基于植被指数融合天山假狼毒地上生物量的估测
2024-02-22侯正清颜安谢开云袁以琳夏雯秋肖淑婷张振飞孙哲
摘"要:【目的】""研究多源数据估算天山假狼毒地上生物量(AGB)的能力。
【方法】""采用搭载可见光和多光谱传感器的无人机平台采集盛花期与结实期信息,获取可见光植被指数、多光谱植被指数及两者相融合的植被指数,分别以多元线性回归(MLR)、逐步线性回归(SMLR)、随机森林回归(RF)建立单一植被指数与融合植被指数的AGB估测模型,采用决定系数(R2)、调整后决定系数(R2adj)和均方根误差(RMSE)评价估算模型。
【结果】""(1)近红外和红边波段组合的植被指数对天山假狼毒AGB较为敏感,可以较好的估算天山假狼毒的AGB。(2)在不同生育期中,盛花期估算效果最佳;基于融合植被指数的多元线性逐步回归估测模型中拟合效果最佳,模型的R2、R2adj、RMSE为0.837、0.831和7.357。(3)与基于单一类型的植被指数估测模型相比,基于融合植被指数建立的估测模型拟合精度最佳、稳定性更好。
【结论】""融合植被指数可有效增加光谱信息,提高模型预测精度。
关键词:""无人机;天山假狼毒地上生物量;植被指数;可见光;多光谱
中图分类号:"S812""""文献标志码:"A""""文章编号:"1001-4330(2024)11-2787-10
0"引 言
【研究意义】近年来,新疆伊犁河谷的天然草地生产力下降、植被覆盖度降低、毒害草大量繁殖。其中,天山假狼毒作为退化指示植物之一,其再生能力强、抗旱抗寒力极强,在昭苏县天然草地大量繁殖,对当地的畜牧业生产和草原生态平衡均造成影响[1-2]。在我国天然草地退化分级指标中,草地退化指示植物种地上产草量相对增加率是分级的重要指标之一,目前对于退化指示植物的研究大多集中于对土壤与植被理化性质的影响[3-4]、空间分布与防控[5-7]、高精度分类识别[8-9]等方面,而对于其地上生物量研究较少。因此,估算天山假狼毒地上生物量(above ground biomass,AGB)可对草地退化程度的分级有重要意义。【前人研究进展】传统植物AGB测量方法需要田间采样和室内测量,具有破坏性和滞后性,不利于大范围农业生产应用[10]。近年来,无人机遥感技术的发展为精准农业提供了重要支持[11]。相比于无人机搭载的高光谱相机或雷达传感器,可见光和多光谱相机具有价格低廉、续航时间长、重量轻、操作便捷且后续对影像处理难度低的特点,已在监测农作物长势及估产[12-17]、病虫害监测[18-19]、杂草识别[20-22]有诸多研究。因可见光与多光谱植被指数与AGB具有较好相关性已被广泛用于AGB估算[23-25]。随着无人机遥感技术迅猛发展,将多传感器的多源数据相结合或融合扩大输入特征的信息量,构建AGB的估测模型,可进一步提高估测模型的精度和稳定性,已成为目前的研究热点[26-27]。【本研究切入点】天山假狼毒(Diarthron tianschanicum)作为退化指示植物之一,其生长状况可反映草地退化程度。基于无人机可见光和多光谱影像计算可见光和多光谱植被指数,将可见光植被指数与多光谱植被指数相结合估测背景复杂中的单一植被或退化指示植物AGB估算研究鲜见报道。此外,现有研究多估算一个时期的,缺乏对天山假狼毒关键生育期AGB估算的研究。【拟解决的关键问题】基于无人机遥感影像获取关键生育期可见光植被指数、多光谱植被指数及融合植被指数,结合地面实测值筛选出与AGB相关的敏感变量,利用多元线性回归(MLR)、逐步回归(SMLR)和随机森林(RF)方法,构建出关键生育期天山假狼毒AGB估测模型,对比分析不同类型植被指数估算AGB值的精度,为估测天山假狼毒AGB提供参考。
1"材料与方法
1.1"材 料
1.1.1"研究区概况
试验地位于新疆伊犁哈萨克自治州昭苏县马场(43°07′~43°09′N,80°59′~81°01′E),海拔1 983~1 990 m,属大陆性温带山区半干旱半湿润冷凉气候,4月下旬至6月上旬雨水充沛。所处地段为山地草甸草地。由于过度放牧以及气候变化等因素,不可食牧草与杂类草比例上升,尤其是毒害草天山假狼毒成为群落的优势种,其重要值达0.205。
1.1.2"地面实测数据获取
于2023年盛花期(6月下旬)与结实期(7月下旬)采集天山假狼毒AGB数据,各生育期分别采集72个1 m × 1 m样方。测量每个样方中植被的种类、株高、覆盖度和地上生物量。株高使用卷尺测量(cm),盖度使用样方框法测定(%),地上生物量使用烘干称重法获取干重(g)。
1.1.3"无人机遥感影像获取及预处理
选择太阳光照强度稳定,晴朗无云条件下,与采集地面实测数据同期,采用可见光与多光谱无人机获取可见光与多光谱影像。可见光相机型号为FC_6310,其具备2 000×104有效像素,图像分辨率为5 472像素×3 648像素,焦距9 mm,包含红、绿和蓝通道,可获得高空间分辨率数码影像。多光谱相机包含红、绿、蓝、红边和近红外5个波段,单个传感器有效像素208×104(总像素212×104),内嵌RTK,无需布设基站,可获得较高质量的多光谱影像。无人机飞行航向重叠度、旁向重叠度、主航线角度分别为80%、75%和90°,飞行高度为20 m,使用大疆智图软件进行图像拼接处理。
1.2"方 法
1.2.1"可见光与多光谱植被指数选取
基于前人研究基础上选取21种可见光植被指数与23种多光谱植被指数,使用皮尔逊相关性筛选出相关性较高的可见光与多光谱各10种植被指数,探究其与天山假狼毒AGB关系。对提取的天山假狼毒可见光与多光谱单通道影像灰度进行归一化处理,降低天空光对影像灰度的影响[28]。可见光影像R、G、B通道进行归一化后定义为r、g、b,多光谱影像R、G、B、RE、NIR通道进行归一化后定义为m1、m2、m3、m4和m5。表1
1.2.2"模型构建及验证
采用多元线性回归(MLR)、逐步回归(SMLR)和随机森林回归(RF)建模方法分别对可见光植被指数、多光谱植被指数和多源数据融合植被指数估测天山假狼毒AGB。借助R软件将获取天山假狼毒AGB随机分为两部分,70%样本数据(50个)用于AGB的估算模型,30%样本数据(22个)用于对估算模型进行精度验证。选用决定系数(coefficient of determination,R2)、调整后决定系数(Adjusted coefficient of determination,R2adj)以及均方根误差(Root Mean Square Error,RMSE),作为评价指标。R2、R2adj越大,RMSE越小提取效果越好。
R2="ni=1(Xi-X")2(Yi-Y")2
nni=1(Xi-X")2ni=1(Yi-Y")2".
"(1)
RMSE=""ni=1(Yi-X")2"n""."(2)
式中,Xi、X"表示实测值、实测值均值,Yi、Y"表示提取值、提取值均值,n为样本数量。
2"结果与分析
2.1"可见光植被指数与天山假狼毒AGB相关性
研究表明,盛花期相关性(|R|=0.633~0.313)均达到显著和极显著水平,优于结实期相关性(|R|=0.371~0.333),盛花期AGB相关系数大于0.4的有3个,其中与天山假狼毒AGB相关性最佳的植被指数为RGRI,呈正相关,其值为0.633(Plt;0.01)。表2
2.2"多光谱植被指数与天山假狼毒AGB相关性
研究表明,在盛花期(|R|=0.660~0.407)与结实期(|R|=0.560~0.342)相关性均达到极显著水平(Plt;0.01),盛花期10种植被指数相关系数均大于0.4,最高为GRDVI,呈正相关,其值为0.660(Plt;0.01)。但同一植被指数在不同生长期与天山假狼毒AGB的相关性表现有所差异,如,结实期GCI相关性最高,|R|为0.566,呈正相关;但盛花期相关性则不高,|R|为0.439,呈负相关。表3
2.3"融合植被指数与天山假狼毒AGB相关性
研究表明,在可见光植被指数和多光谱植被指数中选取3种与天山假狼毒AGB相关性最高的植被指数,分别为RGRI、VARI、EXR和GRDVI、MNLI、NLI。在盛花期9种融合后植被指数|R|均大于0.5,达到0.01显著性水平,范围在0.768~0.517,由大到小依次为RGRI×GRDVI、RGRI×MNLI、EXR×MNLI、VARI×MNLI、VARI×NLI、RGRI×NLI、EXR×NLI、EXR×GRDVI、VARI×GRDVI,对应|R|为0.768、0.538、0.537、0.535、0.535、0.534、0.533、0.520和0.517;在结实期9种融合后植被指数达到0.01显著性水平,|R|范围在0.582~0.348。表4
2.4"基于可见光植被指数估测天山假狼毒AGB模型拟合精度"
研究表明,MLR模型在盛花期的R2、R2adj、RMSE分别为0.711、0.645和10.587;SMLR模型在盛花期的R2、R2adj、RMSE分别为0.697、0.678和10.591;RF模型在盛花期的R2、R2adj、RMSE分别为0.720、0.685和8.263。表5
2.5"基于多光谱植被指数估算天山假狼毒AGB模型拟合精度"
研究表明,在盛花期中以RF模型拟合精度最高,R2、R2adj、RMSE分别为0.794、0.779和7.318。MLR模型R2、R2adj、RMSE分别为0.804、0.753和8.876。SMLR模型R2、R2adj、RMSE分别为0.763、0.747和8.988。
2.6"融合植被指数估算天山假狼毒AGB模型拟合精度"
研究表明,筛选出与天山假狼毒AGB相关性最优的两类植被指数后,以相乘的方法融合,最终以9种参数作为自变量进行建模。在各生育期之间,3种模型的R2、R2adj较单一类型的植被指数模型均有所提高,RMSE均有所下降。盛花期MLR模型R2、R2adj、RMSE分别为0.844、0.809和7.821,SMLR模型R2、R2adj、RMSE分别为0.837、0.831和7.357,RF模型R2、R2adj、RMSE分别为0.831、0.820和8.054。表7
2.7"天山假狼毒AGB估测模型预测精度
研究表明,在盛花期,可见光植被指数建立的模型预测精度R2在0.671~0.601、R2adj在0.581~0.649、RMSE在10.591~12.306;多光谱植被指数建立的模型预测精度为R2在0.601~0.713、R2adj在0.581~0.654、RMSE在10.074~10.714;融合植被指数建立的模型预测精度为R2在0.777~0.836、R2adj在0.763~0.828、RMSE在7.127~9.250。
结实期可见光植被指数建立的模型预测精度R2在0.223~0.350、R2adj在0.184~0.318、RMSE在9.083~12.693;多光谱植被指数建立的模型预测精度为R2在0.472~0.543、R2adj在0.442~0.520、RMSE在7.430~10.910;融合植被指数建立的模型预测精度为R2在0.577~0.648、R2adj在0.557~0.630、RMSE在7.054~8.873。图1~3
3"讨 论
3.1"植被指数与天山假狼毒AGB相关性的讨论
利用遥感技术进行作物长势信息的监测是精准农业研究的热点[12, 14-17, 29]。基于天山假狼毒无人机可见光和多光谱影像分析了可见光植被指数、多光谱植被指数在关键生育期与AGB之间的关系,其中单个可见光植被指数RGRI、VARI、EXR与AGB值具有较高的相关性,多光谱植被指数中GRDVI、MNLI、NLI与AGB具有较高的相关性,融合后9种植被指数提升单一植被指数稳定性;因天山假狼毒为植被的一种,所以具有与植被相似的光谱特征,在盛花期尤为对在近红外波段敏感具有较高反射率形成高反射平台,与前人的研究结果基本一致[30-32]。
3.2"3种回归模型拟合与预测的讨论
与结实期相比,盛花期天山假狼毒粉白花与其他牧草、裸地光谱差异最大,其AGB模型精度最高,以此时期为例,基于单一植被指数估测天山假狼毒AGB模型拟合精度,结果表明,RF拟合精度gt;SMLR拟合精度gt;MLR拟合精度;基于融合植被指数估测天山假狼毒AGB模型拟合精度,SMLR拟合精度gt;RF拟合精度gt;MLR拟合精度,非线性RF模型性能优于SMLR方法,但天山假狼毒AGB拟合与预测精度并不高,此研究结果与杭燕红等[26]采用SMLR模型精度最高结论一致。原因是RF模型通常需要更大的数据集来产生准确的预测,而研究中数据量不够,或由于数据本身差异性,数据中包含噪声,RF模型可能更容易受到这些噪声的干扰,而多元逐步回归通常对噪声数据更加鲁棒。
3.3"单一植被指数与融合植被指数估测模型
在任意时期融合植被指数模型比单一类型的植被指数模型在预测精度和稳定性上有明显提高,其中,融合植被指数AGB估测模型(R2adj=0.809~0.831,RMSE=7.357~8.054)>多光谱植被指数AGB估测模型(R2adj=0.747~8.988,RMSE=7.318~8.988)>RGB植被指数AGB估测模型(R2adj=0.645~0.685,RMSE=8.263~10.591);模型精度验证中,融合植被指数AGB估测模型(R2adj=0.763~0.828,RMSE=7.127~9.250)>多光谱植被指数AGB估测模型(R2adj=0.708~0.742,RMSE=10.041~10.714)>RGB植被指数AGB估测模型(R2adj=0.581~0.654,RMSE=10.591~12.306),表明不同波段反射率对天山假狼毒AGB具有差异性需综合考虑不同波段信息,并发现估算模型精度整体上高于验证模型,因此将两类相关性较高的植被指数相结合,可以提供更全面、准确、精细的植被指数信息,与前人研究结果相一致[27, 29]。
4"结 论
4.1
在近红外、红波段的植被指数,如RGRI、VARI、EXR、GRDVI、MNLI、NLI与天山假狼毒AGB的相关性较强。在近红外和红边波段组合的植被指数对天山假狼毒AGB较为敏感,选用此波段进行AGB估算较优。
4.2
在不同生育期中以盛花期反演效果最佳,3种建模方法的拟合精度均高于其他生育期。在盛花期中,基于融合植被指数的多元线性逐步回归估测模型中拟合效果最佳,模型的R2、R2adj、RMSE为0.837、0.831和7.357。
4.3"""与基于单一类型的植被指数估测模型相比,基于融合植被指数建立的估测模型拟合精度最佳、稳定性更佳。
参考文献"(References)
[1]"李宏, 陈卫民, 陈翔, 等.新疆伊犁草原毒害草种类及其发生与危害[J].草业科学, 2010, 27(11): 171-173.
LI Hong, CHEN Weimin, CHEN Xiang, et al.Poisonous weed species and their harmfulness in the grassland of Yili regions, Xinjiang Uygur Autonomous Region of China[J].Pratacultural Science, 2010, 27(11): 171-173.
[2] 张鲜花, 安沙舟, 王显瑞, 等.白喉乌头种群空间分布格局初步研究[J].草地学报, 2012, 20(3): 428-433.
ZHANG Xianhua, AN Shazhou, WANG Xianrui, et al.Spatial distribution patterns of Aconitum leucostomum[J].Acta Agrestia Sinica, 2012, 20(3): 428-433.
[3] 牛琼梅, 单贵莲, 罗钦, 等.毒害草入侵扩散对滇西北亚高山草甸土壤微生物多样性的影响[J].草地学报, 2023, 31(7): 1996-2004.
NIU Qiongmei, SHAN Guilian, LUO Qin, et al.Effect of invasion and diffusion of poisonous weeds on soil microbial diversity in subalpine meadow in northwest Yunnan[J].Acta Agrestia Sinica, 2023, 31(7): 1996-2004.
[4] 王宏生, 宋梅玲, 王玉琴, 等.不同恢复措施对黄帚橐吾及毒害草型退化草地群落的影响[J].中国草地学报, 2022, 44(4): 32-39.
WANG Hongsheng, SONG Meiling, WANG Yuqin, et al.Effects of different restoration methods on Ligularia virgaurea and toxic weed dominated degraded grassland community[J].Chinese Journal of Grassland, 2022, 44(4): 32-39.
[5] 吕绍伦, 赵阳, 卢吉瑞, 等.伊犁州毒草害空间分布特征及防治[J].农村经济与科技, 2022, 33(3): 24-27.
LYU Shaolun, ZHAO Yang, LU Jirui, et al.Spatial distribution characteristics and control of poisonous weeds in Yili Prefecture[J].Rural Economy and Science-Technology, 2022, 33(3): 24-27.
[6] 杨晨, 沙日扣, 苏日拉格, 等.中国天然草原毒害草种类分布、毒性及防控与利用研究进展[J].家畜生态学报, 2022, 43(11): 88-96.
YANG Chen, SHA Rikou, SU Rilage, et al.Research progress on distribution, toxicity, control and utilization of poisonous grass species in natural grassland of China[J].Journal of Domestic Animal Ecology, 2022, 43(11): 88-96.
[7] 岳方正, 李璇, 杨鼎, 等.我国主要草原有害生物防治指标制定与分析[J].草业科学, 2022, 39(9): 1773-1781.
YUE Fangzheng, LI Xuan, YANG Ding, et al.Establishment and analysis of key pest control indicators in grasslands in China[J].Pratacultural Science, 2022, 39(9): 1773-1781.
[8] 范宏, 刘素红, 陈吉军, 等.基于深度学习的白喉乌头与牧草高精度分类研究[J].江苏农业科学, 2021, 49(12): 173-180.
FAN Hong, Liu Suhong, Chen Jijun, et al.Study on high-precision classification of Aconitum leucostomum Worosch and pasture based on deep learning[J].Jiangsu Agricultural Sciences, 2021, 49(12): 173-180.
[9] 梁俊欢.基于无人机影像和深度学习方法的白喉乌头识别研究[D].乌鲁木齐: 新疆农业大学, 2022.
LIANG Junhuan."Recognition of Aconitum Leucostomum Based on UVA Image and Deep Learning Method[D].Urumqi: Xinjiang Agricultural University, 2022.
[10] 王晗, 向友珍, 李汪洋, 等.基于无人机多光谱遥感的冬油菜地上部生物量估算[J].农业机械学报, 2023, 54(8): 218-229.
WANG Han, XIANG Youzhen, LI Wangyang, et al.Estimation of winter rapeseed above-ground biomass based on uav multi-spectral remote sensing[J].Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(8): 218-229.
[11] 刘建刚, 赵春江, 杨贵军, 等.无人机遥感解析田间作物表型信息研究进展[J].农业工程学报, 2016, 32(24): 98-106.
LIU Jiangang, ZHAO Chunjiang, YANG Guijun, et al.Review of field-based phenotyping by unmanned aerial vehicle remote sensing platform[J].Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(24): 98-106.
[12] Che Y P, Wang Q, Xie Z W, et al.Estimation of maize plant height and leaf area index dynamics using an unmanned aerial vehicle with oblique and nadir photography[J].Annals of Botany, 2020, 126(4): 765-773.
[13] 孙永祺, 陈梦媛, 黄倩, 等.低空无人机遥感在油料作物表型分析中的应用[J].浙江大学学报(农业与生命科学版), 2023, 49(4): 472-483.
SUN Yongqi, CHEN Mengyuan, HUANG Qian, et al.Application of low-altitude unmanned aerial vehicle remote sensing in the phenotypic analysis of oil crops[J].Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(4): 472-483.
[14] 向友珍, 安嘉琪, 赵笑, 等.基于无人机多光谱遥感的大豆生长参数和产量估算[J].农业机械学报, 2023, 54(8): 230-239.
XIANG Youzhen, AN Jiaqi, ZHAO Xiao, et al.Soybean growth parameters and yield estimation based on UAV multispectral remote sensing[J].Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(8): 230-239.
[15] Osco L P, Junior J M, Ramos A P M, et al.Leaf nitrogen concentration and plant height prediction for maize using UAV-based multispectral imagery and machine learning techniques[J].Remote Sensing, 2020, 12(19): 3237.
[16] Lu J S, Cheng D L, Geng C M, et al.Combining plant height, canopy coverage and vegetation index from UAV-based RGB images to estimate leaf nitrogen concentration of summer maize[J].Biosystems Engineering, 2021, 202: 42-54.
[17] Zhou X B, Kono Y, Win A, et al.Predicting within-field variability in grain yield and protein content of winter wheat using UAV-based multispectral imagery and machine learning approaches[J].Plant Production Science, 2021, 24(2): 137-151.
[18] 秦彩杰, 李勇.作物病虫害自动识别技术研究——基于视频监控和无人机平台[J].农机化研究, 2021, 43(10): 42-45, 50.
QIN Caijie, LI Yong.Research on automatic identification technology of crop diseases and insect pests—based on video monitoring and UAV platform[J].Journal of Agricultural Mechanization Research, 2021, 43(10): 42-45, 50.
[19] 杨国峰, 何勇, 冯旭萍, 等.无人机遥感监测作物病虫害胁迫方法与最新研究进展[J].智慧农业, 2022, 4(1): 1-16.
YANG Guofeng, HE Yong, FENG Xuping, et al.Methods and new research progress of remote sensing monitoring of crop disease and pest stress using unmanned aerial vehicle[J].Smart Agriculture, 2022, 4(1): 1-16.
[20] Lan Y B, Huang K H, Yang C, et al.Real-time identification of rice weeds by UAV low-altitude remote sensing based on improved semantic segmentation model[J].Remote Sensing, 2021, 13(21): 4370.
[21] Zhu H, Jiang Y, Zhang C, et al.Research on mosaic method of UAV low-altitude remote sensing image based on SIFT and SURF[J].Journal of Physics: Conference Series, 2022, 2203(1): 012027.
[22] Tetila E C, Machado B B, Astolfi G, et al.Detection and classification of soybean pests using deep learning with UAV images[J].Computers and Electronics in Agriculture, 2020, 179: 105836.
[23] 张正健, 李爱农, 边金虎, 等.基于无人机影像可见光植被指数的若尔盖草地地上生物量估算研究[J].遥感技术与应用, 2016, 31(1): 51-62.
ZHANG Zhengjian, LI Ainong, BIAN Jinhu, et al.Estimating aboveground biomass of grassland in zoige by visible vegetation index derived from unmanned aerial vehicle image[J].Remote Sensing Technology and Application, 2016, 31(1): 51-62.
[24] 聂松伟.基于无人机多光谱遥感的冬小麦长势指标监测[D].乌鲁木齐: 新疆农业大学, 2022.
NIE Songwei.Monitoring of Winter Wheat Growth Index Based on UAV Multi-spectral Remote Sensing[D].Urumqi: Xinjiang Agricultural University, 2022.
[25] 吴培强, 任广波, 张程飞, 等.无人机多光谱和LiDAR的红树林精细识别与生物量估算[J].遥感学报, 2022, 26(6): 1169-1181.
WU Peiqiang, REN Guangbo, ZHANG Chengfei, et al.Fine identification and biomass estimation of mangroves based on UAV multispectral and LiDAR[J].National Remote Sensing Bulletin, 2022, 26(6): 1169-1181.
[26] 杭艳红, 苏欢, 于滋洋, 等.结合无人机光谱与纹理特征和覆盖度的水稻叶面积指数估算[J].农业工程学报, 2021, 37(9): 64-71.
HANG Yanhong, SU Huan, YU Ziyang, et al.Estimation of rice leaf area index combining UAV spectrum, texture features and vegetation coverage[J].Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(9): 64-71.
[27] 牛庆林, 冯海宽, 周新国, 等.冬小麦SPAD值无人机可见光和多光谱植被指数结合估算[J].农业机械学报, 2021, 52(8): 183-194.
NIU Qinglin, FENG Haikuan, ZHOU Xinguo, et al.Combining UAV visible light and multispectral vegetation indices for estimating SPAD value of winter wheat[J].Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(8): 183-194.
[28] 李长春, 牛庆林, 杨贵军, 等.基于无人机数码影像的大豆育种材料叶面积指数估测[J].农业机械学报, 2017, 48(8): 147-158.
LI Changchun, NIU Qinglin, YANG Guijun, et al.Estimation of leaf area index of soybean breeding materials based on UAV digital images[J].Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(8): 147-158.
[29] 孙奇, 关琳琳, 焦全军, 等.基于植被指数融合的冬小麦生物量反演研究[J].遥感技术与应用, 2021, 36(2): 391-399.
SUN Qi, GUAN Linlin, JIAO Quanjun, et al.Research on retrieving biomass of winter wheat based on fusing vegetation index[J].Remote Sensing Technology and Application, 2021, 36(2): 391-399.
[30] 刘玉杰, 封志明, 邓福英.基于草地退化指示植物大狼毒的植被指数研究[J].草地学报, 2014, 22(3): 455-460.
LIU Yujie, FENG Zhiming, DENG Fuying.Vegetation indices of Euphorbia jolkinii As an indicator plant of grassland degradation[J].Acta Agrestia Sinica, 2014, 22(3): 455-460.
[31] 干珠扎布, 段敏杰, 高清竹, 等. 藏北高寒退化草地天山假狼毒群落地面光谱特征及其生物量估测[C]. 国际能源与环境会议(ICEE), 2011, 303-306.
Ganzhuzhabu, DUAN Minjie, GAO Qingzhu, et al. Spectral reflectance and biomass estimation of Diarthron tianschanicum in northern Tibet[C]. "International Conference on Energy and Environment (ICEE), 2011, 303-306.
[32] 凯楠, 刘咏梅, 李京忠, 等.青海瑞香狼毒叶绿素含量高光谱预测模型[J].生态学杂志, 2017, 36(4): 1150-1157.
KAI Nan, LIU Yongmei, LI Jingzhong, et al.Hyperspectal predicting model of chlorophyll content of Stellera chamaejasme in Qinghai Province[J].Chinese Journal of Ecology, 2017, 36(4): 1150-1157.
Estimation of aboveground biomass of Diarthron tianschanicum"""based on vegetation index fusion
HOU Zhengqing1, YAN An2, XIE Kaiyun2, YUAN Yilin1,"""XIA Wenqiu3, XIAO Shuting1, ZHANG Zhenfei1, SUN Zhe1
(1.College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China; 2. College of Grassland Science, Xinjiang Agricultural University, Urumqi 830052, China; 3. College of Computer and Information Engineering, Xinjiang Agricultural University, Urumqi 830052, China)
Abstract:【Objective】 ""In order to explore the ability of multi-source data to estimate aboveground biomass (AGB) of D.tianschanicum.
【Methods】 ""A drone platform equipped with visible light and multispectral sensors was used to collect information on blooming and heading stages and obtain visible light vegetation index, multispectral vegetation index, and a combination of the two vegetation indices.Multiple linear regression (MLR), stepwise linear regression (SMLR) Random Forest Regression (RF) were applied to establish an AGB estimation model for single vegetation index and fused vegetation index by using the determination coefficient (R2), and to valuate the estimation model with the adjusted coefficient of determination (R2adj) and root mean square error (RMSE).
【Results】 ""The vegetation index in the combination of near-infrared and red edge bands was more sensitive to the AGB of D. tianschanicum, so selecting;The peak flowering period had the best estimation effect among different growth stages, and the fitting effect was the best in the multiple linear stepwise regression estimation model based on the fusion vegetation index. The model's R2, R2adj and RMSE were 0.837, 0.831, and 7.357;Compared with vegetation index estimation models based on a single type, estimation models based on fused vegetation indices hadthe best fitting accuracy and better stability.
【Conclusion】 """The fusion of vegetation index can effectively increase spectral information and improve model prediction accuracy.
Key words:""drones; Diarthron tianschanicum aboveground biomass; vegetation index; visible light; multispectral
Fund projects:""Special Project for Key R amp; D Tasks in Xinjiang Uygur Autonomous Region (2022B02003)
Correspondence author:"""YAN An (1983-), male, from Ziyang,Sichuan,Ph.D., professor, research direction: digital agriculture and ecological environment remote sensing monitoring,(E-mail)yanan@xjau.edu.cn
收稿日期(Received):
2024-04-15
基金项目:
新疆维吾尔自治区重点研发任务专项计划(2022B02003)
作者简介:
侯正清(1999-),女,新疆昭苏人,硕士研究生,研究方向为农业信息化,(E-mail)287511284@qq.com
通讯作者:
颜安(1983-),男,四川资阳人,教授,博士,硕士生/博士生导师,研究方向为数字农业与生态环境遥感监测,(E-mail)yanan@xjau.edu.cn