APP下载

Sr6Lu2Al4O15∶Tb3+荧光粉的发光特性

2023-12-04孙晓园范小暄刘椿淼娄文静田宛鹭李昊翔骆永石

发光学报 2023年11期
关键词:荧光粉热稳定性能级

李 敏,孙晓园*,范小暄,刘椿淼,娄文静,田宛鹭,李昊翔,骆永石

(1.长春师范大学 物理学院,吉林 长春 130032;2.中国科学院长春光学精密机械与物理研究所 发光学及应用国家重点实验室,吉林 长春 130033)

1 引言

稀土材料被广泛应用在绿色照明、航空航天、新能源汽车、高品质显示器、光学防伪等领域[1-5]。在稀土材料的发展过程中,稀土发光材料得到了广泛研究[6-12]。稀土发光材料因其丰富的轨道能级和独特的4f 电子跃迁,在发光性质上远胜于其他材料[13-18]。其中,Tb3+激活的发光材料已得到了广泛的应用,如灯用荧光粉LaPO4∶Ce3+,Tb3+[19]、增感屏荧光粉Gd2O2S∶Tb3+[20]、三基色荧光灯用荧光粉CeMgAl11O19∶Tb3+[21]等。铝酸盐体系荧光粉因其化学和物理性质稳定、发光性能高、激发发射峰宽、制备工艺简易等特点被广泛研究[22-24]。Wang等[25]首次报道了Sr6Y2Al4O15的晶体结构,并研究了Sr6Ln2Al4O15(Ln=Tb,Dy,Ho,Er,Tm,Yb,Lu)的晶胞参数。Yang 等[26]研究了Yb3+/Ho3+共掺Sr3YAl2O7.5和Sr3LuAl2O7.5荧光粉的发光性质和能量传递机理。Tao 等[27]研究了Sr3LuAl2O7.5∶Ce3+荧光粉的发光性质和热稳定性。Wang 等[28]研究了Sr3YAl2O7.5∶Bi3+,Eu3+的发光性质、能量传递机理和热稳定性。Dalal 等[29]研究了Sr6Y2Al4O15∶Eu3+的发光性质和热稳定性。但是,Tb3+掺杂的Sr6Lu2Al4O15荧光粉迄今为止尚未有研究报道。

本文成功制备了一系列适于紫外光激发的Sr6Lu2-2xAl4O15∶xTb3+样品,通过调节样品中Tb3+的掺杂浓度,样品的发光颜色可以从蓝光变为黄绿光。研究了其晶体结构、发光性质、浓度猝灭机理、热稳定性和量子效率。

2 实 验

主要实验原料有:SrCO3(AR)、Lu2O3(4N5)、Al2O3(高纯)、Tb4O7(4N5)。通过高温固相法制备了一系列Sr6Lu2-2xAl4O15∶xTb3+(x=0.001,0.005,0.01,0.025,0.05,0.1,0.125,0.15,0.2,0.25,0.5,0.75,1.0)样品。首先,按化学计量比称取相应的原料,在玛瑙研钵中充分研磨,将研磨均匀的原料装入刚玉坩埚,置于高温箱式马弗炉中,在还原气氛下,1 500 ℃恒温4 h,随炉冷却至室温,将样品取出,研磨得到粉末样品。

物相分析采用DX-2700 型号X 射线衍射仪,采用日立F-4600 测样品的激发光谱、发射光谱(用Xe 灯作激发光源)。荧光寿命测量由Tektronix-TDS 3052 数字示波器记录,利用Continuum Surelite Nd∶YAG 激光器泵浦Horizon OPO(光参量振荡器)输出268 nm 脉冲激光激发。使用日立F-4600 测试样品的热稳定性(用TCB1402C 高温粉末检测选配件控制温度)。样品的量子效率采用日立F-7000 测得。

3 结果与讨论

3.1 样品的晶体结构分析

图1 为样品Sr6Lu2-2xAl4O15∶xTb3+(x=0.001,0.005,0.01,0.025,0.05,0.1,0.125,0.15,0.2,0.25,0.5,0.75,1.0)的X 射线衍射图。样品的衍射峰与国际标准卡片JCPDS 00-057-0779(Sr6Al4Lu2O15)衍射峰的位置基本吻合,说明制备的样品晶体结构与Sr6Al4Lu2O15一致。图2 为Sr6Al4M2O15(M=Lu,Tb)的晶体结构,Sr6Al4Lu2O15为单斜晶系,晶胞参数为a=1.748 7 nm,b=0.571 4 nm,c=0.763 7 nm,α=90.0°,β=90.914°,γ=90.0°。

图1 Sr6Lu2-2xAl4O15∶xTb3+荧光粉的XRD 衍射图Fig.1 X-ray diffraction patterns of the Sr6Lu2-2xAl4O15∶xTb3+phosphors

图2 Sr6Al4M2O15(M=Lu,Tb)的晶体结构图Fig.2 Crystal structure of Sr6Al4M2O15(M=Lu,Tb)

Lu3+与掺杂离子Tb3+具有相同的电荷和相近的离子半径,当配位数为6 时,Tb3+半径(r=0.092 nm)大于Lu3+半径(r=0.086 nm)[30],因此,掺杂的Tb3+可能会占据Lu3+格位。从图1 中可以看出,样品的XRD 衍射峰逐渐向小角度偏移。在本样品中,较大离子半径的Tb3+取代了较小离子半径的Lu3+的格位,所以,样品的晶面间距d随Tb3+掺杂浓度增加而增大。根据布拉格方程:

可以得出随样品晶面间距d增大,θ角变小。

3.2 发光性质

图3 为Sr6Lu2-2xAl4O15∶xTb3+(x=0.001,0.005,0.01,0.025,0.05,0.1,0.125,0.15,0.2,0.25,0.5,0.75,1.0)的激发光谱,监测波长为381 nm,监测范围为200~360 nm,峰值位于268,303,315 nm,源于Tb3+的4f8-4f75d 跃迁。当Tb3+的一个电子从4f8组态跃迁至4f75d1激发态时,它会产生两种不同的f-d 跃迁:自旋允许和自旋禁戒的跃迁。通常自旋允许的7FJ-7DJ跃迁能量高、强度大,而自旋禁戒的7FJ-9DJ跃迁能量低、强度小。因此,图3 中位于268 nm 的激发峰来自于Tb3+自旋允许的7FJ-7DJ跃迁,而处于303,315 nm 的激发峰来自于Tb3+自旋禁戒的7FJ-9DJ跃迁[31-32]。随Tb3+掺杂浓度的升高,样品激发峰的强度先增强后减弱。x=0.01 的样品位于268 nm 附近的激发峰强度最强。

图3 Sr6Lu2-2xAl4O15∶xTb3+(x =0.001,0.005,0.01,0.025,0.05,0.1,0.125,0.15,0.2,0.25,0.5,0.75,1.0)样品的激发光谱,λem=381 nm。Fig.3 Excitation spectra of the Sr6Lu2-2xAl4O15∶xTb3+(x=0.001,0.005,0.01,0.025,0.05,0.1,0.125,0.15,0.2,0.25,0.5,0.75,1.0)phosphors,λem=381 nm.

图4 为Sr6Lu2-2xAl4O15∶xTb3+(x=0.001,0.005,0.01,0.025,0.05,0.1,0.125,0.15,0.2,0.25,0.5,0.75,1.0)的激发光谱,监测波长为545 nm,监测范围为200~400 nm。不同Tb3+掺杂浓度的样品激发光谱形状相似,都由较强的4f75d1宽带吸收(200~336 nm)和较弱的4f-4f 电子跃迁吸收(336~400 nm)两部分组成。峰值位于268 nm(7F6-7DJ),288,303,315 nm(7F6-9DJ),340 nm(7F6-5L7),351 nm(7F6-5L9),359 nm(7F6-5G5),367 nm(7F6-5L10)和376 nm(7F6-5G6)[31-40]。随着Tb3+掺杂浓度提高,样品激发峰的强度先增强后减弱。当x=0.15 时,位于268 nm 的激发峰的强度比其他样品大。当x=0.5 时,位于302,316 nm 的激发峰的强度比其他样品大。

图4 Sr6Lu2-2xAl4O15∶xTb3+(x=0.001,0.005,0.01,0.025,0.05,0.1,0.125,0.15,0.2,0.25,0.5,0.75,1.0)样品的激发光谱,λem=545 nm。Fig.4 Excitation spectra of the Sr6Lu2-2xAl4O15∶xTb3+ (x=0.001,0.005,0.01,0.025,0.05,0.1,0.125,0.15,0.2,0.25,0.5,0.75,1.0) phosphors,λem=545 nm.

图5 为激发波长268 nm 时Sr6Lu2-2xAl4O15∶xTb3+(x=0.001,0.005,0.01,0.025,0.05,0.1,0.125,0.15,0.2,0.25,0.5,0.75,1.0)的发射光谱。掺杂不同浓度Tb3+离子的样品的发射光谱都由一系列锐峰组成。峰值位于381 nm、391 nm(5D3-7F6),423 nm(5D3-7F5),439 nm(5D3-7F4),450 nm(5D3-7F3),463 nm(5D3-7F2),489 nm、504 nm(5D4-7F6),545 nm、554 nm(5D4-7F5),581,586,596,604 nm(5D4-7F4),626 nm(5D4-7F3)[33-40]。x=0.005 和x=0.01 的样品位于381 nm 的发射峰发光强度相近。x=0.15 的样品位于545 nm 的发射峰发光强度最大。当Tb3+掺杂浓度较低时,可以同时看到5D3-7FJ(J=6,5,4,3,2)和5D4-7FJ(J=6,5,4,3)发射出的荧光;当x> 0.1 时,5D3-7FJ跃迁发光强度明显减弱。这是由于5D3能级的粒子交叉弛豫过程被倒空到5D4能级的缘故。图6 是Tb3+的能级图。Tb3+主要猝灭过程是5D3+7F6→5D4+7F0的交叉弛豫过程,随着Tb3+掺杂浓度的升高,5D3能级发出的荧光逐渐减弱,5D4能级发出的荧光逐渐增强[41-42]。

图5 Sr6Lu2-2xAl4O15∶xTb3+(x=0.001,0.005,0.01,0.025,0.05,0.1,0.125,0.15,0.2,0.25,0.5,0.75,1.0)样品的发射光谱,λex=268 nm。Fig.5 Photoluminescence spectra of the Sr6Lu2-2xAl4O15∶xTb3+(x =0.001,0.005,0.01,0.025,0.05,0.1,0.125,0.15,0.2,0.25,0.5,0.75,1.0)phosphors,λex=268 nm.

图6 Tb3+的能级图Fig.6 Energy level diagram of Tb3+

表1 为样品Sr6Lu2-2xAl4O15∶xTb3+(x=0.001,0.005,0.01,0.025,0.05,0.1,0.125,0.15,0.2,0.25,0.5,0.75,1.0)在268 nm 激发下的CIE 坐标。图7为样品的色坐标图,可以看出,在紫外光激发下,随着Tb3+掺杂浓度的升高,样品的发光颜色从蓝光变为黄绿光,说明通过改变Tb3+的掺杂浓度,可以实现Sr6Lu2-2xAl4O15∶xTb3+体系样品发光颜色的调控。

表1 Sr6Lu2-2xAl4O15∶xTb3+样品的CIE 坐标Tab.1 CIE of Sr6Lu2-2xAl4O15∶xTb3+ phosphors

图7 Sr6Lu2-2xAl4O15∶xTb3+(x=0.001,0.005,0.01,0.025,0.05,0.1,0.125,0.15,0.2,0.25,0.5,0.75,1.0)CIE 坐标图,λex=268 nm;插图为样品在254 nm 紫外灯下的发光照片。Fig.7 CIE chromaticity coordinates of Sr6Lu2-2xAl4O15∶xTb3+(x =0.001,0.005,0.01,0.025,0.05,0.1,0.125,0.15,0.2,0.25,0.5,0.75,1.0)phosphors under 268 nm excitation.Inset shows the images of samples under 254 nm UV lamp.

3.3 浓度猝灭机理

图8(a)给出了Sr6Lu2-2xAl4O15∶xTb3+(x=0.001,0.005,0.01,0.025,0.05,0.1,0.125,0.15,0.2,0.25,0.5,0.75,1.0)在268 nm 激发下,样品源于5D3能级跃迁发光的积分发光强度与Tb3+浓度的关系,积分范围为360~470 nm。随Tb3+掺杂浓度的增加,样品的积分发光强度先增强后减弱。当x=0.01 时,样品的积分发光强度最强;当0.01 <x<0.1 时,样品5D3-7FJ的发光强度急剧下降,这是由于发生了浓度猝灭。当x≥ 0.25 时,样品的5D3-7FJ跃迁几乎完全猝灭。猝灭临界浓度为0.01。图8(b)给出了Sr6Lu2-2xAl4O15∶xTb3+(x=0.001,0.005,0.01,0.025,0.05,0.1,0.125,0.15,0.2,0.25,0.5,0.75,1.0)在268 nm 激发下,471~650 nm 范围内5D4能级跃迁发光的积分发光强度与Tb3+浓度的关系。随Tb3+掺杂浓度的增加,样品的积分发光强度先增强后减弱。当x< 0.15 时,5D4-7FJ的发光强度逐渐增强;当x> 0.15 时,5D4-7FJ的发光强度逐渐减弱,这是由于发生了浓度猝灭。猝灭临界浓度为0.15。

图8 (a)Sr6Lu2-2xAl4O15∶xTb3+(x=0.001,0.005,0.01,0.025,0.05,0.1,0.125,0.15,0.2,0.25,0.5,0.75,1.0)样品5D3 能级跃迁强度随Tb3+浓度的变化关系;(b)Sr6Lu2-2xAl4O15∶xTb3+样品5D4能级跃迁强度随Tb3+浓度的变化关系。Fig.8 (a)5D3 energy level emission intensity of Sr6Lu2-2xAl4-O15∶xTb3+(x=0.001,0.005,0.01,0.025,0.05,0.1,0.125,0.15,0.2,0.25,0.5,0.75,1.0)with the Tb3+concentrations.(b)5D4 energy level emission intensity of Sr6Lu2-2xAl4O15∶xTb3+ with the Tb3+ concentrations.

Tb3+离子的浓度猝灭现象可以归因于Tb3+离子之间的能量传递。能量传递主要有两种机制:电多极相互作用和交换相互作用,主要由临界距离Rc决定。Blasse[43]推测晶体中能量传递的临界距离Rc的计算公式为:

V(V=0.763 nm3)为单位晶胞体积,N(N=4)为单位晶胞中激活剂离子占据的阳离子格点数,Xc是猝灭临界浓度。一般而言,当Rc≤0.5 nm 时,能量传递以交换相互作用为主;当Rc>0.5 nm 时,能量传递主要归因于电多极相互作用。将上述数值代入公式(2)中,计算得到Rc1=3.32 nm > 0.5 nm,Rc2=1.34 nm > 0.5 nm。所以Sr6Lu2-2xAl4O15∶xTb3+中Tb3+的5D3能级和5D4能级浓度猝灭的能量损失均为电多极-电多极相互作用。

Dexter[44]曾指出,在无机非导电性材料中,激活剂的电多极-电多极相互作用所导致的浓度猝灭中,发射光强度I与掺杂摩尔浓度x之间存在着以下关系:

其中,C为常数,θ=6,8,10 分别对应于电偶极-电偶极(d-d)、电偶极-电四极(d-q)、电四极-电四极(q-q)相互作用。作出lg(I/x)与lgx的关系曲线,如图9 所示,通过线性拟合得出lg(I/x)与lgx呈线性关系。5D3能级的拟合斜率为-2.289 53,θ1=6.87,近似等于6;5D4能级的拟合斜率为-2.053 47,θ2=6.16,近似等于6。因此,样品中Tb3+的5D3能级和5D4能级的猝灭机理均为电偶极-电偶极相互作用。

图9 (a)Sr6Lu2-2xAl4O15∶xTb3+(x=0.001,0.005,0.01,0.025,0.05,0.1,0.125,0.15,0.2,0.25,0.5,0.75,1.0)样品5D3能级的lg(I/x)与lgx 关系曲线;(b)Sr6Lu2-2xAl4O15∶xTb3+样品5D4能级的lg(I/x)与lgx关系曲线。Fig.9 (a)The plot of lg(I/x) versus lgx in Sr6Lu2-2xAl4O15∶xTb3+(x=0.001,0.005,0.01,0.025,0.05,0.1,0.125,0.15,0.2,0.25,0.5,0.75,1.0)phosphors for 5D3 energy level.(b)The plot of lg(I/x)versus lgx in Sr6Lu2-2xAl4O15∶xTb3+ phosphors for 5D4 energy level.

在268 nm 光激发下,监测381 nm(5D3-7F6)和545 nm(5D4-7F5)两个位置,测得Sr6Lu2-2xAl4O15∶xTb3+(x=0.001,0.005,0.01,0.025,0.05,0.1,0.125,0.15,0.2,0.25,0.5,0.75,1.0)的荧光衰减曲线,如图10 和图11 所示。寿命由公式(4)计算得到:

图10 Sr6Lu2-2xAl4O15∶xTb3+(x=0.001,0.005,0.01,0.025,0.05,0.1,0.125,0.15,0.2,0.25,0.5,0.75,1.0)荧光寿命衰减曲线,监测波长为381 nm,λex=268 nm。Fig.10 PL decay curves of the Tb3+ ions in Sr6Lu2-2xAl4O15∶xTb3+ (x=0.001,0.005,0.01,0.025,0.05,0.1,0.125,0.15,0.2,0.25,0.5,0.75,1.0) phosphors monitored at 381 nm.λex=268 nm.

图11 Sr6Lu2-2xAl4O15∶xTb3+(x=0.001,0.005,0.01,0.025,0.05,0.1,0.125,0.15,0.2,0.25,0.5,0.75,1.0)荧光寿命衰减曲线,监测波长为545 nm,λex=268 nm。Fig.11 PL decay curves of the Tb3+ ions in Sr6Lu2-2xAl4O15∶xTb3+(x=0.001,0.005,0.01,0.025,0.05,0.1,0.125,0.15,0.2,0.25,0.5,0.75,1.0)phosphors monitored at 545 nm.λex=268 nm.

其中,I(t)代表t时刻的发光强度,τ是荧光寿命。用公式(4)计算得出的寿命如图12所示。从图12(a)中可以看出,随Tb3+浓度的增加,Sr6Lu2-2xAl4O15∶xTb3+样品5D3-7F6跃迁发射的寿命总体呈现衰减的趋势,当x≤ 0.1 时,样品荧光寿命衰减较快。从图12(b)中可以看出,随Tb3+浓度的增加,样品5D4-7F5跃迁发射的寿命逐渐衰减。当x≤ 0.05时,样品荧光寿命衰减较快;当0.1≤x≤0.2 时,样品荧光寿命衰减缓慢。

图12 (a)监测381 nm 时Sr6Lu2-2xAl4O15∶xTb3+样品的寿命随Tb3+浓度的变化关系;(b)监测545 nm 时样品的寿命随Tb3+浓度的变化关系。λex=268 nm。Fig.12 (a) Lifetime for Sr6Lu2-2xAl4O15∶xTb3+ phosphors with the Tb3+ concentrations monitored at 381 nm.(b) Lifetime for Sr6Lu2-2xAl4O15∶xTb3+ phosphors with the Tb3+concentrations monitored at 545 nm.λex=268 nm.

表2 给出了在监测381 nm 和545 nm 时Sr6Lu2-2xAl4O15∶xTb3+样品的寿命。监测381 nm时,样品5D3-7F6跃迁发射的寿命为4.88×10-3~2.18 ms;监测545 nm 时,样品5D4-7F5跃迁发射的寿命为1.65~6.15 ms。随Tb3+浓度的增加,5D3能级的寿命变短趋势比5D4能级更显著,并且5D3能级的寿命比5D4能级的寿命短,这与荧光强度随浓度的变化情况一致。

表2 监测381 nm 和545 nm 时Sr6Lu2-2xAl4O15∶xTb3+样品的寿命Tab.2 Lifetime for Sr6Lu2-2xAl4O15∶xTb3+ phosphors monitored at 381 nm and 545 nm

3.4 热稳定性和量子效率

为研究样品的热稳定性,对Sr6Lu1.7Al4O15∶0.3Tb3+样品在298~483 K 不同温度下的发射光谱进行了测试。如图13 所示,随着温度升高,样品的发光强度先增强后减弱。当温度为323 K 和343 K 时,样品的发光强度分别为初始发光强度的102.4% 和101.5%,说明样品具有负热猝灭的特性。当温度为423 K 时,样品的发光强度为初始温度的80.9%,说明样品具有良好的热稳定性。

图13 Sr6Lu1.7Al4O15∶0.3Tb3+在不同温度下的发射光谱,插图为不同温度下的积分发光强度。Fig.13 The temperature-dependent luminescence intensities of Sr6Lu1.7Al4O15∶0.3Tb3+ phosphor.Inset shows the intensities on temperature.

为研究样品的量子效率,对Sr6Lu1.7Al4O15∶0.3Tb3+样品的量子效率进行了测量。样品的内量子效率为53.5%,外量子效率为39.3%。

4 结论

本文采用高温固相法合成了Sr6Lu2-2xAl4O15∶xTb3+(x=0.001,0.005,0.01,0.025,0.05,0.1,0.125,0.15,0.2,0.25,0.5,0.75,1.0)系列荧光粉。研究了其晶体结构、发光性质、浓度猝灭机理、热稳定性和量子效率。在紫外光激发下,x=0.01 的样品,Tb3+的5D3-7F6跃迁强度最大,位于381 nm;x=0.15的样品,Tb3+的5D4-7F5跃迁强度最大,位于545 nm。通过改变Tb3+掺杂浓度,样品的发光颜色可以从蓝光变为黄绿光,色坐标从(0.183 7,0.126 7)变化到(0.314 2,0.589 7)。样品5D3和5D4能级浓度猝灭机理均为电偶极-电偶极相互作用。通过测量样品的荧光寿命衰减曲线,发现随着Tb3+浓度的增加,5D3能级的寿命变短趋势比5D4能级更显著,这与荧光强度随浓度的变化情况一致。Sr6Lu1.7Al4O15∶0.3Tb3+样品具有良好的热稳定性,423 K时,样品的发光强度为初始发光强度的80.9%。Sr6Lu1.7Al4O15∶0.3Tb3+内量子效率为53.5%,外量子效率为39.3%。Sr6Lu2-2xAl4O15∶xTb3+是一种适合于紫外激发的发光颜色可调的荧光粉。Sr6Lu2-2xAl4O15∶xTb3+是潜在的可应用于黑光灯、彩色荧光灯的新型荧光粉。

本文专家审稿意见及作者回复内容的下载地址:http://cjl.lightpublishing.cn/thesisDetails#10.37188/CJL.20230147.

猜你喜欢

荧光粉热稳定性能级
“拼、抢、快、优”,展现钱塘“高能级”担当
宽带激发BaBi2(MoO4)4:Eu3+荧光粉的制备与发光性能
提升医学教育能级 培养拔尖创新人才
纠缠Ξ-型三能级原子与纠缠腔场相互作用熵的纠缠演化
PVC用酪氨酸镧的合成、复配及热稳定性能研究
硼酸、Li+掺杂对YAG:Ce3+荧光粉的影响
提高有机过氧化物热稳定性的方法
XPS在YAG∶Ce3+荧光粉中Ce3+半定量分析方面的应用
可聚合松香衍生物的合成、表征和热稳定性?
退火温度对NaGd(WO4)2:Eu3+荧光粉发光特性的影响