APP下载

纸质文物的热裂解气相色谱-质谱应用研究

2024-03-15胡红东刘亚昭魏书亚

文物保护与考古科学 2024年1期
关键词:竹纸笺纸皮纸

姚 娜,王 珊,郭 宏,胡红东,刘亚昭,魏书亚

(1.中国文化遗产研究院,北京 100029;2.北京科技大学科技史与文化遗产研究院,北京 100083;3.婺源博物馆,江西上饶 333200;4.北京停云馆文化投资有限公司,北京 100102)

0 引 言

中国作为传统手工纸的发源地,纸类丰富,比较典型的手工纸有麻纸、竹纸、宣纸、桑皮纸和构皮纸等。蜡笺纸是用宣纸、桑皮纸或构皮纸等手工纸进行加工(加填、施蜡和染色等)而成的一种名贵的纸张,具有表面光滑、抗水性强、易于书写和防虫等优势[1]。唐代蜡笺纸盛行,明清时期是其发展的高峰时期,现存很多皇帝诏书和书法作品都是在蜡笺纸上书写的[2]。蜡笺纸文物是纸质文物保护中极为重要的部分,现存纸质文物由于内部因素(纸张成分、残留酸或碱、添加剂、金属离子等)和外部因素(温湿度的剧变、光的照射、有害气体的侵蚀、昆虫的蛀蚀、微生物的滋生、机械的磨损和撕裂等)的共同作用而发生变质或损坏[3]。长久保存纸质文物的关键是了解其材质和工艺,如纸张纤维原料、纸张加工工艺以及纸张上书写或印刷材料信息等。纸质文物常见的分析手段有赫兹伯格(Herzberg)染色法[4-6]、光谱技术[7-9]及扫描电子显微镜-能谱法[10-11]等,但对于老化严重且组分复杂的纸质文物(如蜡笺纸文物、拓片文物等)的材料信息识别比较困难。不同种类植物有其特殊的生物化学特征物质。纸张主要由植物纤维制成,植物纤维在造纸过程后仍保留其特殊化学物质。因此,分析纸张的化学成分,根据其特有化学物质可以区分造纸用的植物纤维原料。热裂解气相色谱-质谱法(Py-GC/MS)具有操作简单、快速、需要样品量少等优势,已被成功应用于文物中漆[12]、蛋白质类胶结材料[13-15]及蜡[16-17]等有机混合物的化学成分鉴别中。近年来,Py-GC/MS[18-20]及二维Py-GCxGC/MS[21-22]技术被应用于构皮纸、三桠皮纸和雁皮纸等的研究中,结果表明纸张中植物纤维的三萜类特征化合物和类固醇混合物的结构信息可以被用于鉴别纤维原料。

蜡笺纸文物主要由纸张纤维、染料、胶结物及蜡等材料混合组成,对其材料信息识别较为困难。为了准确鉴别纸质文物尤其是成分复杂的蜡笺纸文物的材料信息,本研究将Py-GC/MS技术应用到中国传统的四类典型手工纸(竹纸、麻纸、桑皮纸和构皮纸)的分析中,并将此分析结果应用于一副清代蜡笺纸对联的研究中,不仅确定了中国传统纸质文物的纸纤维来源,而且同时鉴别了纸质文物上的蜡、胶结物及染料等信息。对纸质文物材料信息的识别可为其保护与修复提供科学依据。

1 样品、仪器与方法

1.1 样品

1) 现代传统手工纸。选用中国传统常见的四类手工纸——麻纸、竹纸、构皮纸和桑皮纸:麻纸包含山西平阳麻纸和山西好古麻纸;竹纸有江西土纸和浙江富阳元书竹纸;构皮纸包含贵州贞丰构皮纸和贵州丹寨构皮纸;桑皮纸有安徽潜山桑皮纸和河北迁安桑皮纸。

2) 纸质文物样品。一副清代李之锴行书七言对联(现收藏于婺源博物馆),取画心部位少许蜡笺纸作为样品。

1.2 仪器

热裂解气相色谱-质谱仪由日本前线试验室[Frontier Lab] 的EGA/PY-3030D热裂解仪和日本岛津公司[Shimadzu]的GCMS-QP2010Ultra气相色谱-质谱仪组合而成。

热裂解仪参数:热裂解温度600℃,热裂解时间10 s,注射器温度250℃,注射器和色谱仪的联结接口温度320℃。

气相色谱-质谱条件:色谱柱SLB-5MS(5% diphenyl/95% dimethyl siloxane),长30 m,内径0.25 mm,膜厚0.25 μm(Supelco)。通过日本岛津分析软件(Shimadzu GCMS Real Time)控制GC/MS。色谱柱所在烘箱的初始温度是40℃,保持3 min;然后以5℃/min的速度升高到325℃并保持5 min。载气:氦气。柱前压力15.4 kPa,流速0.6 mL/min,1∶10分流率。恒定流速。

质谱仪电离电压70 eV;扫描0.5 s,质荷比(m/z)为50到750。

气相色谱和质谱仪的连接口温度和电离室的温度分别是280℃和200℃。

1.3 方法

热裂解气相色谱-质谱分析:取0.2 cm×0.2 cm大小样品放入样品杯,使用自动进样器进样,参数详见1.2部分。用NIST14和NIST14s质谱数据库来鉴定分离后的化合物。

碘-氯化锌试剂配制[23]:1)氯化锌20 g,蒸馏水10 mL,配制成氯化锌溶液;2)碘化钾2.1 g,碘0.1 g,蒸馏水5 mL,充分研磨和溶解后配制碘/碘化钾溶液;3)将上述两种溶液混合均匀,于黑暗处静置12~24 h,取上清液,即为碘-氯化锌试剂。

传统纤维原料鉴别(Herzberg染色法):取少许纸样于洁净试管中,加少量蒸馏水,加热到60℃左右,保持2 min,使纤维软化;然后用镊子取纤维试样少许,置于载玻片上,滴两滴碘-氯化锌染色剂,用长针使纤维在染色剂中分散均匀,然后盖上盖玻片,利用纤维测量仪观察纤维的形态特征及染色情况。

2 结果与讨论

2.1 四类传统手工纸的纤维原料分析

为避免出现偶然性结果,每类手工纸均选取不同产地的纸张分别进行分析(样品信息见1.1部分)。不同地方生产的同类纸张的Py-GC/MS检测结果相似(图1),四类手工纸所对应的化合物相关信息如表1所示。从中可以明显看出,四类手工纸的Py-GC/MS检测结果中均有呋喃酮(表1中的化合物4和5)、糠醛(表1中的化合物11)和糖(表1中的化合物9和15)等物质,为纸张中纤维素和半纤维素的裂解产物[19]。四类手工纸的Py-GC/MS检测结果之间的差异主要是:竹纸检测到大量苯酚类物质,分别是图1中的峰10、12、13、14和16,分别对应的化合物为(乙烯氧基)-苯、2-甲氧基-4-乙烯基苯酚、2,6-二甲氧基-苯酚、2-甲氧基-4-(1-丙烯)-苯酚和2,6-二甲氧基-4-(2-丙烯基)-苯酚;桑皮纸与构皮纸在保留时间52~65 min之间出现了大量的峰,主要为β-香树脂醇(表1中的化合物19)、α-香树脂醇(表1中的化合物20)和豆甾-3,5-二烯(表1中的化合物21)等三萜物质,这些大分子三萜化合物是桑皮纸和构皮纸的特征化合物,而麻纸未检测出此类特征物质。

(a1)浙江富阳元书竹纸;(a2)江西土竹纸;(b1)山西平阳麻纸;(b2)山西好古麻纸;(c1)安徽潜山桑皮纸;(c2)河北迁安桑皮纸;(d1)贵州贞丰构皮纸;(d2)贵州丹寨构皮纸

根据化学结构对竹纸中检测出的苯酚类化合物进行分类:2-甲氧基-4-乙烯基苯酚和2-甲氧基-4-(1-丙烯)-苯酚属于愈创木基型木质素裂解产物;2,6-二甲氧基-4-(2-丙烯基)-苯酚和2,6-二甲氧基-苯酚属于紫丁香基型木质素裂解产物。木质素是由苯丙烷结构单元构成,有愈创木基、紫丁香基和对羟苯基三种基本结构单元[24]。紫丁香基和愈创木基型木质素本身比对羟苯基型木质素难以去除[25],这是竹纸中木质素含量高的原因。木质素在化学结构上极不稳定,容易受酸、碱和光照影响变黄发脆[26]。根据纸质文物修复经验,竹纸耐久性不如皮纸,应与竹纸中的木质素和皮纸中三萜类物质相关。

由于桑皮纸和构皮纸的纤维同属于桑科类植物纤维,应用Py-GC/MS方法不容易区分。为了进一步区分桑皮纸和构皮纸的纤维,应用传统纤维原料鉴别方法(Herzberg染色法,具体见1.3部分)对其纤维形态特征进行观察,同时对竹纸和麻纸的纤维形态特征也进行观察比较,结果如图2所示,四种纤维的形态特征各不相同:竹纸纤维僵直、挺硬、端部尖削,有薄壁细胞和导管,多数纤维与碘-氯化锌试剂作用后显黄绿色(图2a);麻纸纤维在碘-氯化锌试剂作用下呈现红棕色,表面呈若干纵向条纹,壁上有明显的横节纹,端部有分丝帚化现象,纤维外壁上很少看到胶衣(图2b);桑皮纸纤维与碘-氯化锌试剂作用后呈现红棕色,有横节纹,纤维外壁有透明的胶质膜(胶衣),纤维或细胞腔中附有无定型的黄色蜡状物(图2c);构皮纸纤维与碘-氯化锌试剂作用后为红棕色,有明显横节纹,纤维外壁有透明薄膜(胶衣),与桑皮纤维不同的是构皮纤维中有大量草酸钙晶体(图2d)。

图2 四种传统手工纸的纤维形貌图(Herzberg染色法)

2.2 清代李之锴行书七言对联蜡笺纸文物分析

在超景深显微镜下观察婺源博物馆收藏的一副清代李之锴行书七言对联蜡笺纸文物(图3),结果如图4所示,对联画心纸的质地细腻、色彩艳丽、光滑细润,为橘黄色的蜡笺纸。文物边缘有破损,整体保存较好,应与蜡笺纸的特殊材质相关。

图3 清李之锴行书七言对联

图4 清李之锴对联蜡笺纸画心部分显微照片

应用Py-GC/MS方法(仪器和方法见1.2和1.3部分)对蜡笺纸样品进行分析,结果如图5所示,对应的化合物见表2。与四种典型传统手工纸的Py-GC/MS分析结果对比:蜡笺纸中也有呋喃(图5中的标记物3和4)、糠醛(图5中的标记物7)和糖(图5中的标记物9、10和11)等化合物,均为纸张纤维素和半纤维素的裂解产物[19];另外,蜡笺纸热裂解产物中有和桑皮纸、构皮纸相同的β-香树脂醇和α-香树脂醇(图5中的标记物21和22)等大分子三萜物质,表明蜡笺纸所用的纸张是由桑皮或构皮类纤维原料制造的。

表2 清李之锴对联蜡笺纸的Py-GC/MS主要热裂解产物

图5 清李之锴对联蜡笺纸的Py-GC/MS总离子流图

与四种典型传统手工纸的Py-GC/MS分析比对不同之处是:蜡笺纸的Py-GC/MS检测结果有吡咯(图5中的标记物1)和吡咯衍生物(图5中的标记物12和13)、生物碱(图5中的标记物15、17和18)、脂肪酸(图5中的标记物14和16)和醇(图5中的标记物19和20)等物质的存在。依据文献[27],检测出吡咯及其衍生物可说明画心纸上有动物胶存在——装裱过程中使用胶结材料中有动物胶。文物中的胶结材料依据其化学成分可划分为蛋白质类(动物胶、蛋清)、脂类(干性油、动物油脂、天然树脂)和糖类(碳水化合物如淀粉)等[28]。书画装裱中常用的胶粘剂是淀粉和动物胶[29]。样品中检测出的生物碱包含5,10-二乙氧基-2,3,7,8-四氢-1H,6H-双吡咯[1,2-a:1’,2’-d]吡嗪、N-乙酰基-3-甲基-1,4-二氮杂二环[4.3.0]壬烷-2,5-二酮和2,3,6,7,8,8a-六氢化-1,4-二氧吡咯[1,2-a]吡嗪-3-丙酰胺物质,它们的选择离子均为70m/z,推测应为蜡笺纸中黄色植物染料的裂解特征物。黄色植物染料如黄檗、黄连等色素主要成分是生物碱类物质[30]。长链脂肪酸和醇类物质是蜡的主要特征物质[17],为了进一步确认样品中蜡的热裂解特征物及蜡的类别,使用四甲基氢氧化铵(TMAH)试剂处理样品后进行分析,其结果如图6所示,对应主要化合物见表3。从中可以看出,从碳十四至碳二十八的碳烃脂肪酸甲酯(图6中的标记物12、13、15、17、20、21、23和25)、碳烯脂肪酸甲酯(图6中的标记物14和16)、醚(图6中的标记物24)和醇(图6中的标记物22)等物质存在,表明样品中确实有蜡存在。由于甲基化试剂作用,检测出的脂肪酸甲酯和醚类物质对应在样品中应为脂肪酸和醇类物质。因此,样品中检测到最高酸是碳二十八脂肪酸,含量最高的酸为棕榈酸(6.18%),而二十四烷酸、二十六烷酸和二十八烷酸的含量较低,分别为0.4%、0.43%和0.1%,依据文献[16-17],蜡笺纸中使用的蜡应为蜂蜡。

表3 清李之锴对联蜡笺纸的THM-Py-GC/MS主要热裂解产物

图6 清李之锴对联蜡笺纸的THM-Py-GC/MS总离子流图

为了进一步确认蜡笺纸纤维类别,应用Herzberg染色法对其进行分析,结果如图7和图8所示。从中可以看出,多数纤维与碘-氯化锌试剂作用后呈红棕色,有横节纹,纤维外壁上有层透明的胶质膜(胶衣),纤维端部帚化现象不明显,符合上文中桑皮纸纤维特征。此外,蜡笺纸中有少量纤维形状细长,端部尖锐,有锯齿细胞,部分纤维与碘-氯化锌作用后呈蓝紫色,其特征与稻草类纤维相似[31]。因此,可判断画心纸是由桑皮和少量稻草类纤维原料混合而成的。

图7 清李之锴对联蜡笺纸画心纸桑皮类纤维形态

图8 清李之锴对联蜡笺纸画心纸草类纤维形态

3 结 论

本研究应用Py-GC/MS方法对中国传统手工纸及清代李之锴的一副蜡笺纸对联文物样品进行分析,结果表明Py-GC/MS方法不仅可以用来区分竹纸、麻纸和皮纸(桑皮纸和构皮纸),而且可以同时检测出纸质文物的其他材料信息(如蜡笺纸中蜡、染料及装裱所用的胶结材料等)。文物材料信息识别可为文物保护与修复提供科学依据。主要结论包含以下两点。

1) 四类传统手工纸的区分:竹纸中含有愈创木基和紫丁香基型木质素;皮纸中有大分子三萜类特征化合物(如β-香树脂醇、α-香树脂醇和豆甾-3,5-二烯);而麻纸中未检测出此类特征物质。桑皮纸和构皮纸纤维同属于桑科类植物纤维,根据成分分析难以区分,可利用传统Herzberg染色法做区分。

2) 与中国传统典型的四类手工纸的化学成分及纤维形态特征相比对,确定清代李之锴对联所用蜡笺纸的纤维原料是桑皮和少量稻草类纤维的混合;吡咯及吡咯衍生物表明在装裱过程中使用的胶结物有动物胶;检测出的生物碱类物质表明蜡笺纸可能是由含有生物碱类色素的黄色植物染料染色而成的;另外,应用THM-Py-GC/MS方法对蜡笺纸进行分析,检测出长链脂肪酸和醇类物质,尤其是高含量的棕榈酸说明蜡笺纸中使用的蜡为蜂蜡。

猜你喜欢

竹纸笺纸皮纸
拓印之美
富春回望
——纸帘灯系列
[法]蒋友仁《中华造纸艺术画谱》中的造竹纸图(之晾干纸)
屏风的历史沿革及纸质屏风的复原工艺研究
鲁迅对笺纸情有独钟
无声的蜕变
美之天然皮纸制作技艺
用手撕出来的建筑模型
略施粉黛
从拍卖古籍看竹纸古籍的种类与价格*