536.

[53]郭威,刘召,孙友宏,等.富油煤原位热解开发地下体系封闭方法探讨[J].煤田地质与勘探,2023,51(1):107-114.

GUO Wei,LIU Zhao,SUN Youhong,et al.Discussion on underground system sealing methods in in-situ pyrolysis exploitation of tar-rich coal[J].Coal Geology & Exploration,2023,51(1):107-114.

[54]姚强岭,李学华,朱柳,等.煤岩体地质力学参数原位测试系统开发与应用[J].中国矿业大学学报,2019,48(6):1169-1176.

YAO Qiangling,LI Xuehua,ZHU Liu,et al.Development and application of in-situ testing system for geomechanical parameters of coal and rock mass[J].Journal of China University of Mining & Technology,2019,48(6):1169-1176.

(责任编辑:刘洁)

猜你喜欢

煤炭资源原位气化
小型垃圾热解气化焚烧厂碳排放计算
未培养微生物原位培养技术研究进展
保护性开发利用高铝煤炭资源的必要性及相关建议
安徽省煤炭资源特征分析
气化装置在线倒炉及优化改进
粉煤加压气化新局难破
BAMO-THF共聚醚原位结晶包覆HMX
新疆《煤炭资源开采天然放射性核素限量》标准评述
煤炭资源的合理开发与利用
驰放气在气化磨煤系统中的回收利用