壁画酥碱病害研究概述
2024-01-11徐莉娜岳永强
徐莉娜,岳永强,马 千,张 强
(敦煌研究院麦积山石窟艺术研究所,甘肃天水 741020)
0 引 言
壁画是指通过绘制手段,在天然或人工壁面上制作的画,是一种具有装饰和美化功能的绘画艺术,一般为建筑物的附属部分。根据制作材料和工艺的不同可将壁画分为干壁画、湿壁画和镶嵌壁画。干壁画和湿壁画保存数量最多,干壁画主要分布在东方,湿壁画则主要保存在欧洲。根据支撑体的不同,又可将壁画分为殿堂壁画、石窟寺壁画、墓葬壁画三种类型[1]。
受自然环境和人为因素的长期影响,各类壁画均会产生诸如起甲、龟裂、空鼓、裂隙、酥碱等多种病害。其中,酥碱病害是最严重的病害之一,会造成无法挽回的损害(图1和图2)。“酥碱”是传统文物病害术语,被广泛用于文物领域的古建筑、壁画以及土遗址等专业范围。何流[2-3]通过对《王力古汉语字典》《辞源》等相关文献中对“酥”“碱”这两个字的内容和表述方式的发展过程进行研究,指出历史上人们把卤水中洗出的除盐以外的结晶称之为“碱”,民间将出汗在衣服上留下的白色污痕称为“汗碱”,土壤、石头、墙壁等表面的白色晶体现象称为“泛碱”。 其中,“酥”有着松脆和柔软之意,因此就不难理解传统文物术语中使用“酥碱”的原因了。
图1 北石窟寺戏楼酥碱壁画Fig.1 Murals of the theater in the North Cave Temple
图2 炳灵寺洞沟2窟酥碱壁画Fig.2 Murals from Cave 2 of Donggou in Thousand Buddha Caves of Bingling Temple
《古代壁画病害与图示》中将壁画的酥碱病害定义为由可溶盐作用导致壁画地仗层产生的疏松状态,且在此标准中将“酥碱”英文名称指定为“plaster disruption”[4]。《中国古代壁画保护规范研究》中指出酥碱为壁画地仗中可溶盐随环境温湿度变化溶解、结晶所产生的膨胀、收缩反复作用,使得壁画地仗结构被破坏而产生的疏松状态,且在英文中将“酥碱”定义为“disruption”[5]。其中:“plaster”意为“地仗”,指出了酥碱病害产生的位置为地仗层,属于地仗层病害[6];“disruption”则有“破裂,破坏,瓦解”之意,形象地指出了酥碱病害产生的严重性和毁灭性。
我国壁画的科学保护与研究始于20世纪50年代,从简单壁画病害调查、预防壁画病害发生,制作材料、病害机理的研究,到修复材料的应用及保存环境的控制等,其目的均是尽最大可能保存文物本体,延长文物寿命,为文物的保护、研究和利用争取更多时间。其中,酥碱病害作为壁画最难治理的病害之一,相关研究人员针对其开展了一系列研究和保护工作,在此过程中既有成功经验也有不足之处,本工作通过系统梳理病害成因、病害机理、修复材料与脱盐工艺的相关文献,为酥碱壁画的保护提供技术参考和实践借鉴。
1 壁画酥碱病害成因及机理研究
1.1 成因分析
关于酥碱病害的成因,国内外学者做了大量研究。国内多位学者采取XRD、XRF、IC等多种测试方法对莫高窟多个洞窟、兴隆寺摩尼殿、奉国寺、吐峪沟壁画颜料层的盐霜、地仗层及支撑体中可溶盐的种类进行了分析,发现其可溶盐主要包含硫酸盐、硝酸盐、氯盐及钾盐等,其中:莫高窟颜料层、地仗层及支撑体中可溶盐包含大量NaCl和Na2SO4及少量的MgSO4、CaSO4·2H2O;兴隆寺摩尼殿可溶盐主要为NaCl;奉国寺及吐峪沟的可溶盐主要为硫酸盐、硝酸盐、氯盐[7-14]。关于壁画酥碱病害产生的原因,张明泉等[15]结合莫高窟洞窟位置、窟内自身裂隙、窟前灌水、洞窟内温湿度变化产生的凝结水等各种外界因素,推断导致莫高窟壁画发生酥碱病变的原因是洞窟围岩和地仗层中的易溶盐在水分的参与下发生溶解、迁移、沉淀、阳离子交换和重结晶作用,使得地仗颗粒之间连结力减弱,导致颜料层剥落,地仗层疏松、掉块或散落。严妍等[16]结合克孜尔石窟环境监测数据,提出降雨、地下水及游客带来的水汽都是造成壁画酥碱病害的原因。黄美燕等[17]根据陈道望故居壁画酥碱病害产生的分布区域指出,降雨是导致屋角当沟滴水处壁画酥碱病害产生的主要因素。刘文兵等[18]通过壁画的材质对壁画产生酥碱病害的相关性进行了分析,指出壁画地仗层结构的酥松、颗粒大小的不均匀及较多的孔隙,是可溶性盐的通道,为壁画酥碱病害的产生提供了基础条件。
国外学者对多处壁画盐霜和酥碱样品进行分析研究,发现国外壁画盐霜和酥碱地仗中的可溶盐种类较多,各个国家存在一定差异,例如:英国克莱夫修道院盐霜和酥碱样品可溶盐主要为硝酸盐、硫酸盐及数量可观的钙离子、钠离子、氯离子和钾离子[19];意大利庞贝壁画样品主要包含CaCO3、K2CO3、Na2SO4·10H2O、CaSO4·2H2O、CaC2O4等可溶盐,且在不同环境下墙面的酥碱样品中所含可溶盐的成分不一样[20];罗马圣克莱门特教堂样品其主要成分为CaSO4和CaCO3,且作者推测,以上两种盐分存在是由于空气中高浓度的污染物CO2和富硫颗粒在高湿度和极弱的空气循环下导致地仗层表面发生碳化和硫酸化过程[21];葡萄牙17世纪Casa de Fresco的样品主要成分为CaCO3和Ca-Mg碳酸盐[22];土耳其希拉波利斯岛104岛壁画酥碱样品主要含有不同水合状态的Na2SO4、NaNO3、KNO3、KCl和Na2SO4[23]。
通过对国内外壁画表面盐霜及地仗样品主要成分的分析结果进行比较和统计(表1),发现国内外壁画表面盐霜和地仗层可溶盐的种类有所不同,推测导致国内外可溶盐主要成分不同的原因为国内外壁画类型及所属地域的不同。文献中所提到的国内莫高窟壁画样品中可溶盐的种类基本一致,但有区别于其他地区导致酥碱病害发生的主要可溶盐种类;国外为多个国家样品,其制作材料、工艺及环境之间的差异更使得可溶盐呈现出多样性的现象。尽管不同国家、不同区域壁画盐霜及地仗层可溶盐的种类有差异,但导致壁画酥碱病害产生的原因基本一致,即地仗层及支撑体中可溶盐在外界毛细水、湿度等环境因素的影响产生溶解、结晶、迁移等反复作用,最终使地仗结构破坏而产生疏松状态。
表1 国内外壁画酥碱样品可溶盐分析Table 1 Soluble salt analysis of domestic and foreign mural samples suffering from plaster disruption
1.2 机理研究
在1.1中各位学者对不同地区酥碱样品中可溶盐成分进行分析,并对酥碱病害产生原因进行简单推理。为了能够进一步验证以上分析及推理的科学性和合理性,相关学者做了大量模拟试验,不仅从动力学和热力学方面阐述了可溶盐在不同环境下溶解和结晶的现象,还通过制作模拟试块探讨了不同含量可溶盐在不同载体下以毛细迁移及吸湿/脱湿作用对酥碱病害产生的影响。
1.2.1可溶盐阈值探索试验 陈港泉等[24-25]、王菊琳等[26]分别从含盐量和盐水比两方面对模拟试块酥碱病害产生时可溶盐阈值进行了研究,为更直观地对比两者相关研究之间的关系,将王菊琳等研究成果中的盐水比转换为含盐量(表2),两者试验方案及结果对比见表3。
表2 盐水比和含盐量的对应值Table 2 Corresponding values of salt water ratio and salt content
表3 可溶盐阈值探索模拟试验对比Table 3 Comparison of soluble salt threshold exploration simulation tests
通过对比以上两组学者的研究成果(下文中将陈港泉组和王菊琳组的试验分别称为试验1、试验2)发现在同种试验条件下:当两种模拟试块含盐量≤2%时,均不产生酥碱病害;含盐量≥2%时,均产生了病害,但病害呈现方式存在差异。其中:试验1中模拟试块在含盐量为3%时,试块仅产生裂隙;试验2的模拟试块在含盐量为2.35%~3.52%之间已经产生了和莫高窟酥碱病害相同的现象;试验1中模拟试块含盐量在达到6%时,也产生了和莫高窟酥碱病害相同的现象;试验2中模拟试块的含盐量超过了4.60%时,虽未见酥碱病害产生,但颜料层、地仗层全部脱落。因此,可以从以上现象推断:首先,高含盐量的模拟试块容易产生酥碱病害且含盐量越高破坏性越严重;其次,不同含量、不同种类可溶盐及不同成分的地仗均会影响到酥碱病害的产生及呈现方式。
1.2.2毛细迁移试验 考虑到壁画地仗、支撑体均为多孔材料,且地仗和支撑体材料中可溶盐会随着毛细水的迁移而运移。因此,以土的毛细性质为基础,研究了不同盐溶液在不同成分试块、不同试验条件下的毛细迁移性能,现将已有研究试验方案和结果归纳到表4。
表4 毛细迁移试验对比Table 4 Comparison of capillary migration tests
张虎元、姜啸等[27-28]的研究结果显示:首先,KCl和Na2SO4混合盐溶液在每种模拟试块中迁移速率最快,对壁画的破坏最大;其次,脱盐澄板土试样中所有溶液毛细上升速率均大于天然澄板土,这是由于试样中原有盐分对溶液的毛细上升有一定阻碍作用。贾全全等[29-30]的试验结果表明,由于筋物存在,粗泥层试样毛细上升速率最快,其次为复合试样,且复合地仗样品中粗泥层和细泥层界面处对于毛细水的运移有毛细屏障作用,含水率在粗泥层和细泥层界面处发生了突变。当有较高的非饱和导水率存在时,盐分会在界面处富集。且对盐水迁移前后的试块进行了SEM试验,发现了试验前的土壤结构相当密实,但盐水迁移后的土壤结构变得疏松和多孔,进一步证明实了2.1部分的成因分析中,水盐运移会导致壁画酥碱的结论。闫玲[31]通过模拟试验得出氯离子的迁移速率大于硫酸根离子,以此为依据推测莫高窟53窟壁画地仗层在0~200 cm高度范围内NaCl、Na2SO4的富集主要是由于毛细水输盐造成,且在此高度Na2SO4的含量远超NaCl,是酥碱病害发生的主要部位,即Na2SO4是酥碱病害产生的主要原因,与郭宏等[9]的研究结果一致。靳治良等[32]指出在-2~32.4℃的温度区间,Na2SO4随着温度变化在与之呈平衡的固相Na2SO4·10H2O之间发生变化,由于Na2SO4·10H2O的产生不仅能带出结晶水,还增加了体积,使Na2SO4对壁画产生的破坏更加严重。
通过以上学者的试验研究及结果分析可以得出,溶液中可溶盐成分及试块土样成分不同均会影响盐溶液毛细迁移速率。常见阴离子中,氯离子的迁移速率大于硫酸根离子的迁移速率,混合盐溶液的迁移速率均大于单一盐溶液的迁移速率,且当盐溶液在不同地仗层迁移时,盐分会在不同地仗层的界面产生富集。
1.2.3吸湿/脱湿试验 Sawdy等[33]研究了不同相对湿度条件下单一盐类Mg(NO3)2·6H2O和NaCl的潮解和结晶,以及与KNO3、NaNO3、CaSO4混合时对其的影响程度,发现:混合盐的吸湿速率高于单一盐分的吸湿速率,混合盐溶液的平衡湿度和环境相对湿度间的差值越大,混合盐的吸湿速率相应增加;反之,当混合盐的相对平衡湿度和环境相对湿度值相差越小时,混合盐放湿速率越慢,即混合盐的潮解和结晶取决于外界的相对湿度及混合盐的组成。Piqué等[34]也研究了欧洲壁画中常见的Ca(NO3)2·4H2O对水吸附的动力学,发现Ca(NO3)2·4H2O的潮解不仅受到盐的质量、成分的影响,还受到盐所在载体的影响,其中以灰泥层、玻璃、铝为载体,发现盐分以灰泥层为载体的吸水速率最快,其次为玻璃,最后为铝,即多孔材料更利于吸附。
国内学者就不同盐含量、不同载体为变量,研究了其试块的吸湿和放湿状况,试验方案及结果见表5。
表5 吸湿/脱湿试验对比Table 5 Comparison of moisture absorption/desorption tests
苏伯民等[35]通过模拟不同含盐量试块在高湿和低湿的环境下的吸湿/脱湿性能,发现高含盐量的地仗会优先吸收空气中的水分,且含盐量越大,对空气中水分吸收越快,持续时间越长。当空气湿度降低,脱湿时间相对比较恒定,但高含盐地仗脱湿速度更快。因此,推测在洞窟内湿度发生剧烈变化时,含盐量较高的壁画地仗更容易发生酥碱病害。贾全全[29]、闫玲[31]分别研究了在高湿和低湿条件下,不同成分模拟试块(即成分不同)的吸湿量,均得出模拟试块的吸湿量随着试块澄板土含量的增加而增加。李凤洁等[36-37]通过对不同类型的脱盐地仗土在不同相对湿度条件下的吸湿量进行测定,得出黏土量高的地仗试块吸湿量大;此外,作者还指出当相对湿度>80%的时候,壁画表面的盐分与空气中的水分结合,参与水盐反应,诱发或加重壁画酥碱病害的产生。不同地仗层的弱结合水的含水量随着地仗中土砂比增加而增加,因此,相对湿度为80%可以作为莫高窟地仗层中吸湿量显著增加的临界湿度。
无论是从动力学和热力学理论知识,还是直接模拟不同及相同地仗在不同含盐量、不同相对湿度条件下吸湿和放湿的研究,发现壁画产生酥碱病变的主要因素与壁画地仗材料自身成分,壁画地仗中所含可溶盐种类及可溶盐含量,壁画地仗所在环境湿度等因素均有一定关系。因此,壁画酥碱病害产生是在以上多种因素的耦合作用之下,使得壁画地仗层可溶盐以毛细水和吸湿放湿为主要方式,产生运移和反复溶解、结晶,最终导致地仗层各成分结构发生破坏,进而产生酥碱脱落现象。
总结壁画酥碱病害产生原因和机理研究的相关文献:首先能够发现地仗样品中可溶盐的分析均为采样分析法,为了避免对文物的破坏,采样数量的有限性将导致分析结果不够全面;其次,壁画的地仗成分、制作工艺及导致壁画酥碱病害产生的可溶盐种类和含量因壁画所在地域的不同而有所差异;再次,模拟试验中大多采用的是敦煌莫高窟壁画的土沙比,同样,这种单一模拟的结果也不具有全面性;最后,关于模拟试验环境条件参数的设定,研究者们一般选择一组或两组温湿度数据。然而,这一组或两组数据不能完全代表国内各处壁画所处的环境条件。因此,在将来关于壁画酥碱病害成因及机理的研究中,首先应采用无损或微损的分析方法对所研究壁画支撑体、地仗层以及表层盐霜进行全面分析,依据当地壁画的制作材料和工艺制作模拟试块,结合当地环境中全年的温湿度总体变化趋势对其进行模拟试验,从而得到更符合当地环境下壁画酥碱病害产生的现象,确定当地壁画酥碱病害产生的主要影响因素,才能为酥碱壁画预防和治理给出更科学的措施。
2 壁画酥碱病害修复材料及工艺研究
通过第1部分对壁画酥碱病害产生的位置、原因及机理的研究成果总结发现,酥碱病害的产生主要是地仗材料及岩体中所含可溶盐在环境水参与下发生的共同结果。因此,在关于壁画酥碱病害修复和治理过程中,应该将以上两个因素作为重点考虑对象,以上述研究的理论基础为依据,对已经酥碱的壁画进行加固及脱盐处理。
2.1 修复材料研究
2.1.1加固材料 酥碱壁画加固是治理酥碱病害的前期工作,包含着酥碱壁画颜料层加固及酥碱地仗的加固——以上两者是后期对酥碱壁画脱盐过程的前期稳定性处理。目前常用加固剂主要分为有机加固剂和无机加固剂(表6)。
表6 加固剂Table 6 Reinforcement agents
有机材料在国外文物保护中的应用较早,在20世纪30年代,欧洲就将聚醋酸乙烯乳液(PVAC)应用于壁画、塑像艺术品的保护当中,到20世纪50~60年代,PVAC已被广泛使用于印度、希腊、波兰等国各个类型的壁画加固中[38]。在国内的使用则始于20世纪50年代捷克壁画专家约瑟夫·格拉尔对莫高窟474窟壁画进行的现场修复[39],随后聚醋酸乙烯脂乳液、聚乙烯醇乳液、聚乙烯醇缩丁醛、乙基纤维素、聚甲基丙烯酸甲酯等多种高分子材料开始被应用于莫高窟壁画的加固中[40-43]。在莫高窟60多年保护历程中经过不断地筛选和现场应用,逐渐形成了三类五种加固材料——聚醋酸乙烯脂乳液和聚乙烯醇类、有机硅和丙烯酸类、明胶类[44-46],它们被广泛应用于全国各类壁画的保护修复中:西藏萨迦寺、新疆和达玛沟遗址、山西云冈五华洞等多处酥碱壁画均采用丙烯酸乳液或改性丙烯酸乳液作为加固剂[47-51];陕西省考古研究所与德国专家采用丙烯酸树脂(B72)对揭取前旬邑东汉墓室壁画表面进行加固修复[52]等。同时也有部分其他加固材料被采用,例如:莫高窟465窟酥碱地仗的修复中采用甲基纤维素作为加固剂[53];戎岩[54]则根据墓葬壁画特殊环境的需求,研发出了H3PO4-Ba(OH)2-TEOS加固剂,且在陕西师范大学遗址模拟坑内进行了试验,发现H3PO4-Ba(OH)2-TEOS加固剂加固试块后色差改变较小,渗透性及透气性好,具备一定的耐盐性特征,随后作者将H3PO4-Ba(OH)2-TEOS加固剂应用于丁家闸五号墓出现的酥碱等病害的加固和修复中,通过加固剂修复前后对比发现,加固区颜料层、地仗层各自的性能都有所改善;Funori作为一种新提出的加固材料,通过模拟试验发现其有着较好的光学性能,不易老化,与壁画的无机支撑体有着很好亲和性,加固后的地仗保持了孔隙度,过高的黏度也使得其渗透性较差[55],目前没有在国内相关壁画实体上作为加固剂的案例。
多种有机高分子材料作为加固剂的应用,也使得多位学者对其性能和加固效果的评估进行研究。李燕飞等[56]对聚醋酸乙烯酯的物理化学性能进行了表征,且通过该乳液对酥碱壁画的模拟试块修复后进行了12个老化循环后,颜料层再次出现了龟裂和疱疹病害,指出聚醋酸乙烯脂乳液在彩绘类文物保护中的应用应慎重选择。贺翔等[57]从热胀和湿胀性能方面对用PVAC(聚醋酸乙烯乳液)、PAA(聚丙烯酸乳液)、SMPA(有机硅改性的丙烯酸乳液)、B72(丙烯酸树脂)、明胶作为加固剂分别对壁画地仗层、颜料层、白粉层进行加固后的模拟试块进行分析并发现:在一般的室温下,热膨胀对壁画造成的劣化远远小于湿胀;使用PAA和PVAC加固的样品有着较小的层间膨胀差异,也因此有较小的层间应力;明胶对壁画颜料层加固效果较好,但是由于明胶黏度大,渗透性较差,不能用于壁画地仗加固;PAA、PVAC、SMPA、B72四种材料的孔隙率、盐水吸收量、盐的富集程度等性能基本一致,但PVAC具有较弱的憎水性,加固后样品的孔隙率较小,水盐通透性更强,盐的分布及应力的分布越均匀,因此样品耐候性更好。
然而,由于壁画支撑体和制作材料多为无机材料,因此,采用有机材料进行加固后,加固材料与壁画本体无机材料的膨胀系数、导热系数、老化速率等各项性能之间的差异导致应力的产生,致使壁画本体和加固层之间剥离,对壁画造成保护性破坏[58]。
无机加固材料常见的有石灰水、纳米氢氧化钡、二磷酸铵等。其中,纳米氢氧化钙在水中的溶解度太小,因此提出使用乙醇或者短链醇作为分散剂增加其溶解度,通过对纳米氢氧化钙的碳化程度、孔隙度、硬度、表面黏性等加固效果进行了表征,得出以乙醇为分散剂的纳米氢氧化钙可适用于壁画的保护[59],同时也提出纳米氢氧化镁、纳米氢氧化钡、纳米氢氧化锶等纳米级的碱土金属氢氧化物均能在壁画颜料层加固过程中取代壁画材料在降解过程中失去的粘合剂,且以更兼容的方式对壁画进行加固[60]。除了以短链乙醇为分散剂,纳米氢氧化钙和硅酸乙酯结合使用能够加固较大空隙或者分层区域,但经加固的材料吸水率和毛细度会降低[61]。国内学者采用纳米氢氧化钙对奉国寺常见的颜料进行实验室内模拟加固,对以奉国寺壁画中常见的颜料和奉国寺壁画制作材料和工艺为依据制作的酥碱试块进行加固,发现纳米氢氧化钙作为加固剂对其壁画颜料的色差、透气性及反应前后矿物颜料颗粒的形貌影响较小;在对酥碱样块的加固中发现纳米氢氧化钙与空气中二氧化碳作用,生成碳酸钙,能够实现酥碱壁画加固效果,增强文物基底的黏结力,同时光散射的影响最小[62]。
从目前研究成果可见,我国壁画加固剂使用最广泛的为有机高分子材料,但有机高分子材料中C—C、C—H及C=C等键在受外界环境中光、热、氧的影响均会产生老化[63]。因此,近些年来通过对常用的有机加固材料丙烯酸树脂进行纳米改性、有机硅改性以及光稳定性改性来提高其亲水性、渗透性,改善其光敏感性[64]。无机加固材料自身渗透性较差,与文物本体间的黏结作用较弱,加固强度有限,因此,无机材料在文物保护中的应用也有一定的局限性。
通过文献总结发现,无论是有机加固材料还是无机加固材料都有自身的一些优缺点。因此,在加固材料筛选的过程中不仅要参考加固剂材料的一些物理化学参数,还需要根据材料的修复性质进行评估,同时更应根据所要加固壁画的制作材料及所处环境,对现有的加固材料进行相关改性及筛选,以满足不同地区、不同类型壁画在加固过程中的需求。
2.1.2地仗修补材料 地仗修补主要指在酥碱壁画修复过程中对酥碱造成的地仗缺失进行填垫泥浆,使壁画地仗更加平整,为酥碱壁画的脱盐提供一个良好的条件,相关地仗修补材料研究见表7。
表7 地仗修补材料Table 7 Materials for plaster restoration
在采用传统的修复材料对莫高窟地仗进行修复后依旧会产生病害。因此,新材料(甲基纤维素、碳素纤维、澄板土、硅藻土)被提出,但通过实验室研究,发现新材料制作的试块在强度、收缩率等性能方面有着一定的优势,但甲基纤维素的加入使得修补后的地仗色度发生了大的变化[65-66];同时,烧料礓石被作为潮湿环境下地仗加固材料被提出,并从烧料礓石水合凝胶后产物的形貌、成分、抗拉抗压强度、透气性、收缩性等性能及对以烧料礓石为主要修复材料制作的试块的性能进行研究,发现烧料礓石水合产物凝胶有着优良的胶结性能、透气性、透水性,作为主要的修补材料具有较强的抗压、抗折性,较小收缩性和较好的耐老化性能[67]。通过对烧料礓石、烧阿嘎土和欧洲水硬石灰NHL5分别与石英砂、粉煤灰做填料的浆液结石体的流动速度、强度、耐盐碱性、收缩性等物理力学性能对比分析,发现:生石灰和空气中的二氧化碳、水合作用生成了孔隙率较大、强度较差的碳酸钙,但碳酸钙和文物本体兼容性较好,结合性较强;β-C2S和C2AS生成的结石体,其透气性、透水性均差,但强度较高,这两种材料的性能刚好互补,能够形成具有很好透气性、透水性、兼容性及黏结性的修复胶凝体[68]。其中,将烧料礓石作为主要加固材料用于潮湿的丁家闸5号墓(常年相对湿度在85%以上)的酥碱地仗加固,发现加固后壁画地仗酥碱状况得到了明显改善,且具有一定的透气透水性,表面干燥,无微小水珠形成[69]。
关于地仗修补材料筛选的报道较少,常用的修补材料有当地土、砂、澄板土、料礓石、麦秸、麻等材料,且由于在修补地仗时为了增加其强度也会在地仗层中加入一定的加固剂,应根据壁画环境选择合适的加固材料(2.1.1中已阐述),同时需要根据修补地仗的性能及壁画环境,筛选合适的修补材料,若采用土作为地仗修补材料,应对其进行脱盐处理。
2.2 脱盐材料及工艺
对东千佛洞[70]和莫高窟[71]酥碱病害修复区域调查发现,加固修复后的酥碱壁画在经历一段时间后重新产生了酥碱病害。因此,酥碱病害的治理与修复时所使用加固材料种类无关,即现用的各种加固材料都很难阻止酥碱病害的再次发生。结合酥碱病害产生的原因和机理,酥碱病害治理最根本的措施是维持壁画保存环境中相对湿度的稳定及从壁画地仗层和支撑体中去除可溶盐。
壁画的脱盐处理包括壁画表面盐霜的清理和地仗层的脱盐。表面盐霜的清理有机械剔除法、敷贴法、转换法[72],常用的是剔除法和敷贴法。瑞士圣劳伦斯大教堂壁画表面盐霜MgSO4在相对湿度低于80%的时候很稳定,采用手术刀、刷子清除[73]。对于不适合机械剔除的盐霜或地仗脱盐多用敷贴法,采用纸浆、去离子水、日本纸为敷贴材料,整个脱盐工艺为:日本纸(去离子水浸润)粘附在处理区域→手涂抹纸浆约5 mm(纸浆∶去离子水=1∶5.5)→移除[74]。对于无法用以上传统方法清除的盐霜,可将琼脂作为微生物载体、日本纸作为保护层,利用微生物的还原性清除以KNO3为主的盐霜,微生物的选择则根据盐霜的不同而不同[75]。
无论是对壁画表层盐霜的剔除,还是对壁画表层不易剔除盐霜以及地仗层盐霜的脱盐处理都存在着一定的危险性:剔除盐霜容易伤到壁画颜料层;采用KC-X60(Ⅱ)脱盐垫处理盐霜容易再次将水分带到壁画中,增加壁画中的含水量;采用纸浆或微生物琼脂敷贴脱盐不仅会带入一定的水分进壁画,同时若纸浆或微生物清除不当会对壁画造成保护性破坏。也有学者通过监测壁画脱盐区发现在经历一段时间后该区域含盐量又达到了治理之前的水平,指出关于壁画的脱盐处理仅仅是防止酥碱进一步严重的短期措施[74]。D’Agostino通过监测莱切大教堂(意大利南部)壁画保存室环境,建立三维计算流体动力学模型,通过温度、相对湿度等参数模型提出适合保护壁画等文物的微环境[72]。但由于壁画所含可溶盐及所处环境的复杂性,也有学者提出通过转换壁画墙体底部存在的易溶盐转换为溶解性小得多的盐,如将一些易溶解的硫酸盐、磷酸盐或碳酸盐转化为难溶的钙盐、钡盐[80-81],但依旧未见到可行的实施方案。
因此,关于壁画酥碱病害的修复和预防性保护,只能将对壁画颜料层、地仗层进行脱盐和环境控制相结合,以严防壁画酥碱病害的进一步发展,并且坚持对修复后的壁画进行长时间监测,评估其修复材料和工艺的效果,为后期的保护修复提供数据支撑和经验借鉴。
3 总结与展望
研究人员通过多年来对壁画酥碱病害产生原因和机理的探究,提出壁画的酥碱病害是由于壁画地仗中可溶盐在毛细水和外界环境温湿度变化下反复发生溶解和结晶等作用,导致壁画地仗层自身成分和结构遭到破坏,使其强度下降,最终造成壁画地仗层和颜料层破损、脱落的现象。为了能够更好地保护壁画,保护人员开始研究酥碱壁画的加固材料——从有机材料到无机材料,力求做到减少酥碱病害发生的频率,减轻酥碱病害带来的破损程度,同时也开始寻找酥碱壁画地仗较为合适的修补材料。学者们通过研究还指出,除盐和控制环境水是控制壁画酥碱病害的主要方式,并且针对已酥碱壁画的修复给出了一套可行的修复标准和工艺。
本文通过对大量文献进行梳理,发现虽然各位学者针对壁画酥碱病害产生的原因、机理、修复方法及预防措施已做了大量的研究工作,但由于研究者在研究过程中所采集的样品、模拟条件等相关信息的单一性,研究结果也有一定的局限性。由于导致壁画酥碱病害产生的可溶盐因壁画类型和所在区域的不同而不同,应因地制宜,采用无损或微损方法对其进行全面分析;壁画酥碱病害发生相关环境阈值的确定应结合当地温湿度环境、根据壁画的制作材料、制作工艺及地仗中所含可溶盐的种类进行模拟试验;酥碱壁画加固材料各有其优缺点,应根据当地环境对加固材料进行筛;壁画修补材料则应采用当地土、砂材料对其进行修补,修补前应进行脱盐处理;脱盐处理中剔除法、转换法及敷贴法,均有一定的风险,因此关于壁画、地仗中盐分的处理亟待解决。同时,在酥碱壁画的研究中应将实验室内的模拟试验和现场试验进行结合,并对修复后的酥碱壁画进行长期监测,以评估修复材料和修复方法的可行性,对壁画保存环境和病害的发生进行建模,旨在为酥碱壁画修复材料的选择、研究和保存环境控制提供更好的数据支撑,为预防性保护提供一定的理论基础。