APP下载

中国香蕉育种研究进展

2023-11-21曾鸿运吴元立黄秉智

果树学报 2023年11期
关键词:育种种质资源香蕉

曾鸿运 吴元立 黄秉智

摘    要:近几十年来,中国香蕉产业快速发展。目前,中国是世界香蕉第二大生产国和消费国。然而,我国香蕉主产区香蕉枯萎病等病害肆虐;同时,这些地方多山地,土质贫瘠,夏季台风和洪涝频发,冬季霜冻严重。这些问题限制香蕉产业的进一步发展。培育高产、优质兼具高抗逆性和适应性的香蕉品种是突破我国香蕉产业发展瓶颈的关键,也是我国香蕉育种工作者面临的难题和挑战。通过总结近年来香蕉育种的研究成果,论述香蕉育种方法、新品种选育目标以及主要面临的问题,展望今后研究重点与方向,以期为我国香蕉育种工作提供参考。

关键词:香蕉;育种;种质资源

中图分类号:S668.1 文献标志码:A 文章编号:1009-9980(2023)11-2446-20

Research and utilization progress in banana germplasm resources in China

ZENG Hongyun, WU Yuanli, HUANG Bingzhi*

(Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences/Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, Guangdong, China)

Abstract: Banana is one of the main fruit crops and important food crops in the world, and it is also an important economic fruit in southern China. China is the border area of the origin of modern bananas, and one of the secondary origin centers as well. China has a history of banana cultivation for more than 2000 years and is the second largest country in banana production and consumption. Banana producing areas in China are mainly concentrated in Guangdong, Guangxi, Hainan, Yunnan, Fujian and Taiwan, with a small amount of cultivation in the south of Sichuan, Guizhou and Tibet. Most cultivated bananas are evolved from two wild species, Musa acuminate and Musa balbisiana, and their interspecific hybridization. The genome of Musa acuminata is called “genome A”, while the genome of Musa balbisiana is called “genome B”. According to the classification value of characteristics, banana cultivars can be divided into genotypes such as AA, AAA, AB, AAB, ABB, AAAA, AAAB, AABB, BB and BBB. Bananas cultivated in China are simply divided into four categories: Cavendish (AAA), Pisang Awak (ABB), Silk (AAB) and Dajiao (ABB). Cavendish banana is planted mostly in China (more than 80%), followed by Pisang Awak (more than 10%). Notably, in China, few people plant and consume Plantain (AAB), which is an important staple food in some area. Banana breeding mainly includes introduction (like Brazil and Williams banana), vegetative line selection (like GCTCV bananas), artificial mutation breeding (like Jiali banana), cross breeding (like Fenza No. 1 and Zhongjiao No. 9 banana), chromosome ploidy breeding, transgenic breeding and gene editing breeding. The introduction method is simple and direct. Our group took the lead in establishing the National Banana Germplasm Resource Garden in 1989. In the future, we should introduce not only high-quality varieties, but also multifunctional and diverse banana varieties to enrich Chinas banana market. After introduction, people often get better lines that adapt to Chinese geographical and climatic conditions and planting habits, and then popularize them. Mutation breeding is easy, but the ideal excellent lines can only be obtained through a large number of screening and evaluation. The female flowers of some bananas, like Dajiao and Pisang Awak, have strong fertility, so they are often used as female parents to cross with wild bananas or cultivated varieties with certain fertility. Although sexual hybridization of banana needs a long period and is easy to fail, this method can often create new germplasm with diverse genetic background and relatively controllable traits, which is the most potential and promising method in traditional banana breeding at present. In recent years, researchers in China have created many new hybrid banana germplasm, and it can be predicted that a large number of new hybrid banana varieties will emerge in China in the near future. Banana transgenic and gene editing breeding have strong pertinence. China has made good achievements in the fields of banana transgenic and gene editing. However, as in many other parts of the world, these methods cannot be applied to business at present. At last, other breeding methods like somatic hybridization, rapid breeding and molecular-assisted breeding are rarely used at present. Banana Fusarium wilt and other diseases seriously threaten banana industry in China. At the same time, frequent typhoons and floods, severe frost and poor soil in the main banana producing areas in China also limit the further development of banana industry. Breeding new banana varieties with high yield, high quality and high stress resistance and adaptability is the key to break the bottleneck of banana industry development in China, and it is also a challenge for banana breeders in China. In addition, it is also an important direction to cultivate bananas with high nutrition and health care function, which are suitable for industrial processing or feed. During the last decades, China has made great achievements in banana breeding, but there are still many problems. First of all, banana biodiversity is relatively lacking, with few wild banana resources. Moreover, the careful evaluation of banana germplasm resources is not enough, limiting the utilization of them. Secondly, the main banana varieties in China were bred by introduction and mutation breeding, and only a few were bred by hybridization or other means. Moreover, due to many reasons, there is a lack of varieties with good comprehensive characteristics. Finally, it is difficult to study genes in banana through the forward or reverse genetic means, limiting the molecular research on banana. In the future, we should: (1) Continue to strengthen the collection, evaluation and utilization of global banana germplasm resources, and especially promote banana cross breeding vigorously; (2) Pay attention to the basic research on banana, dig out the key genes related to important economic traits, and analyze their regulatory networks, so as to lay the foundation for creating new banana varieties without transgene through gene editing technology in the future; (3) Continuously develop and upgrade new breeding techniques, promote the integration of various means, and breed efficiently and scientificly; (4) Breed new varieties that are resistant to various diseases and have good comprehensive properties, so as to win the banana defense war. In a word, we have summarized the research results of banana breeding in China in recent years, discussed the methods of banana breeding, the direction of new variety breeding and the main problems, in order to provide reference for banana breeding in China.

Key words: Musa; Breeding; Germplasm resources

收稿日期:2023-04-14 接受日期:2023-08-28

基金项目:广东省基础与应用基础研究基金联合基金—青年基金(2022A1515110492);广东省自然科学基金—面上项目(2023A1515012955);广州市科技计划项目(2023A04J0795)

作者简介:曾鸿运,男,助理研究员,博士,研究方向为香蕉抗病育种。Tel:13725491759,E-mail:zenghongyung@163.com

*通信作者Author for correspondence. Tel:13802538103,E-mail:huangbingzhi@gdaas.cn

香蕉是世界上主要水果作物和重要粮食作物之一。香蕉是芭蕉目(Scitamineae)芭蕉科(Musaceae)芭蕉属(Musa)的常绿多年生热带亚热带单子叶大型草本植物,果肉可食,其作为栽培果迄今已有三四千年的历史,是世界最古老的栽培果树之一[1]。大部分栽培种香蕉是由尖苞片蕉(M. acuminata)和长梗蕉(M. balbisiana)两个野生种及其种间杂交演化而成的[1]。香蕉主要起源于东南亚的印度尼西亚、马来西亚、印度和泰国等地[1]。可食用的无籽香蕉在这些地方产生后,被人类以吸芽的形式传播到世界各地,通过自然突变、人工选育等逐步演化为今天的香蕉[1]。Simmonds[1]将贡献尖苞片蕉性状的基因组称为“A基因组”,将贡献长梗蕉性状的基因组称为“B基因组”。根据多个性状分类值可将香蕉栽培种分为AA、AAA、AB、AAB、ABB、AAAA、AAAB、AABB、BB和BBB等基因组型[1]。香蕉的栽培种先分基因组(group),后分栽培品种,有的基因组下再分亚组(subgroup)。例如,香牙蕉(卡文迪许香蕉,Cavendish)是AAA基因组型的亚组,粉蕉(Pisang awak)是ABB基因组型的亚组。一般地,栽培香蕉的命名规范为“属名+基因组型+亚组名+品种名”,如广粉1号香蕉的学名可写成“Musa ABB Pisang Awak ‘Guangfen No. 1”。

香蕉喜温热、忌霜冻、怕旱、怕涝,主要分布于南北纬30°以内的热带和亚热带地区。全世界有130多个国家和地区种植香蕉,每年约生产1.55亿t,主产区为南美洲、亚洲、中美洲及加勒比海沿岸国家和非洲等地,主产国有巴西、厄瓜多尔、印度、中国、哥斯达黎加、洪都拉斯、菲律宾、墨西哥、泰国、委内瑞拉、巴拿马和哥伦比亚等(FAO,2020)。香蕉是鲜食消费量最大的水果,而大蕉(Plantain,AAB)和其他煮食蕉则是部分地区人民的主要粮食来源,也是世界第四大粮食作物。因此,国际上也将香蕉作物统称为“香(大)蕉”。需要注意的是,这里指的“大蕉”与我國俗称的“大蕉”(Dajiao,ABB)完全不同,属于同名异物,故下文将前者称为“国际大蕉”,后者称为 “中国大蕉”,以免混淆。

中国毗邻香蕉的原生起源中心[1]。在中国云南、广东、海南等地,有AA基因组型及BB基因组型野生蕉分布[2]。我国有2000年以上的香蕉栽培历史,是香蕉生产第二大国,其产区主要集中在广东、广西、海南、云南、福建和台湾等,四川、贵州和西藏等省区的南部也有少量栽培。与国外多个香蕉主产区不同,我国很少种植国际大蕉,也没有以国际大蕉为主食的饮食习惯。由于以前我国香蕉品种较少,一般把国内栽培种香蕉简单地分为四大类:香牙蕉(Cavendish,AAA)、粉蕉(Pisang Awak,ABB)、龙牙蕉(Silk,AAB)和中国大蕉(Dajiao,ABB)。我国香蕉种植以香牙蕉类型为主,约占香蕉种植面积的80%[3]。除香牙蕉外,近年来一些其他种类的香蕉(即特色蕉)也受到关注,如贡蕉(AA)、海贡蕉(AA)、佳丽蕉(AA)、佛手蕉(AA)、玫瑰蕉(AA)、美食蕉系列(AAB)、中蕉9号(AAA)、粉杂1号(ABBB)、金手指(AAAB)和广东四倍体蕉(ABBB)等。

我国乃至世界多个香蕉主产区遭受香蕉枯萎病的威胁,同时伴随着多种其他病害的侵扰。在枯萎病严重的地方,蕉农往往血本无归。而且,由于枯萎病属于土传病害并且能在土壤中潜伏长达10 a(年)以上,染病的香蕉种植园只能改种其他作物,严重干扰了香蕉的正常生产。目前,以栽培优良的抗病香蕉品种为主,综合多种防治方法(如农药、轮作、间种其他植物以及生物防治等)为辅,可以相对有效地防控枯萎病[4]。另外,我国香蕉主产区多处沿海地带,台风洪涝频发;同时,这些地方山区丘陵较多,冬季霜冻严重,土质相对贫瘠。这些特点制约了我国香蕉产业的发展。因此,培育高产、优质兼具强抗逆性和适应性的香蕉品种非常重要。

1 香蕉育种的方法

香蕉育种的方法包括引种、营养系选种、人工诱变育种、杂交育种、倍性育种、转基因和基因编辑育种等。

1.1 引种及资源利用

引种法简单、直接,是香蕉育种的重要途径,同时也为后续用其他方法进行品种选育提供起始材料。在引种后,人们往往会通过营养系选种等手段,对品种进行“本土化”,得到适应我国地理气候条件和种植习惯的性状更佳、更稳定的植株,再将其推广。目前,我国的香蕉主栽品种多从境外引入。其中,以20世纪80年代引入我国的巴西蕉、威廉斯(8818)最为知名[5](表1)。另外,其他引进的品种如新北蕉[6]、贡蕉[7]和海贡蕉[8]等目前都在我国多地有种植(表1)。引种时,不仅要考虑当前市场需求引入国外大面积种植的优质品种,也要兼顾产业结构布局,引入多功能、多样性的特色香蕉品种,丰富我国香蕉市场。比如,在国际大蕉基础上选育出的美食蕉1号(AAB)、美食蕉2号(AAB)、粤蕉1号(AAB)以及在东非高原蕉(AAA)基础上选育出的粤蕉2号(AAA)等品种填补了我国香蕉粮食和加工用途品种的空白[11](表1)。

引种离不开种质资源的收集、鉴定、分类和评价。种质资源,即遗传资源,是育种的物质基础,一般包括野生资源、地方品种、选育品种、品系、特殊遗传材料以及野生近缘种等。与香蕉原生起源中心相比,我国香蕉野生种质资源匮乏。因此,我国需要通过从起源中心及世界各地引种,丰富我国香蕉种质资源库。广东省农业科学院果树研究所于1989年率先建立了国家级香蕉种质资源圃,随后建立了农业部广州香蕉种质资源圃。此外,中国热带农业科学院热带作物品种资源研究所、东莞市农业科学研究中心、云南热带作物研究所、福建省热带作物科学研究所、广西壮族自治区农业科学院生物技术研究所和云南省农业科学院等单位陆续建成一定规模的香蕉资源圃(库)。这些资源圃(库)为我国香蕉育种研究奠定了丰富的物质基础,促进了香蕉产业的可持续发展。

1.2 营养系选种

营养系选种是利用香蕉无性繁殖过程中发生的突变,包括吸芽苗、组培苗和胚性悬浮细胞(embryogenic cell suspension,ECS)等发生的变异,是主要的香蕉育种方法之一。营养系选种具有在保持母本优良性状的基础上优中选优、万里挑一的突出特点,是最基础的香蕉品种改良方法。营养系选种操作简单、门槛低,不需要专门的诱变过程,但是该方法必须通过大量群体筛选、观察、评价(或蕉农反馈)才能获得理想的优异株系[9,12](表1)。

一般来说,在没有经过组织培养的情况下,香蕉芽变的频率极低,约为百万分之二。在组织培养过程中,香蕉体细胞有大量变异,如香牙蕉在组织培养中有约3%的植株在大小、假茎和假叶的颜色以及叶和果的形状上发生明显的变化[13]。基于这个原理,人们在香蕉组培技术广泛应用于农业生产中的这30多年中,通过组培苗选育了大量的新优系、新品种。

台湾香蕉的发展历程就是一个经典的营养系选种案例。20世纪在台湾省大面积种植的北蕉(Giant Cavendish,AAA)是200多年前从广东引进的品种,随着台湾香蕉产业的发展销往世界各地[13]。20世纪80年代开始,由于不抗枯萎病,北蕉种植面积不断缩减。北蕉的一个自然芽变种仙人蕉被选育出来,其抗枯萎病,对山地瘠土的适应能力强,多在台湾的中部山区种植。人们从仙人蕉中筛选出一些新优系,如台湾8号等。台湾省香蕉研究所通过对北蕉的体细胞无性系变异株进行系统筛选评价,得到一系列抗枯萎病的GCTCV株系[13](表1),如GCTCV215-1(台蕉1号)和GCTCV218(新北蕉、Formosana、宝岛蕉)(表1)。2000年,他们从台蕉1号组培苗中选育出矮化品种台蕉3号[40],随后在台蕉3号基础上选育出台蕉5号(玉山)。广东省农业科学院果树研究所于2002年从台湾省香蕉研究所引进GCTCV218,通过多代的性状评价和选育培育出高产优质的抗枯萎病新品种南天黄[16],并在南天黃的基础上选育出南天红[17]。这两个品种在我国有较大种植面积(表1)。与此类似,热蕉11号是从北蕉田间芽变株中选育出的[41],高抗香蕉枯萎病品系的抗枯1号[42]、抗枯5号[43]和粤优抗1号[44]则是由GCTCV119的自然突变株选育而成的(表1)。除了利用台湾香蕉为材料育成的品种以外,目前还有一大部分品种是在巴西蕉和威廉斯的组培变异苗中选育而来的。比如,中蕉2号、桂蕉9号[21]、农科1号[45]、红研3号和东蕉1号[24]等为巴西蕉变异株系,桂蕉1号[19]和桂蕉6号[20]等为威廉斯变异株系(表1)。另外,大丰1号和大丰2号是笔者团队从粤香2号组培苗中选育获得的[14-15](表1)。

1.3 人工诱变选育

人工诱变技术一般包括物理诱变和化学诱变。香蕉的物理诱变主要采用γ射线辐射法[46],其他方法如太空育种等目前尚未有成功的例子报道。香蕉的化学诱变主要采用甲磺酸乙酯[47-49]、叠氮化钠[50-52]、硫酸二乙酯[50]和高水平的细胞分裂素等[53]。物理诱变对遗传物质的破坏性较大,较容易造成原优良性状的丢失[54]。比如,辐射诱变得到的香蕉新品种中存在几十万到几百万碱基对大小不一的多片段缺失[54]。与物理诱变相比,化学诱变引起的核酸分子变化细微,多是基因点突变。诱变的对象主要为香蕉吸芽、组培苗不定芽、多芽体和ECS等。与其他材料相比,ECS诱变后通过体细胞胚胎发生可获得单细胞起源的变异株[55],避免嵌合体的产生。人工诱变与自然变异相比,获得的种质突变率大大提高,更容易获得目的性状,但是有害性状的出现频率也显著增加。因此,人工诱变选育需要有足够大的群体用于准确、持续的性状评价和筛选。对于香蕉育种而言,较难通过回交等手段纯化优良性状,育种人员往往将人工诱变和自然系选种相结合,通过单株扩繁、多代的评价和优中选优得到综合性状优异的株系[32]。人工诱变选育简单、有效,广泛应用于香蕉育种中。

1961年,我国台湾省研究人员开始进行香蕉辐射诱变育种的研究[56]。1996年,李丰年等[57]在广东以多个品种的组培苗为材料进行辐射,发现剂量率35.0~50.2 R·min-1条件下6.0~8.0 kR是香蕉分化芽辐射育种的适宜剂量范围,有益性状突变为3%左右。后续研究报道,采用剂量率为60.0 R·m-1以及剂量为3.0~5.0 kR的射线处理,可获得较好的效果[58-59]。Hu等[55]以巴西蕉未成熟雄花诱导的ECS为材料,发现2.0 Gy·min-1的剂量率条件下接受80.0 Gy剂量的照射最佳。以香蕉栽培品种Highgate(AAA)的组培苗为材料,研究人员发现叠氮化钠、硫酸二乙酯和甲磺酸乙酯的最佳处理浓度和时间分别为1.1 mmol·L-1,30 min;200.0 mmol·L-1,30 min;20.0 mmol·L-1,60 min[53]。以巴西蕉多芽体为材料,用1.6%甲磺酸乙酯或2.0 g·L-1叠氮化钠处理3 h,能得到较好的变异效果[52]。以农科1号不定芽为材料,适宜采用0.15 g·L-1 NaN3处理3 h和0.25 g·L-1 NaN3处理2 h的处理组合[51]。据报道,利用低覆盖率全基因组测序法(low-coverage whole-genome sequencing)[54]和随机扩增多态性DNA法(randomly amplified polymorphic DNA)[47]可分析香蕉辐射和EMS处理的诱变效率,辅助育种。如表1所示,我国多个香蕉品种,如漳蕉8号(原漳农8号)[30-31]、中蕉4号[34]和中蕉12号[35]以及佳丽蕉[32]等都为辐射诱变选育而来。

1.4 杂交

有性杂交是香蕉重要的育种手段,原理是利用染色体重组。根据亲本的不同,有性杂交主要分为种间杂交和远缘杂交。由于大部分香蕉具有多倍体、单性结实、花粉育性低、不同香蕉生命周期各异以及无性繁殖后代的特性,香蕉的杂交育种工作难度较大。然而,即使是曾被认为是高度不育的香牙蕉也有一定育性(中等的雄性育性和极低的雌性育性),可用于杂交育种[60]。与香牙蕉相比,Gros Michel的育性更强[60]。部分栽培类型(如粉蕉和中国大蕉)也具有一定育性,常用于与野生香蕉资源杂交。用野生种质资源育种的过程中要保证最终的栽培品种果实绝对无籽化。香蕉的杂交育种往往需要多轮的杂交,有多种杂交策略[61]。野生香蕉常被作为“中间二倍体”,不仅起遗传信息交流的“桥梁”作用,也提供自身的遗传信息,对杂交育种的成败起关键作用[61]。

在香蕉杂交育种过程中,通过人工授粉通常能得到少量珍贵但脆弱的可育种子,为最大程度地提高种子成活率,往往需要用到胚挽救技术[62]。胚挽救是指对由营养或生理原因造成的难以通过常规播种的方式成苗或在发育早期就败育、退化的胚进行离体培养,提供胚芽生长的营养以及外在条件。在最佳条件下,胚挽救可以将杂交香蕉种子的萌发率(一般为0~25%)提高3倍以上[63]。胚挽救技术不仅可以让种子避开休眠期从而缩短育种周期,而且同时还能测试种子活力、提供微繁殖材料等[64]。

杂交育种虽然周期长,但是该方法是目前最有潜力的香蕉传统育种手段。洪都拉斯农业研究基金会(Fundación Hondure?a de Investigación Agrícola,FHIA)以改良的二倍体香蕉SH-3142(AA)为父本、Santa Catarina Prata(AAB,Pome亚组)三倍体香蕉为母本杂交培育出四倍体香蕉FHIA-01(也叫金手指,AAAB)[60](表1)。这是世界上首个杂交育成的香蕉品种,其抗枯萎病、叶斑病和香蕉穿孔线虫病等多种病害[65]。然而该品种口感与香牙蕉差别较大,较难被消费者接受,尽管引种多年,在我国少有种植[5,66]。FHIA还育有FHIA-02、FHIA-03、FHIA-17、FHIA-18、FHIA-20、FHIA-21、FHIA-23和FHIA-25等[67]。巴西、喀麦隆、科特迪瓦、瓜德罗普岛、洪都拉斯、印度、尼日利亚、坦桑尼亚和乌干达等国家以及国际热带农业研究所(International Institute for Tropical Agriculture,IITA)、國际农业研究促进发展合作中心(Centrede Coopération Internationale en Recherche Agronomique pour le Développement,CIRAD)等国际组织都陆续开展了杂交香蕉项目,并培育了一批新品种[61]。然而,绝大数品种不能满足国际消费者的需求。相比之下,我国香蕉杂交育种起步相对较晚、规模较小,但也取得了不错的成绩。20世纪80年代,笔者团队选育出我国第一个杂交香蕉品种广东四倍体蕉(ABBB,畦头大蕉×BB野生蕉),该品种果指较短、味清甜,综合农艺性状一般(表1)。2011年,笔者团队选育出杂交香蕉品种粉杂1号粉蕉(ABBB,广粉1号×BB野生蕉)[38](表1)。粉杂1号高抗香蕉枯萎病‘热带4号生理小种,在重病区株发病率低于5%,风味浓甜微酸,品质优异,耐贮藏[38]。据国家香蕉产业技术体系统计,粉杂1号在我国的种植面积每年为1.33~2.00万hm2,在我国粉蕉市场占有率超60%,在我国总的香蕉市场中占比为5%~8%。粉杂1号还是开拓北方香蕉市场的重要品种[68]。另一个杂交香蕉新品种中蕉9号(AAA,金手指×SH-3142)高抗香蕉枯萎病[39](表1),在广东有少量种植。除此之外,广东省农业科学院果树研究所用广粉1号和中粉1号粉蕉分别与Calcutta4(AA)杂交[69],中国热带农业科学院南亚热带作物研究所用野生近缘种与不同栽培蕉杂交[70],广西农业科学院生物技术研究所以广西野生蕉为父本进行香蕉远缘杂交[71],都得到了一些杂交后代。2023年,一些杂交香蕉(如南角系列香蕉)纷纷获得新品种保护权(表1)。可以预见,接下来一段时间内,我国的杂交香蕉新品种会像雨后春笋般出现。

1.5 倍性育种

香蕉倍性育种技术也是较为传统的手段,通过改变染色体组的数量或“质量”或二者兼用的办法进行作物育种。香蕉倍性育种可以简单分为单倍体育种和多倍体育种。通过花药培养得到的单倍体具有两种遗传特性[72-73]。一是单倍体加倍后就成为二倍体纯种(即双单倍体),避开了杂交育种中多代的分离、选择与稳定的过程,因而大大缩短育种周期。香蕉A基因组和B基因组测序所用的材料DH-Pahang和DH-Pisang Klutuk Wulung即为双单倍体技术创制获得[74-75]。二是单倍体的基因突变,因为没有等位基因的干扰而直接表现,因而它的愈伤组织是突变株筛选的理想材料。对于香蕉而言,多倍体植株往往更高大[76-77],抗逆性更强[77]。倍性育种技术被广泛用于香蕉杂交育种中[78-79]。我国有关倍性育种的研究相对较少。据报道,研究人员用秋水仙素诱导GCTCV-119[80]、抗枯1号[81-82]、贡蕉[82]、巴西[82]、Mjenga Gros Michel Diploide和新海贡[83]等产生多个香蕉多倍体。

1.6 转基因和基因编辑育种

转基因和基因编辑育种主要是利用分子遗传学的方法,通过导入目标基因或者编辑目标内源基因,从而筛选得到其关联性状优良的种质。香蕉的自然突变选育、诱变育种和杂交育种等都需要较长的周期,并且具有一定的盲目性。相比之下,香蕉转基因和基因编辑育种周期短,针对性强,是未来培育优质抗逆新品种的理想途径之一。

根据基因导入受体方法的不同,香蕉转基因可分为电击法、基因枪法和农杆菌转化法等[84]。电击法转化率高,但技术难度大;基因枪法转化品种广泛、转化率高,但往往存在外源基因在宿主植物中表达不稳定等问题,同时基因枪价格昂贵、运转费用高[84]。与这两者相比,农杆菌法用得最多,该法具有操作简单、导入基因多为单拷贝以及外源基因在转基因植株中表达稳定等优点[84]。根据受体不同,香蕉转基因方法可分为ECS法、茎尖分生组织或多芽体横切薄片法和原生质体法等[84]。ECS法高效稳定,能得到单细胞起源的转基因植株,但是建立和维持ECS都需要耗费大量的时间和精力;茎尖分生组织或多芽体横切薄片法简单快速,但是成功率不高,并且容易产生嵌合体;原生质体法转化方便,但再生难,成功率低,一般需要用ECS提取原生质体。目前,ECS的建立方法相对成熟[85-86],是香蕉转基因的主要受体。根据导入基因来源和目的的不同,香蕉的转基因育种可分为过表达外源基因[87]、过表达内源基因[88]、沉默内源基因[88]以及沉默病菌基因[89]等几种类型。我国在香蕉再生系统[90-91]、转基因受体系统[92-94]、转化系统[95-97]的建立方面取得较大的进展。

CRISPR/Cas9技术的出现给香蕉基因功能研究和香蕉育种工作开辟了新的路径。2017年,胡春华等[98]建立香蕉CRISPR/Cas9基因编辑技术体系,在巴西蕉ECS中对香蕉A基因组八氢番茄红素脱氢酶基因进行定点敲除,成功获得白化表型的突变体株系。这是全世界首例基因编辑香蕉的报道。该团队进一步优化体系[99],创制了一系列基因编辑突变体[100-101]。栽培香蕉高度不育的特点决定无法通过杂交或自交获得无转基因成分的突变新材料,非转基因的香蕉基因编辑是未来香蕉育种的主赛道。据报道,研究人员在香蕉原生质体中进行瞬时的基因编辑[102],为无转基因的基因编辑奠定基础。该团队还建立了Gene?deletor技术[103],可一定程度消除外源基因。

经过多个国家(如澳大利亚、比利时、巴西、中国、法国、印度、肯尼亚、马来西亚、尼日利亚、南非、乌干达、英国和美国等)和国际组织(如IITA等)的共同努力,香蕉基因工程技术取得很大进展,并创制出一系列具有高抗逆性、高营养价值、耐储存等特性的香蕉新种质[61,86]。值得关注的是,针对多数含B基因組香蕉含有香蕉条斑病毒DNA的问题,Tripathi等[104]利用基因编辑手段成功将国际大蕉B基因组中整合的该病毒序列敲除,为B基因组种质的利用铺平道路。该团队还开发了全新的香蕉基因编辑工具Cas-CLOVER[105]。与传统的编辑工具相比,该载体准确性更高,并且能产生11~31 bp不等的编辑类型,大大丰富了基因型多样性[105]。此外,澳大利亚研究人员利用类固醇诱导型启动子载体创制无选择性标记基因的香牙蕉[106];印度研究人员通过基因枪轰击将Cas9载体导入香蕉ECS中进行编辑,最后再生并筛选获得无转基因成分的稳定植株[107]。然而,在全世界范围内,转基因和基因编辑作物的应用和推广受到严格的限制。目前为止,国内仍未有香蕉的转基因或基因编辑品种投放于大规模农业生产中的报道。

1.7 其他手段

其他香蕉育种手段还包括体细胞杂交育种、快速育种、分子辅助育种以及嫁接育种等。

体细胞杂交即无性杂交-细胞融合,不仅在一定程度上能克服有性杂交的困难,而且在转移多基因控制的农艺性状、品质性状和抗逆性等方面,该技术具有明显的优势[108]。同时,体细胞杂交育种不涉及转基因,较容易被公众接受。香蕉体细胞杂交依赖于原生质体的融合和再生。原生质体融合主要有电融合法和聚乙二醇融合法[109]。国内有研究人员采用不对称融合的方法(基于聚乙二醇融合法),成功获得了过山香龙牙蕉和贡蕉的融合再生植株[110]。香蕉原生质体再生难[111],这是制约香蕉体细胞杂交育种发展的主要原因之一[108]。香蕉的原生质体融合技术还处在探索阶段,技术不成熟,目前国内外都未取得实质性的进展。

快速育种技术是指通过延长光周期、控制温度和早收种子等方法加速世代更替周期以达到加速育种目的的技术,可用于育种的初期阶段,包括杂交、群体定位和目的农艺性状的评估等[112]。该技术要求植物在受控环境条件下生长,研究人员操纵昼夜温度、光谱、光强以及光周期持续时间,以缩短开花的起始时间,加速胚胎发育和种子成熟[112]。香蕉植株高大,生长周期长。因此,快速育种技术在香蕉育种(特别是香蕉杂交育种)中有很好的应用前景[113]。

分子标记技术是香蕉遗传多样性研究的重要工具,可以很方便地进行香蕉分类、亲缘关系和演化分析等研究,应用于育种中可极大地提高育种效率和缩短育种周期[61]。目前,我国有关香蕉分子标记辅助育种的报道较少。近期,我国台湾研究人员通过转录组测序技术比较台蕉5号、台蕉7号、宝岛蕉和北蕉,发现抗香蕉枯萎病的数量性状基因座(quantitative trait locus,QTL)[114]。这些标记将有助于台湾抗病香蕉品种的鉴定,从而实现对组培苗扩繁的质量控制和品种保护[114]。国外研究人员鉴定到一些与香蕉枯萎病抗性相关的QTL[115-116],以及与果实品质性状相关的QTL[117],但是有关这些QTL的应用报道还很少。

香蕉嫁接是最近发展起来的技术。2021年,Reeves等[118]开发了单子叶植物胚根-芽交界处嫁接技术,并应用于水稻、大麦、菠萝、香蕉、洋葱、龙舌兰和枣树等单子叶植物。研究人员以香牙蕉为接穗,野生蕉Pahang(AA)为砧木,成功完成嫁接[118]。然而,香蕉嫁接技术处于初步发展阶段,还需要更多的试验去证明和完善。

2 新品种选育的方向

香蕉育种的目的是挖掘香蕉优良的农艺性状,如产量高、收获周期短、果实色香味俱全、货架期长以及抗或耐逆境胁迫等[119]。从过去一百多年国际香蕉贸易的发展历史来看,香蕉的品质和抗病性是育种人员最关注的两个指标。另外,台风、寒害和盐胁迫等非生物胁迫也制约着香蕉产业的发展。为了使香蕉更好地适应不断变化的环境条件以及扩宽其种植范围,选育出具有高产、优质、稳定、抗病、矮化、抗寒、抗旱和耐盐胁迫等性状的新品种是目前最有效、最根本的办法。

2.1 高产、优质、稳定

高产性是选种、育种的基本要求。香蕉单位面积产量主要由单株产量和单位面积的有效结果株数决定。因此,选育的高产品种就有两种类型,即大果型和密植型。一般来说,密植型品种对单株栽培技术要求相对较低,我国香蕉高产性的选育应主攻密植型[120]。密植型株系要求假茎矮化、株型紧凑和叶片着生合理等[120]。另外,香蕉四季皆可挂果,其成熟周期的长短也是影响年产量的关键因素[61]。例如,与香牙蕉(9~12个月)、粉杂1号(14~16个月[38])和广粉1号(15~17个月[12])相比,佳丽蕉(7~9个月[32])收获周期较短,宿根栽培一年可收多茬。因此,通过育种方法缩短收获周期也是提高产量的一个重要策略。Brisibe等[121]对国际大蕉的某些性状(果穗大小和质量、果实总数、果实形状、假茎的周长和高度、从开花到收获的时间等)的多态性进行分析,发现这些性状可以作为品种产量田间表现的指标。我国研究人员开发了基于地面激光扫描的香蕉植株计数、假茎直径和高度测量方法,有助于快速评估香蕉产量[122]。

优质是香蕉育种的核心追求目标。优质果应具有果形美观饱满、果指着生紧实、熟果呈鲜黄色、可食率高、糖度高、香味浓、风味佳、耐贮运以及不易掉把等优良特性。高产和优质往往难以兼得,在产量控制的可接受范围内,优质更为重要。Biabiany等[117]鉴定到了多个与香蕉果实的果肉酸度、硬度和干物质含量等性状相关的QTL。我国在香蕉的淀粉代谢[123-124]、胡萝卜素代谢[125]、果实乙烯调控[126-128]等方面的研究都取得较大进展。

笔者结合几十年的香蕉育种经验,发现近年来推广的香蕉套袋技术虽然起到很好的保果、护果作用,但是似乎减少了人们发现高产、优质香蕉单株的可能性。以前,在没有套袋的干扰下,育种工作者通过对田间香蕉植株上果穗的观察和比较,很容易发现高产和优质株系。实际上,过去很多香蕉优良品种都是通过这种方法选育的[9,12]。未来如何采用更先进、高效和科学的方法,在田间发现优良单株也值得思考。

随着香蕉组培技术的大规模应用,组培苗变异引起的减产、品质下降和抗病性降低等问题愈发严重[129]。近些年,因为香蕉苗不符合预期,种植户状告组培厂的事件常有发生。一方面,这与组培厂组培苗良莠不齐、某些厂家把控不严有关;另一方面,香蕉组培苗易变异或退化也是客观事实。因此,在优质和高产的基础上,选育变异率低、相对稳定的组培苗品种也非常重要。

2.2 抗逆性强

抗逆性是影响香蕉稳产的关键。香蕉病虫害种类繁多,特别是枯萎病和细菌性病害,给我国香蕉生产带来巨大的损失。我国的香蕉枯萎病主要由尖孢镰刀菌古巴专化型热带1号(Fusarium oxysporum f. sp. cubense,‘Foc TR1)和热带4号生理小种(Foc TR4)引起。其中,Foc TR1曾在20世纪中期摧毁以Gros Michel为核心品种的中美洲香蕉产业,直到人们用抗Foc TR1的香牙蕉代替才恢复[13]。1967年,Foc TR4在中国台湾被发现,包括香牙蕉在内的大多数香蕉对其没有抵抗力,香蕉枯萎病肆虐全球[13]。尽管近年来我国香蕉枯萎病研究取得较大进展[130],但是直到今天,除了选育和推广抗枯萎病新品种外,还没有能从根本上解决枯萎病的方法[131]。在抗病性香蕉的选育过程中,抗性评价很关键。除了田间抗病性评价外[67],往往在前期进行初步筛选和评价,如对组培苗进行活菌接种并评价[132],或者用病菌毒素对组培苗或者ECS进行处理并筛选[133-134]。然而不管是田间病情评价还是对小苗进行评价都费时费力,未来利用抗病分子标记将有望提高育种效率[135]。目前,我国香蕉产区感病品种和抗病品种并存,病区以抗病品种如南天黄、粉杂1号、中蕉9号、中蕉4号、桂蕉9号和海贡蕉等为主;无病区和少病区以易感病品种如巴西蕉、桂蕉1号、广粉1号和金粉1号等为主。值得注意的是,已有的抗枯萎病香蕉往往不抗软腐病、鞘腐病等细菌性病害。因此,培育出多抗品种是未来香蕉选育的重要方向。迄今为止,经过遗传验证的抗枯萎病内源基因主要有MaLYK1[88]、MaDAD1[136]、MaBAG1[136]、MaBI1[136]、MaPR10[136]、ICE1-like[137]和MaRGA2[138]等。经过遗传验证的抗软腐病、鞘腐病的内源基因几乎没有,这给我国香蕉遗传改良育种提出了挑战。非洲研究人员在香蕉抗病育种方面取得了不菲的成绩和积累了丰富的经验,值得我国学习、借鉴。针对香蕉黄单胞菌病、香蕉黑叶斑病、香蕉枯萎病、香蕉束顶病、香蕉条纹病以及线蟲和象鼻虫引起的香蕉虫害等,他们利用基因编辑[139-141]以及其他基因工程技术[142]创制出一大批抗病香蕉,使某些病害(如香蕉枯萎病)在当地还没有大范围地传播。最近,另一种细菌性病害(香蕉血液病)在东南亚等地迅速蔓延[143],严重危及亚洲地区香蕉产业安全。香蕉抗病育种研究任重道远。

我国香蕉主产区多处于台风、龙卷风多发地带。香蕉叶大、株高、根浅、假茎质脆,容易遭受风害[144]。尤其是在台风天,蕉农往往损失惨重。即使现在有成熟的应对措施,如设置防风墙、植株用木桩或拉线固定以及修剪蕉叶等,但是会耗费大量的人力、物力,并且在特大台风面前作用有限。因此,很多种植户为了节约成本选择冒险,不做或者少做防风措施。例如,2023年海南省澄迈县突然遭遇大风,大量没有加固的香蕉树倒伏。受风灾影响,往往大量香蕉涌入市场,香蕉价格暴跌,这进一步损害蕉农的收益。有研究人员通过添加多效唑对香蕉进行矮化处理[145],但是该方法尚未成熟,实际效果有待评估。因此,培育具有株矮、根深、假茎粗壮、叶片窄等性状的抗风新品种才是解决香蕉风害问题的根本方法。国外典型的矮化香蕉品种有Grand Naine和Drawf Cavendish,它们是当前国际香蕉市场主栽品种[119]。Grand Naine也叫大矮蕉,株高180~260 cm,果梳整齐,商品率高。据笔者观察,该品种可能不太适应我国的气候和环境,在我国种植时春夏蕉稍差,需进一步优化。Drawf Cavendish假茎高120~160 cm,果穗紧凑,梳距短,果指短,果肉香甜,但是易断把,且不耐贮运。这两类香蕉在我国未有大面积推广。我国培育有多个本土的矮化品种,如粤香1号[9]、矮粉1号[33]、华莞矮香蕉、中蕉11号[18]和中蕉12号[35]等(表1),但均鲜有大面积种植。例如,矮中干香牙蕉品种粤香1号,原名广东香蕉1号或74-1,假茎高190~245 cm,抗风性较强[9]。但是,该品种株产低,品质中等,果实外观较差,抗旱、抗寒性较弱。该品种曾有较大面积的种植,今仅在一些沿海台风地区零星种植。我国矮化香蕉种植少,一方面因为香蕉的矮化性状不稳定,容易恢复正常高度;另一方面可能因为基因连锁等,矮化香蕉的产量和品质等往往受到影响。基因编辑技术可以很好地解决这些问题。例如,Shao等[101]通过使用CRISPR/Cas9系统创制MaGA20ox2基因编辑的半矮化香蕉,这为香蕉矮化提供了新的思路。除了矮化外,其他因素也影响香蕉的抗风性。与巴西蕉(假茎高2.5~3.5 m)相比,粉杂1号(假茎高3~4 m)虽然高大,但是抗风性较强[38]。粉杂1号没有防风桩可抵抗8~9级强风,立防风桩可抵抗11~12级台风[38]。这可能与其假茎粗壮且质地韧、根系发达以及叶片短窄有关[38],值得深入研究。另外,有研究报道,香蕉的抗风性可能与木质素合成代谢相关酶4-香豆酸:CoA连接酶有关[146],过表达或者敲除该酶是否会显著影响香蕉的抗风性尚未可知。

香蕉喜温,怕寒[144]。香蕉植株在10~12 ℃时生长停止,1~2 ℃时叶片枯死[147]。我国蕉区除海南外,常遭遇低温霜冻或者冬春寒流侵袭,轻则香蕉叶片和果实受损导致减产、品质下降,严重时整株死亡,每年因此损失巨大。每年春冬之际,本地香蕉产能往往大幅度下降,香蕉价格显著上涨。尽管我国香蕉产业迫切需要解决香蕉抗寒问题,但是有关香蕉抗寒的研究还很少。香蕉抗寒方法主要有物理方法(如地膜覆盖、套袋、盖膜保温、熏烟防霜驱寒、加湿等)以及外源药物诱导方法(如喷施植物生长调节剂、无机盐、氨基酸等)[148]。这些方法费时费力,效果甚微。因此,选育抗寒或受寒害后恢复生长快的品种是我国香蕉选育的重要方向。相对于香牙蕉,中国大蕉耐寒并且抗枯萎病[67],同时具有一定的育性。那么,利用中国大蕉进行杂交育种,以期获得抗寒、抗病的优良品种应该有较好的前景。另外,有研究人员通过辐射诱变获得耐低温的香蕉苗几十株[149]。香蕉抗寒性与冷胁迫相关基因、膜脂合成与代谢相关基因和抗氧化酶基因等有关[150]。有研究报道,在香蕉中过表达MpMYBS3[151]或抗寒相关转录因子MaICE1[152]显著增强植株的抗寒性,而沉默香蕉中的MaMAPK3[152]显著降低转基因植株的抗寒性。

香蕉既怕旱,又怕涝[144]。为响应国家有关非粮食作物“上山下滩,靠边站,不与粮食争耕地”的号召,扩大丘陵、山区、滩地等地区的香蕉栽培面积,开发抗旱、耐渍品种也是重要的育种目标。Ravi等[153]认为香蕉束的质量可以作为香蕉抗旱性状的指标。Eyland等[154]选取覆盖6个(亚)种的8个野生香蕉,在法国蒙彼利埃植物表型分析平台进行高通量表型试验,构建出与光照、水汽压差和土壤水势相关的基因型特异性蒸腾反应模型,发现香蕉野生种含有天然的耐旱基因,具有潜在的育种利用价值。有关香蕉耐渍、抗涝的研究几乎没有。对于种在海边、盐碱地等地区的香蕉,耐盐胁迫也很重要[155-156]。已发现有多个抗干旱胁迫、盐胁迫等相关的基因[157]。全球气候变暖带来的干旱、洪涝、盐渍化、极端天气等自然现象对香蕉生产的影响日益严重。这些恶劣的天气和环境变化除了直接影响香蕉农艺性状外,还会影响病原体、害虫及其与宿主的相互作用,从而影响香蕉产量[158]。因此,有必要利用基因编辑等技术开发适应气候变化的“智能型香蕉”,使其具有多重和持久的抗性,以抵御极端温度和干旱等非生物胁迫,以及病虫害等生物胁迫[158]。据报道,过表达香蕉质膜固有蛋白基因(MusaPIP1;2或MaPIP2-7)显著增强植株对冷害、盐胁迫和干旱等非生物胁迫的抗性[159-160],这说明将来可能可以通过编辑这类基因培育能够适应多种恶劣环境的香蕉,扩大香蕉的种植范围。

2.3 多功能

我国香蕉市场长期以香牙蕉为主。随着香蕉产业结构优化,2020年我国特色蕉的种植面积占比从2015年的5%提升至20%[68]。其中,粉蕉占17%、贡蕉占2%、中国大蕉占1%,其他香蕉仅有零星的种植[68]。随着人民生活水平的日益提高和我国工业化能力的不断发展,培育高营养、具备保健功能以及适合工业加工(如酿酒[9,161]、食品加工[162])等特性的多功能香蕉是趋势所在。某些香蕉果實富含类胡萝卜素、维生素、酚类、矿物质、蛋白、叶酸、淀粉以及黄酮类化合物等,如粉蕉类(富含蛋白质)、金手指和红香蕉(富含类萝卜素、酚类)、沙巴(富含抗菌活性物质、酚类、矿物质)等[119]。非洲和印度等地区的研究人员通过杂交、转基因、基因编辑等方法创制富含类胡萝卜素或铁元素的营养强化香蕉[163-165],旨在帮助维生素A缺乏症、铁元素缺乏症人群。我国台湾大学研究团队把猪生殖与呼吸综合征病毒(porcine reproductive and respiratory syndrome virus,PRRSV)抗原基因转入香蕉,研发出PRRSV口服疫苗转基因香蕉[166]。这些例子对未来我国香蕉育种工作有很大的启发意义。香蕉的叶、假茎、花和果皮等营养丰富[167],值得进一步加工和利用,特别是在我国主粮作物严重紧缺的背景下。最后,开发和推广有观赏性的盆栽香蕉(如极矮化香蕉中蕉12号,假茎82~95 cm[35])也有一定前景。

3 香蕉育种主要存在的问题

3.1 香蕉种质资源收集利用不足

我国的香蕉生物多样性较为贫乏,地方品种和育成品种居多,香蕉野生种质资源较少[168]。相对于地方品种等边缘种质,香蕉野生种质资源基因库中蕴含着应对病虫害及不断变化的环境条件所必需的基因以及对人类健康有利的一些次生代谢产物合成相关的编码基因等。目前,我国国家香蕉资源圃保存有约400份香蕉种质资源,与国际香大蕉网络(The International Network for the Improvement of Banana and Plantain,INIBAP)在比利时鲁汶大学国际香蕉种质交换中心(International Musa Germplasm Transit Center,ITC)保存的超过1600份香蕉种质资源还有较大距离。因此,我国还需要从INIBAP等机构以及东南亚、非洲和中南美洲等地引进更多的种质资源,包括优良的、有特色的主栽品种[119]及野生种质资源(尤其是极端生态条件下的种质资源),并进行鉴定、保存和利用。

香蕉种质资源的精细评价不够,造成资源利用不足。针对全国香蕉产业重大问题,如病害、冷害和风害等,利用高通量表型分析[154]等技术多维度、系统性地评价和筛选特异种质的研究较少。除此之外,未来研究人员还应在充分结合田间评价数据的基础上,采用大规模的室内处理方式进行更加稳定的评价。例如,通过利用某些特异种质进行基因组、转录组、蛋白组、次生产物代谢组等分析手段,挖掘相关基因和分子标记,并应用于后续育种中,实现资源圃观察-实验室研究-田间应用的深度结合,促进香蕉基础理论研究以及香蕉种业协同发展。

3.2 育种手段单一

目前,我国主要的香蕉品种都是通过引种、营养系选种和人工诱变选育的,通过杂交育种选育出的只有少数几个,通过倍数性育种出的几乎没有,转基因和基因编辑虽然研究较多,但是距离商业化还很远。通过香蕉有性杂交往往可以创制出传统变异育种无法获得的遗传背景多样、性状相对可控的新种质。香蕉杂交育种较难取得进展,主要与香蕉育性差有关。香蕉倍数性育种相对简单,技术成熟[73,77]。我国香蕉育种工作未来应充分利用该技术并与杂交育种联合使用。香蕉的转基因和基因编辑育种技术的发展,除了受舆论和政策等因素的影响外,还受制于香蕉的分子生物学研究。类似地,分子标记辅助育种等技术也依赖于分子生物学的发展成果,只有对香蕉基因功能解析达到较大的规模和较高的水平,这些技术才能得以在香蕉育种中广泛利用。

总体而言,我国应该立足现实,在保持引种、营养系选种和人工诱变等常规育种方法继续发展的基础上,大力推进香蕉杂交育种及倍数性育种等周期较长但前景明朗的传统育种方法的应用;同时,还应该放眼未来,鼓励突破香蕉体细胞杂交育种、分子标记辅助育种和嫁接育种等技术壁垒,加大力度支持香蕉分子生物学的基础研究以及基因工程等现代生物技术育种方法的研究和应用,特别是开发原创性、具有自主知识产权的、高效的香蕉基因编辑工具,从而抢占香蕉大规模现代化育种的先机。

3.3 缺少综合性状俱佳的品种

在过去几十年间,枯萎病的肆虐激发了很多育种家对抗枯萎病香蕉品种的选育热情。对于我国,乃至全世界,如何选育出抗枯萎病的优良品种是目前香蕉育种的首要问题。但是,单方面的优良性状很难满足整个产业需求。例如,粉杂1号抗枯萎病、高产、优质、外形独特,但易感细菌性病害,且该品种对栽培技术要求高,其产量和品质受季节影响明显[38]。缺少综合性状俱佳的香蕉品种有多方面的原因。首先,香蕉高大,占地广,育种工作者很难在实验室中对香蕉进行各种性状的精细评价;其次,对高抗香蕉枯萎病性状的紧迫需求减少了人们对其他优良性状的关注;最后,基于香蕉体细胞变异的育种方法具有随机性,用这些方法选育出“完美”香蕉品种的难度极大。如何解决这些问题并培育综合性状俱佳的品种是未来育种工作的长期目标。

3.4 内源基因研究太少

香蕉基因组大小约为500 Mb[74-75,169],约为拟南芥的4倍。A基因组[74]、B基因组[75]和T基因组[169]已分别完成测序。国内外已经鉴定到了与抗病、抗寒、抗旱以及品质和保鲜等性状相关的多个内源基因[86]。但是,这还远远不够,现有的对香蕉分子生物学的基础研究很难满足后续通过基因编辑方法改造新品种的需求。香蕉内源基因研究少有两个主要的原因。一方面,香蕉的遗传转化较难,技术门槛高。目前,最高效的转基因方法依赖于ECS,而ECS的创制和维持不仅需要严苛的组培条件和技术要求,还需要投入大量的时间、人力和物力,并且只有部分品种可应用该方法实现转化。研究人员应该加速对香蕉的转基因方法和基因编辑方法的升级,这将有利于人们通过反向遗传手段大规模、高效率地研究香蕉内源基因的功能。另一方面,香蕉正向遗传的研究难以进行。香蕉的基因定位难,主要体现在很难通过杂交构建群体定位栽培种的优良基因。针对这个难题,可以用可育的香蕉野生种质资源等作为研究对象。例如,通过杂交或者构建野生香蕉突变体库等方法定位相关性状的基因,或者对多种野生香蕉进行全基因组关联分析,在解析野生香蕉的基因功能后再利用反向遗传手段在栽培种香蕉中进行验证。

4 展 望

经过几十年的发展,我国香蕉育种取得较大的成绩,但是与世界先进水平还有一定的差距,今后一段时间要在以下方向继续努力。(1)继续加强全球香蕉种质资源的收集、评价和利用,特别要大力推进香蕉杂交育种。(2)重视香蕉的基础研究,挖掘与重要经济性状关联的关键基因,解析其调控网络,为将来通过基因编辑技术创制无转基因的香蕉新品种奠定基础。(3)不断开发和升级新的育种技术,促进多种手段相互融合,达到高效、科学育种目的。(4)努力攻坚抗病香蕉育种,培育抗多种病虫害同时各项综合性状俱佳的新品种,打赢香蕉保卫战。

参考文献 References:

[1] SIMMONDS N W. The evolution of the bananas[M]. London:Longmans Green,1962:170.

[2] 曾惜冰,李丰年,许林兵,杨护,林志雄,黄炳智. 广东野生蕉的初步调查研究[J]. 园艺学报,1989,16(2):95-100.

ZENG Xibing,LI Fengnian,XU Linbing,YANG Hu,LIN Zhixiong,HUANG Bingzhi. A preliminary investigation on wild bananas in Guangdong Province[J]. Acta Horticulturae Sinica,1989,16(2):95-100.

[3] 王芳,谢江辉. 我国香蕉产业“十三五”回顾与“十四五”展望[J]. 中国热带农业,2022(3):15-22.

WANG Fang,XIE Jianghui. Review of Chinese banana industry during the 13th five-year plan period and outlook of this industry during the 14th five-year plan period[J]. China Tropical Agriculture,2022(3):15-22.

[4] 李華平,李云锋,聂燕芳. 香蕉枯萎病的发生及防控研究现状[J]. 华南农业大学学报,2019,40(5):128-136.

LI Huaping,LI Yunfeng,NIE Yanfang. Research status of occurrence and control of Fusarium wilt of banana[J]. Journal of South China Agricultural University,2019,40(5):128-136.

[5] 李宝荣,张向平. 目前国内主栽香蕉品种的引种过程及存在的问题[J]. 中国南方果树,2002,31(4):30-31.

LI Baorong,ZHANG Xiangping. Introduction process and existing problems of main banana varieties in China at present[J]. South China Fruits,2002,31(4):30-31.

[6] 黄秉智,杨护,许林兵,唐小浪,魏岳荣,邱继水. 抗枯萎病香蕉品种新北蕉引种试验初报[J]. 广东农业科学,2005,32(5):33-34.

HUANG Bingzhi,YANG Hu,XU Linbing,TANG Xiaolang,WEI Yuerong,QIU Jishui. Preliminary report on introduction experiment of banana variety Xinbeijiao with resistance to Fusarium wilt[J]. Guangdong Agricultural Sciences,2005,32(5):33-34.

[7] 黄秉智,杨护,许林兵,李丰年,吴元立,魏岳荣,邱继水. 贡蕉在南亚热带的适应性试验及栽培技术[J]. 广西农业科学,2005,36(6):518-520.

HUANG Bingzhi,YANG Hu,XU Linbing,LI Fengnian,WU Yuanli,WEI Yuerong,QIU Jishui. Applicability and culture techniques for Gongjiao (Musa AA Sucrier) in south subtropical regions[J]. Guangxi Agricultural Science,2005,36(6):518-520.

[8] 许林兵,张锡炎,甘东泉,黄秉智,陈焕雄,冯兆昌,吴元立. ‘海贡蕉引种试种研究[J]. 热带农业科学,2013,33(8):24-28.

XU Linbing,ZHANG Xiyan,GAN Dongquan,HUANG Bingzhi,CHEN Huanxiong,FENG Zhaochang,WU Yuanli. Introduction and trial planting of ‘Haigong Jiao (Musa AA)[J]. Chinese Journal of Tropical Agriculture,2013,33(8):24-28.

[9] 钟秋平,赵新河. 海南9个香蕉品种的酿酒性能探讨[J]. 中国酿造,2008,27(7):44-46.

ZHONG Qiuping,ZHAO Xinhe. Study on wine fermentation ability of nine different banana species in Hainan[J]. China Brewing,2008,27(7):44-46.

[10] 黄秉智,杨护,许林兵,李丰年,吴元立. 香蕉优良品种贵妃蕉[J]. 中国果树,2006(1):28-29.

HUANG Bingzhi,YANG Hu,XU Linbing,LI Fengnian,WU Yuanli. Banana variety Guifei banana[J]. China Fruits,2006(1):28-29.

[11] 傅金凤,王娟,王琳,盛鸥. 特色香蕉类型‘美食蕉品种果肉中淀粉与矿物质在后熟期的变化[J]. 食品科学,2021,42(1):86-92.

FU Jinfeng,WANG Juan,WANG Lin,SHENG Ou. Changes of starch and minerals in pulp of plantain cultivars (Musa spp. AAB) during postharvest ripening[J]. Food Science,2021,42(1):86-92.

[12] 黄秉智,杨护,许林兵,易干军,吴元立,魏岳荣,邱继水. 广粉1号粉蕉的选育及示范推广[J]. 福建果树,2005(3):3-5.

HUANG Bingzhi,YANG Hu,XU Linbing,YI Ganjun,WU Yuanli,WEI Yuerong,QIU Jishui. Breeding,demonstration and popularization of Guangfen No. 1[J]. Fujian Fruits,2005(3):3-5.

[13] HWANG S C,KO W H. Cavendish banana cultivars resistant to Fusarium wilt acquired through somaclonal variation in Taiwan[J]. Plant Disease,2004,88(6):580-588.

[14] 黃秉智,杨护,许林兵,魏岳荣,邱继水,易干军. 香蕉长果指优质新品种大丰1号的选育[J]. 中国果树,2009(4):9-11.

HUANG Bingzhi,YANG Hu,XU Linbing,WEI Yuerong,QIU Jishui,YI Ganjun. Breeding of high-quality new banana variety Dafeng No. 1[J]. China Fruits,2009(4):9-11.

[15] 黄秉智,杨护,许林兵,易干军,魏岳荣,邱继水. 香蕉优质新品系大丰2号的选育[J]. 中国果树,2006(4):11-12.

HUANG Bingzhi,YANG Hu,XU Linbing,YI Ganjun,WEI Yuerong,QIU Jishui. Breeding of a new banana strain Dafeng No. 2 with high quality [J]. China Fruits,2006(4):11-12.

[16] 许林兵,张锡炎,李华平,陈彪,黄秉智,陈维信,冯岩,肖维强,周登博,甘东泉. 抗枯萎病香蕉新品种‘南天黄选育[J]. 热带作物学报,2017,38(6):998-1004.

XU Linbing,ZHANG Xiyan,LI Huaping,CHEN Biao,HUANG Bingzhi,CHEN Weixin,FENG Yan,XIAO Weiqiang,ZHOU Dengbo,GAN Dongquan. The breeding of new banana varieties ‘Nan Tian Huang for resistance to Fusarium wilt[J]. Chinese Journal of Tropical Crops,2017,38(6):998-1004.

[17] 杨兴玉,肖维强,许林兵,李华平,黄秉智,叶春海,陈彪,陈谷,吕庆芳,梁钾贤,吴元立,胡玲玉. 香蕉新品种‘南天红[J]. 园艺学报,2020,47(S2):2962-2963.

YANG Xingyu,XIAO Weiqiang,XU Linbing,LI Huaping,HUANG Bingzhi,YE Chunhai,CHEN Biao,CHEN Gu,L? Qingfang,LIANG Jiaxian,WU Yuanli,HU Lingyu. A new banana cultivar ‘Nantianhong[J]. Acta Horticulturae Sinica,2020,47(S2):2962-2963.

[18] 魏岳荣,邝瑞彬,杨护. 矮化香蕉新品种‘中蕉11号的选育[J]. 果树学报,2019,36(7):957-959.

WEI Yuerong,KUANG Ruibin,YANG Hu. Breeding of a new dwarf banana cultivar‘Zhongjiao No. 11[J]. Journal of Fruit Science,2019,36(7):957-959.

[19] 梁水连,吕岱竹,马晨,相坛坛,周佳,王明月. ‘桂蕉1号香蕉成熟过程中挥发性成分和香气特征分析[J]. 食品工业科技,2021,42(14):99-106.

LIANG Shuilian,L? Daizhu,MA Chen,XIANG Tantan,ZHOU Jia,WANG Mingyue. Analysis of volatile components and aroma features of banana ‘Guijiao No. 1 fruit at different ripening stages[J]. Science and Technology of Food Industry,2021,42(14):99-106.

[20] 林贵美,邹瑜,李小泉,牟海飞,李朝生,张进忠. 香蕉优良品种威廉斯B6的组培选育与种植试验[J]. 中国南方果树,2008,37(6):35-36.

LIN Guimei,ZOU Yu,LI Xiaoquan,MOU Haifei,LI Chaosheng,ZHANG Jinzhong. Tissue culture,breeding and planting experiment of excellent banana variety Williams B6[J]. South China Fruits,2008,37(6):35-36.

[21] 韋绍龙,黄素梅,韦莉萍,韦弟,李朝生,覃柳燕,田丹丹,张进忠,周维,龙盛风,杨柳. 香蕉抗(耐)枯萎病新品种桂蕉9号的选育及其高产栽培技术[J]. 南方农业学报,2016,47(4):530-536.

WEI Shaolong,HUANG Sumei,WEI Liping,WEI Di,LI Chaosheng,QIN Liuyan,TIAN Dandan,ZHANG Jinzhong,ZHOU Wei,LONG Shengfeng,YANG Liu. Breeding on new banana variety Guijiao 9 resistant or tolerant to Fusarium wilt (Fusarium oxysporum f. sp. cubence,race 4) and its high-yield cultivation technologies[J]. Journal of Southern Agriculture,2016,47(4):530-536.

[22] 牟海飞,刘洁云,韦绍龙,吴代东,黄伟华,吴艳艳,黄永才,林茜,苏祖祥. 早熟短果指型香蕉新品种桂蕉早1号的选育及其高产栽培技术[J]. 南方农业学报,2017,48(6):1048-1053.

MOU Haifei,LIU Jieyun,WEI Shaolong,WU Daidong,HUANG Weihua,WU Yanyan,HUANG Yongcai,LIN Qian,SU Zuxiang. Breeding of a new early maturing and short-finger banana variety Guijiaozao 1 and its high-yield cultivation technology[J]. Journal of Southern Agriculture,2017,48(6):1048-1053.

[23] 赵明,何海旺,邹瑜,龙芳,武鹏. 香蕉早熟新品种‘桂蕉青7号的选育[J]. 中国果树,2016(2):72-74.

ZHAO Ming,HE Haiwang,ZOU Yu,LONG Fang,WU Peng. Breeding of a new early-maturing banana variety‘Guijiaoqing No. 7[J]. China Fruits,2016(2):72-74.

[24] 刘建平,王芳,杜彩娴,韩秀香,张珂恒,何建齐,王悦萍. 香蕉新品种东蕉1号的组织培养技术研究[J]. 现代农业科技,2018(4):68-69.

LIU Jianping,WANG Fang,DU Caixian,HAN Xiuxiang,ZHANG Keheng,HE Jianqi,WANG Yueping. Study on tissue culture technology of new banana variety Dongjiao No.1[J]. Modern Agricultural Science and Technology,2018(4):68-69.

[25] 漆艳香,谢艺贤,彭军,曾凡云,张欣. 海南生态条件下香蕉新品系‘热科1号主要农艺性状分析[J]. 热带农业科学,2020,40(3):1-5.

QI Yanxiang,XIE Yixian,PENG Jun,ZENG Fanyun,ZHANG Xin. Main agronomic traits of new banana line‘Reke 1 under ecological conditions in Hainan[J]. Chinese Journal of Tropical Agriculture,2020,40(3):1-5.

[26] 张欣,漆艳香,彭军,张辉强,谢艺贤. 香蕉新品系‘热科2号主要农艺性状分析[J]. 热带农业科学,2016,36(6):19-21.

ZHANG Xin,QI Yanxiang,PENG Jun,ZHANG Huiqiang,XIE Yixian. Main agronomic characters of new line‘Reke 2 of banana[J]. Chinese Journal of Tropical Agriculture,2016,36(6):19-21.

[27] 陈石,周红玲,易干军,魏岳荣,盛鸥,郑加协. ‘中粉1号粉蕉在福建漳州的适应性研究[J]. 中国南方果树,2012,41(2):102-103.

CHEN Shi,ZHOU Hongling,YI Ganjun,WEI Yuerong,SHENG Ou,ZHENG Jiaxie. Study on adaptability of ‘Zhongfen No.1 banana in Zhangzhou,Fujian[J]. South China Fruits,2012,41(2):102-103.

[28] 杨护,邝瑞彬,杨敏,周陈平,黄炳雄,徐少峰,魏岳荣. 优质丰产粉蕉新品种‘青粉1号的选育[J]. 果树学报,2020,37(2):293-296.

YANG Hu,KUANG Ruibin,MIN Yang,ZHOU Chenping,HUANG Bingxiong,XU Shaofeng,WEI Yuerong. Breeding of a new Pisang Awak variety ‘Qingfen No. 1 with good quality and high yield[J]. Journal of Fruit Science,2020,37(2):293-296.

[29] 邹瑜,林贵美,牟海飞,吴代东,李朝生,韦华芳,张进忠,李小泉. 粉蕉新品种‘金粉1号的选育[J]. 中国南方果树,2011,40(1):47-48.

ZOU Yu,LIN Guimei,MOU Haifei,WU Daidong,LI Chao

sheng,WEI Huafang,ZHANG Jinzhong,LI Xiaoquan. Breeding of a new banana variety “Jinfen No. 1”[J]. South China Fruits,2011,40(1):47-48.

[30] 郭建輝,黄锡栋. 香蕉离体试管芽诱变育种 Ⅲ. 辐照后代优良株系的筛选[J]. 福建农业大学学报,2001,30(4):473-476.

GUO Jianhui,HUANG Xidong. Mutation breeding with in vitro buds in banana section Ⅲ. Screening of eminent strains of mutation progeny[J]. Journal of Fujian Agricultural University,2001,30(4):473-476.

[31] 郭建辉,沈明山,蔡恩兴,洪富祥,陈丽萍,黄锡栋. 香蕉离体试管芽诱变育种的研究 Ⅴ. 漳蕉8号株系基因组变异检测[J]. 核农学报,2003,17(4):255-258.

GUO Jianhui,SHEN Mingshan,CAI Enxing,HONG Fuxiang,CHEN Liping,HUANG Xidong. Mutation breeding of banana tube-buds in vitro Ⅴ. Genomic variation of Zhangjiao No. 8 strain detected by RAPD[J]. Acta Agriculturae Nucleatae Sinica,2003,17(4):255-258.

[32] 杨兴玉,肖维强,许林兵,李华平,黄秉智. 高抗枯萎病香蕉新品种佳丽的选育[J]. 果树学报,2022,39(4):696-699.

YANG Xingyu,XIAO Weiqiang,XU Linbing,LI Huaping,HUANG Bingzhi. Breeding report of a new banana cultivar Jiali with high resistance to Fusarium wilt[J]. Journal of Fruit Science,2022,39(4):696-699.

[33] 黄俊豪,段承煜,邓英毅,李峰,冯斗,范斗文,谷俊杰. 4个粉蕉品种后熟过程中果实色泽及质构特性变化规律比较[J]. 热带作物学报,2022,43(2):277-284.

HUANG Junhao,DUAN Chengyu,DENG Yingyi,LI Feng,FENG Dou,FAN Douwen,GU Junjie. Comparison of color and texture property change rules of four Fenjiao (Musa ABB pisang awak) varieties during fruit ripening[J]. Chinese Journal of Tropical Crops,2022,43(2):277-284.

[34] 邓英毅,屈啸,李峰,覃婵婵,冯斗,禤维言,裴铁雄,姜建初,郭标,刘永南. 香蕉不同品种生长发育、结果性状和产量比较[J]. 热带作物学报,2018,39(9):1683-1688.

DENG Yingyi,QU Xiao,LI Feng,QIN Chanchan,FENG Dou,XUAN Weiyan,PEI Tiexiong,JIANG Jianchu,GUO Biao,LIU Yongnan. Comparison of growth,fruit setting characters and yield of different banana varieties[J]. Chinese Journal of Tropical Crops,2018,39(9):1683-1688.

[35] 邝瑞彬,魏岳荣. 超矮香蕉新品种‘中蕉12号的选育[J]. 果树学报,2020,37(12):1991-1994.

KUANG Ruibin,WEI Yuerong. Breeding report of ultra-dwarf banana cultivar‘Zhongjiao No. 12[J]. Journal of Fruit Science,2020,37(12):1991-1994.

[36] 王泽槐,刘文清,吕顺,李建国,傅积栋,李洪波,吴国麟,周建坤. 香蕉新品种‘华农中把的选育[J]. 果树学报,2012,29(4):710-711.

WANG Zehuai,LIU Wenqing,L? Shun,LI Jianguo,FU Jidong,LI Hongbo,WU Guolin,ZHOU Jiankun.  ‘Huanong Zhongba,a new banana cultivar[J]. Journal of Fruit Science,2012,29(4):710-711.

[37] 只佳增,杜浩,周勁松,张建春,赵丽娟,陈伟强. 云南特色香蕉新品种主要农艺性状及产量比较[J]. 热带农业科学,2022,42(4):22-27.

ZHI Jiazeng,DU Hao,ZHOU Jinsong,ZHANG Jianchun,ZHAO Lijuan,CHEN Weiqiang. Analysis of main agronomic characters and yield of Yunnan characteristics banana[J]. Chinese Journal of Tropical Agriculture,2022,42(4):22-27.

[38] 吴元立,黄秉智,杨护,许林兵,杨兴玉,曾鸿运. 抗枯萎病优质特色香蕉新品种粉杂1号的选育[J]. 果树学报,2022,39(12):2450-2454.

WU Yuanli,HUANG Bingzhi,YANG Hu,XU Linbing,YANG Xingyu,ZENG Hongyun. Breeding of Fenza No. 1,a new high-quality and special banana variety with high resistance against Fusarium oxysporum f. sp. cubense[J]. Journal of Fruit Science,2022,39(12):2450-2454.

[39] 林雪茜,彭淼,吴少平,易干军,董涛,钟晓红,高慧君. ‘中蕉9号与‘巴西蕉果实后熟过程中可溶性糖积累差异的原因分析[J]. 果树学报,2019,36(11):1524-1539.

LIN Xuexi,PENG Miao,WU Shaoping,YI Ganjun,DONG Tao,ZHONG Xiaohong,GAO Huijun. A comparative analysis of the differences in starch degradation and soluble sugar accumulation between‘Zhongjiao No. 9 and‘Baxijiao during fruit ripening[J]. Journal of Fruit Science,2019,36(11):1524-1539.

[40] TANG C Y. Somaclonal variation:A tool for the improvement of Cavendish banana cultivars[J]. Acta Horticulturae,2005,692:61-66.

[41] 庄西卿,刘长全,曹明华,徐晓新,罗德超. 香蕉新品系“热蕉11号”植株及果实性状的观测与分析[J]. 热带作物学报,2007,28(3):5-9.

ZHUANG Xiqing,LIU Changquan,CAO Minghua,XU Xiaoxin,LUO Dechao. Study on the plant and fruit characteristic of the new banana strain ‘Rejiao No. 11[J]. Chinese Journal of Tropical Crops,2007,28(3):5-9.

[42] 周红玲,郑云云,郑加协. 抗枯1号香蕉在漳州地区的性状表现及品质分析[J]. 中国南方果树,2014,43(1):88-89.

ZHOU Hongling,ZHENG Yunyun,ZHENG Jiaxie. Characters and quality analysis of Kangku No.1 banana in Zhangzhou[J]. South China Fruits,2014,43(1):88-89.

[43] 黄秉智,唐小浪,许林兵,杨护,魏岳荣,邱继水,吴洁芳. 香蕉抗枯萎病品种抗枯5号引种试验[J]. 中国果树,2009(6):17-19.

HUANG Bingzhi,TANG Xiaolang,XU Linbing,YANG Hu,WEI Yuerong,QIU Jishui,WU Jiefang. Introduction experiment of banana Fusarium wilt-resistant cultivar Kangku No. 5[J]. China Fruits,2009(6):17-19.

[44] 宋晓兵,彭埃天,凌金锋,陈霞,周娟. 18份广东香蕉种质对枯萎病的抗性评价[J]. 生物安全学报,2016,25(3):218-221.

SONG Xiaobing,PENG Aitian,LING Jinfeng,CHEN Xia,ZHOU Juan. Assessment of 18 banana germplasms for resistance to Fusarium wilt race 4[J]. Journal of Biosafety,2016,25(3):218-221.

[45] 刘绍钦,梁张慧,黄炽辉,黄玉香. 抗枯萎病香蕉新品系农科1号的选育[J]. 广东农业科学,2007,34(1):30-32.

LIU Shaoqin,LIANG Zhanghui,HUANG Chihui,HUANG Yuxiang. Breeding of a new banana strain Nongke No. 1 with resistance to Fusarium wilt[J]. Guangdong Agricultural Sciences,2007,34(1):30-32.

[46] MAURYA P,SAGORE B,JAIN S,SAINI S,INGOLE A,MEENA R,KUMAR V. Mutational breeding in fruit crops:A review[J]. The Pharma Innovation Journal,2022,11(6):1631-1637.

[47] BIDABADI S S,MEON S,WAHAB Z,SUBRAMANIAM S,MAHMOOD M. Induced mutations for enhancing variability of banana (Musa spp.) shoot tip cultures using ethyl methanesulphonate (EMS)[J]. Australian Journal of Crop Science,2012,6(3):391-401.

[48] 楊媚,舒灿伟,陈健仪,聂剑平,周而勋. 利用甲基磺酸乙酯和枯萎病菌毒素诱变筛选香蕉抗毒素突变体[J]. 园艺学报,2012,39(8):1465-1470.

YANG Mei,SHU Canwei,CHEN Jianyi,NIE Jianping,ZHOU Erxun. Screening of mutants resistant to the toxin produced by Fusarium oxysporum f. sp. cubense using ethyl methane sulfonate and toxin mutagenesis techniques[J]. Acta Horticulturae Sinica,2012,39(8):1465-1470.

[49] 胡玉林,谢江辉,梁国鲁,陈佳瑛,王忠猛. 香蕉抗枯萎病突变体的诱发与筛选[J]. 果树学报,2008,25(2):188-192.

HU Yulin,XIE Jianghui,LIANG Guolu,CHEN Jiaying,WANG Zhongmeng. Induction and selection of banana mutants resistant to Fusarium wilt disease[J]. Journal of Fruit Science,2008,25(2):188-192.

[50] BHAGWAT B,DUNCAN E J. Mutation breeding of banana cv. Highgate (Musa spp.,AAA Group) for tolerance to Fusarium oxysporum f. sp. cubense using chemical mutagens[J]. Scientia Horticulturae,1998,73(1):11-22.

[51] 李洪波,葉肖燕,陈康丽,何建齐,刘建平,唐琪璐,杜彩娴. NaN3对香蕉农科1号不定芽诱变的影响[J]. 现代农业科技,2020(14):54-55.

LI Hongbo,YE Xiaoyan,CHEN Kangli,HE Jianqi,LIU Jianping,TANG Qilu,DU Caixian. Effect on mutation of adventitious buds of banana Nongke 1 with sodium azide[J]. Modern Agricultural Science and Technology,2020(14):54-55.

[52] 韩伟,魏岳荣,盛鸥,胡春华,易干军,杨乔松,黄永红,李春雨,邝瑞彬. ‘巴西蕉离体芽的化学诱变和抗镰刀菌酸材料的筛选[J]. 核农学报,2012,26(9):1237-1243.

HAN Wei,WEI Yuerong,SHENG Ou,HU Chunhua,YI Ganjun,YANG Qiaosong,HUANG Yonghong,LI Chunyu,KUANG Ruibin. Chemical mutation and screening for tolerance to fusaric acid on shoot tip of Musa AAA Cavendish cv. ‘Baxijiao[J]. Journal of Nuclear Agricultural Sciences,2012,26(9):1237-1243.

[53] PENNA S,GHAG S B,GANAPATHI T R,JAIN S M. Induced genetic diversity in banana[M]//NANDWANI D. Genetic Diversity in Horticultural Plants. Cham:Springer,2019:273-297.

[54] DATTA S,JANKOWICZ-CIESLAK J,NIELEN S,INGELBRECHT I,TILL B J. Induction and recovery of copy number variation in banana through gamma irradiation and low-coverage whole-genome sequencing[J]. Plant Biotechnology Journal,2018,16(9):1644-1653.

[55] HU C H,WU Y L,YI G J. Gamma irradiation of embryogenic cell suspension cultures from Cavendish banana (Musa spp. AAA group) and in vitro selection for resistance to Fusarium wilt[M]//JANKOWICZ-CIESLAK J,INGELBRECHT I L. Efficient screening techniques to identify mutants with TR4 resistance in banana. Berlin,Heidelberg:Springer,2022:21-30.

[56] 高典林. 伽玛射线诱发香蕉突变育种之研究-若干突变体之出现[J]. 中国园艺,1979,25(5/6):197-206.

KAO Deinlin. Study on mutation breeding of banana induced by gamma ray-the emergence of several mutants[J]. China Horticulture,1979,25 (5/6):197-206.

[57] 李丰年,黄秉智,杨护,许林兵,曾惜冰. 香蕉60Co辐射诱变效应的初步研究[J]. 广东农业科学,1996,23(3):29-31.

LI Fengnian,HUANG Bingzhi,YANG Hu,XU Linbing,ZENG Xibing. Preliminary study on the mutagenic effect of banana 60Co radiation[J]. Guangdong Agricultural Sciences,1996,23(3):29-31.

[58] 张建斌,张建平,王安邦,徐碧玉,金志强,刘菊华. 香蕉不定芽60Co辐射诱变研究[J]. 热带农业科学,2018,38(2):42-45.

ZHANG Jianbin,ZHANG Jianping,WANG Anbang,XU Biyu,JIN Zhiqiang,LIU Juhua. Radiation-induced mutation of banana adventitious shoots by using 60Co[J]. Chinese Journal of Tropical Agriculture,2018,38(2):42-45.

[59] 叶春海,丰锋,吕庆芳,李洪波. 香蕉60Co辐射诱变效应的研究[J]. 西南农业大学学报,2000,22(4):301-303.

YE Chunhai,FENG Feng,L? Qingfang,LI Hongbo. Studies on γ-ray induce mutation effect in banana[J]. Journal of Southwest Agricultural University,2000,22(4):301-303.

[60] AGUILAR M J F. Improvement of Cavendish banana cultivars through conventional breeding[J]. Acta Horticulturae,2013,986:205-208.

[61] ORTIZ R,SWENNEN R. From crossbreeding to biotechnology-facilitated improvement of banana and plantain[J]. Biotechnology Advances,2014,32(1):158-169.

[62] UMA S,LAKSHMI S,SARASWATHI M S,AKBAR A,MUSTAFFA M M. Embryo rescue and plant regeneration in banana (Musa spp.)[J]. Plant Cell,Tissue and Organ Culture,2011,105(1):105-111.

[63] VUYLSTEKE D,SWENNEN R,LANGHE E. Somaclonal variation in plantains (Musa spp,AAB group) derived from shoot-tip culture[J]. Fruits,1991,46:429-439.

[64] BAKRY F,HORRY J P. Tetraploid hybrids from interploid 3x × 2x crosses in cooking bananas[J]. Fruits,1992,47(6):641-647.

[65] SMITH M K,HAMILL S D,BECKER D K,DALE J L. Musa spp. banana and plantain[M]//LITZ R E. Biotechnology of fruit and nut crops. UK:CAB International,2005:366-391.

[66] 黄秉智,杨护,许林兵,唐小浪,魏岳荣,邱继水. 抗枯萎病金手指香蕉的引种栽培研究[J]. 福建果树,2005(4):15-16.

HUANG Bingzhi,YANG Hu,XU Linbing,TANG Xiaolang,WEI Yuerong,QIU Jishui. Study on introduction and cultivation of Goldern finger banana with resistance to Fusarium wilt[J]. Fujian Fruits,2005(4):15-16.

[67] 黄秉智,许林兵,杨护,唐小浪,魏岳荣,邱继水,李贯球. 香蕉种质资源枯萎病抗性田间评价初报[J]. 广东农业科学,2005,32(6):9-10.

HUANG Bingzhi,XU Linbing,YANG Hu,TANG Xiaolang,WEI Yuerong,QIU Jishui,LI Guanqiu. Prelimiary results of field evaluation of banana germplasm resistant to Fusarium wilt disease[J]. Guangdong Agricultural Sciences,2005,32(6):9-10.

[68] 苏祖祥,许娟,石云平,青钟准,陈河,陆卫群,李贤高,陈霞,覃永嫒,李丽,李小泉. 我国特色蕉产业发展现状与建议[J]. 农业研究与应用,2022,35(4):56-59.

SU Zuxiang,XU Juan,SHI Yunping,QING Zhongzhun,CHEN He,LU Weiqun,LI Xiangao,CHEN Xia,QIN Yongai,LI Li,LI Xiaoquan. Development status and suggestions of characteristic banana industry in China[J]. Agricultural Research and Application,2022,35(4):56-59.

[69] 邓彪,盛鸥,魏岳榮,李大志,高慧君,邝瑞彬,易干军,MOLINA A B. 二倍体香蕉种质资源花粉活力检测方法的筛选[J]. 分子植物育种,2014,12(5):1011-1017.

DENG Biao,SHENG Ou,WEI Yuerong,LI Dazhi,GAO Huijun,KUANG Ruibin,YI Ganjun,MOLINA A B. Selection of testing methods on pollen viability of diploid banana (Musa spp.) accessions[J]. Molecular Plant Breeding,2014,12(5):1011-1017.

[70] 李伟明,胡会刚,胡玉林,段雅婕,陈晶晶,谢江辉,王文华. 3个野生近缘种与不同栽培蕉的杂交亲和性[J]. 热带作物学报,2021,42(12):3500-3507.

LI Weiming,HU Huigang,HU Yulin,DUAN Yajie,CHEN Jingjing,XIE Jianghui,WANG Wenhua. Cross-compatibility among three wild banana species and various cultivars[J]. Chinese Journal of Tropical Crops,2021,42(12):3500-3507.

[71] 赵明,武鹏,龙芳,何海旺,邹瑜. 以广西野生蕉为父本的香蕉远缘杂交[J]. 南方农业学报,2019,50(4):695-702.

ZHAO Ming,WU Peng,LONG Fang,HE Haiwang,ZOU Yu. Distant hybridization of banana based on Guangxi wild banana as male parent[J]. Journal of Southern Agriculture,2019,50(4):695-702.

[72] BAKRY F,ASSANI A,KERBELLEC F. Haploid induction:Androgenesis in Musa balbisiana[J]. Fruits,2008,63(1):45-49.

[73] ASSANI A,BAKRY F,KERBELLEC F,HA?COUR R,WENZEL G,FOROUGHI-WEHR B. Production of haploids from anther culture of banana [Musa balbisiana (BB)] [J]. Plant Cell Reports,2003,21(6):511-516.

[74] DHONT A,DENOEUD F,AURY J M,…,WINCKER P. The banana (Musa acuminata) genome and the evolution of monocotyledonous plants[J]. Nature,2012,488(7410):213-217.

[75] WANG Z,MIAO H X,LIU J H,XU B Y,YAO X M,XU C Y,ZHAO S C,FANG X D,JIA C H,WANG J Y,ZHANG J B,LI J Y,XU Y,WANG J S,MA W H,WU Z Y,YU L L,YANG Y L,LIU C,GUO Y,SUN S L,BAURENS F C,MARTIN G,SALMON F,GARSMEUR O,YAHIAOUI N,HERVOUET C,ROUARD M,LABOUREAU N,HABAS R,RICCI S,PENG M,GUO A P,XIE J H,LI Y,DING Z H,YAN Y,TIE W W,DHONT A,HU W,JIN Z Q. Musa balbisiana genome reveals subgenome evolution and functional divergence[J]. Nature Plants,2019,5(8):810-821.

[76] HAMILL S D,SMITH M K,DODD W A. In vitro induction of banana autotetraploids by colchicine treatment of micropropagated diploids[J]. Australian Journal of Botany,1992,40(6):887-896.

[77] DO AMARAL C M,DE ALMEIDA D S S J,DE OLIVEIRA E S S,DA SILVA L C A,AMORIM E P. Agronomic characterization of autotetraploid banana plants derived from ‘Pisang Lilin (AA) obtained through chromosome doubling[J]. Euphytica,2015,202(3):435-443.

[78] GOIGOUX S,SALMON F,BAKRY F. Evaluation of pollen fertility of diploid and doubled-diploid clones of mlali and their potential use for banana breeding[J]. Acta Horticulturae,2013,986:195-204.

[79] JENNY C,HOLTZ Y,HORRY J P,BAKRY F. Synthesis of new interspecific triploid hybrids from natural AB germplasm in banana (Musa sp.)[J]. Acta Horticulturae,2013,986:209-217.

[80] 胡玉林,謝江辉,郭启高,梁国鲁. 秋水仙素诱导GCTCV-119香蕉多倍体[J]. 果树学报,2006,23(3):462-464.

HU Yulin,XIE Jianghui,GUO Qigao,LIANG Guolu. Polyploidy induction of banana variety GCTCV-119 by colchicines[J]. Journal of Fruit Science,2006,23(3):462-464.

[81] 谭平,唐晓华,劳世辉,魏岳荣,洪林. 秋水仙素诱导抗枯1号香蕉多倍体试验[J]. 南方农业学报,2012,43(11):1718-1722.

TAN Ping,TANG Xiaohua,LAO Shihui,WEI Yuerong,HONG Lin. In vitro polyploid induction of banana Kangku 1 using colchicine[J]. Journal of Southern Agriculture,2012,43(11):1718-1722.

[82] 彭静. 离体加倍创造香蕉多倍体种质及其鉴定[D]. 长沙:湖南农业大学,2010.

PENG Jing. In vitro production and identification of polyploid banana (Musa spp.) germplasm[D]. Changsha:Hunan Agricultural University,2010.

[83] 张丽平. 香蕉多倍体种质创制及其表型差异的机理初步研究[D]. 赣州:赣南师范大学,2021.

ZHANG Liping. Development of autotetraploid plants derived from banana diploids and exploring the mechanisms of the genetic variability[D]. Ganzhou:Gannan Normal University,2021.

[84] 黃永红,易干军,周碧容,曾继吾,吴元立. 香蕉基因工程研究进展[J]. 西北植物学报,2006,26(10):2179-2185.

HUANG Yonghong,YI Ganjun,ZHOU Birong,ZENG Jiwu,WU Yuanli. Research advances about genetic engineering of banana[J]. Acta Botanica Boreali-Occidentalia Sinica,2006,26(10):2179-2185.

[85] ADERO M,TRIPATHI J N,TRIPATHI L. Advances in somatic embryogenesis of banana[J]. International Journal of Molecular Sciences,2023,24(13):10999.

[86] WANG J Y,GAN S S,ZHENG Y K,JIN Z Q,CHENG Y J,LIU J H. Banana somatic embryogenesis and biotechnological application[J]. Tropical Plants,2022,1(1):1-13.

[87] 胡春华,魏岳荣,刘凯,易干军,黄秉智,黄永红. 几丁质酶基因克隆及其野生蕉转化[J]. 分子植物育种,2010,8(4):719-724.

HU Chunhua,WEI Yuerong,LIU Kai,YI Ganjun,HUANG Bingzhi,HUANG Yonghong. Cloning of chitinase gene and its genetic transformation of wild banana (Musa itinerans Cheesm.)[J]. Molecular Plant Breeding,2010,8(4):719-724.

[88] ZHANG L,YUAN L B,STAEHELIN C,LI Y,RUAN J X,LIANG Z W,XIE Z P,WANG W,XIE J H,HUANG S Z. The lysin motif-containing receptor-like kinase 1 protein of banana is required for perception of pathogenic and symbiotic signals[J]. New Phytologist,2019,223(3):1530-1546.

[89] DOU T X,SHAO X H,HU C H,LIU S W,SHENG O,BI F C,DENG G M,DING L J,LI C Y,DONG T,GAO H J,HE W D,PENG X X,ZHANG S,HUO H Q,YANG Q S,YI G J. Host-induced gene silencing of Foc TR4 ERG6/11 genes exhibits superior resistance to Fusarium wilt of banana[J]. Plant Biotechnology Journal,2020,18(1):11-13.

[90] 黄霞,黄学林,王鸿鹤,李筱菊. 果用香蕉薄片外植体植株再生的研究[J]. 园艺学报,2001,28(1):19-24.

HUANG Xia,HUANG Xuelin,WANG Honghe,LI Xiaoju. Studies on the plant regeneration from the micro cross sections of banana[J]. Acta Horticulturae Sinica,2001,28(1):19-24.

[91] 徐春香,李华平,肖火根,范怀忠. 香蕉分生小球体途径胚性细胞悬浮系的建立[J]. 园艺学报,2003,30(5):580-582.

XU Chunxiang,LI Huaping,XIAO Huogen,FAN Huaizhong. Establishment of embryogenic cell suspensions from meristematic globules of Musa spp.[J]. Acta Horticulturae Sinica,2003,30(5):580-582.

[92] 张妙霞. 香蕉与龙眼转化受体系统建立及转化PEAS基因初步研究[D]. 福州:福建农林大学,2004.

ZHANG Miaoxia. Establishment of banana and longan transgenic receptor system and the preliminary study on the transformation of the PEAS gene[D]. Fuzhou:Fujian Agriculture and Forestry University,2004.

[93] HUANG X,HUANG X L,XIAO W,ZHAO J T,DAI X M,CHEN Y F,LI X J. Highly efficient Agrobacterium-mediated transformation of embryogenic cell suspensions of Musa acuminata cv. Mas (AA) via a liquid co-cultivation system[J]. Plant Cell Reports,2007,26(10):1755-1762.

[94] 吳静,李瑞珍,徐碧玉,金志强. 香蕉ACC合成酶反义基因转化香蕉的研究[J]. 分子植物育种,2007,5(4):497-501.

WU Jing,LI Ruizhen,XU Biyu,JIN Zhiqiang. Genetic transformation of ACC antisense gene into banana[J]. Molecular Plant Breeding,2007,5(4):497-501.

[95] 胡春华,魏岳荣,易干军,黄秉智,黄永红. 根癌农杆菌介导的香蕉高效遗传转化系统的建立[J]. 分子植物育种,2010,8(1):172-178.

HU Chunhua,WEI Yuerong,YI Ganjun,HUANG Bingzhi,HUANG Yonghong. Establishment of a high efficient Agrobacterium tumefaciens-mediated transformation system for banana[J]. Molecular Plant Breeding,2010,8(1):172-178.

[96] 胡春华,窦同心,魏岳荣,盛鸥,邝瑞彬,杨乔松,李春雨,易干军. 根癌农杆菌介导香蕉多芽体薄切片遗传转化体系的建立[J]. 分子植物育种,2014,12(6):1195-1200.

HU Chunhua,DOU Tongxin,WEI Yuerong,SHENG Ou,KUANG Ruibin,YANG Qiaosong,LI Chunyu,YI Ganjun. Establishment of Agrobacterium-mediated transformation of multiple buds slices of banana[J]. Molecular Plant Breeding,2014,12(6):1195-1200.

[97] DONG T,BI F C,HUANG Y H,HE W D,DENG G M,GAO H J,SHENG O,LI C Y,YANG Q S,YI G J,HU C H. Highly efficient biolistic transformation of embryogenic cell suspensions of banana via a liquid medium selection system[J]. HortScience,2020,55(5):703-708.

[98] 胡春华,邓贵明,孙晓玄,左存武,李春雨,邝瑞彬,杨乔松,易干军. 香蕉CRISPR/Cas9基因编辑技术体系的建立[J]. 中国农业科学,2017,50(7):1294-1301.

HU Chunhua,DENG Guiming,SUN Xiaoxuan,ZUO Cunwu,LI Chunyu,KUANG Ruibin,YANG Qiaosong,YI Ganjun. Establishment of an efficient CRISPR/Cas9-mediated gene editing system in banana[J]. Scientia Agricultura Sinica,2017,50(7):1294-1301.

[99] ZHANG S,WU S P,HU C H,YANG Q S,DONG T,SHENG O,DENG G M,HE W D,DOU T X,LI C Y,SUN C K,YI G J,BI F C. Increased mutation efficiency of CRISPR/Cas9 genome editing in banana by optimized construct[J]. PeerJ,2022,10:e12664.

[100] HU C H,SHENG O,DENG G M,HE W D,DONG T,YANG Q S,DOU T X,LI C Y,GAO H J,LIU S W,YI G J,BI F C. CRISPR/Cas9-mediated genome editing of MaACO1 (aminocyclopropane-1-carboxylate oxidase 1) promotes the shelf life of banana fruit[J]. Plant Biotechnology Journal,2021,19(4):654-656.

[101] SHAO X H,WU S P,DOU T X,ZHU H C,HU C H,HUO H Q,HE W D,DENG G M,SHENG O,BI F C,GAO H J,DONG T,LI C Y,YANG Q S,YI G J. Using CRISPR/Cas9 genome editing system to create MaGA20ox2 gene-modified semi-dwarf banana[J]. Plant Biotechnology Journal,2020,18(1):17-19.

[102] WU S P,ZHU H C,LIU J X,YANG Q S,SHAO X H,BI F C,HU C H,HUO H Q,CHEN K L,YI G J. Establishment of a PEG-mediated protoplast transformation system based on DNA and CRISPR/Cas9 ribonucleoprotein complexes for banana[J]. BMC Plant Biology,2020,20(1):425.

[103] HU C H,YANG Q S,SHAO X H,DONG T,BI F C,LI C Y,DENG G M,LI Y,YI G J,DOU T X. The application of the ‘Gene-deletor technology in banana[J]. Plant Cell,Tissue and Organ Culture,2020,140(1):105-114.

[104] TRIPATHI J N,NTUI V O,RON M,MUIRURI S K,BRITT A,TRIPATHI L. CRISPR/Cas9 editing of endogenous banana streak virus in the B genome of Musa spp. overcomes a major challenge in banana breeding[J]. Communications Biology,2019,2:1-12.

[105] TRIPATHI L,NTUI V O,TRIPATHI J N,NORMAN D,CRAWFORD J. A new and novel high-fidelity genome editing tool for banana using Cas-CLOVER[J]. Plant Biotechnology Journal,2023,21(9):1731-1733.

[106] KLEIDON J,BRININ A,PAUL J Y,HARDING R,DALE J,DUGDALE B. Production of selectable marker gene-free Cavendish banana (Musa spp.) using a steroid-inducible recombinase platform[J]. Transgenic Research,2020,29(1):81-93.

[107] AWASTHI P,KHAN S,LAKHANI H,CHATURVEDI S,SHIVANI S,KAUR N,SINGH J,KESARWANI A K,TIWARI S. Transgene-free genome editing supports the role of carotenoid cleavage dioxygenase 4 as a negative regulator of β-carotene in banana[J]. Journal of Experimental Botany,2022,73(11):3401-3416.

[108] 肖望,黃霞,魏岳荣. 香蕉原生质体培养和体细胞杂交研究进展[J]. 果树学报,2009,26(3):369-374.

XIAO Wang,HUANG Xia,WEI Yuerong. Progress in protoplast culture and somatic hybridization in banana (Musa spp.)[J]. Journal of Fruit Science,2009,26(3):369-374.

[109] ASSANI A,CHABANE D,HA?COUR R,BAKRY F,WENZEL G,FOROUGHI-WEHR B. Protoplast fusion in banana (Musa spp.):Comparison of chemical (PEG:polyethylene glycol) and electrical procedure[J]. Plant Cell,Tissue and Organ Culture,2005,83(2):145-151.

[110] XIAO W,HUANG X,GONG Q,DAI X M,ZHAO J T,WEI Y R,HUANG X L. Somatic hybrids obtained by asymmetric protoplast fusion between Musa Silk cv. Guoshanxiang (AAB) and Musa acuminata cv. Mas (AA)[J]. Plant Cell,Tissue and Organ Culture,2009,97(3):313-321.

[111] DAI X M,XIAO W,HUANG X,ZHAO J T,CHEN Y F,HUANG X L. Plant regeneration from embryogenic cell suspensions and protoplasts of dessert banana cv. ‘Da Jiao (Musa paradisiacal ABB Linn.) via somatic embryogenesis[J]. In Vitro Cellular & Developmental Biology - Plant,2010,46(5):403-410.

[112] SAMANTARA K,BOHRA A,MOHAPATRA S R,PRIHATINI R,ASIBE F,SINGH L,REYES V P,TIWARI A,MAURYA A K,CROSER J S,WANI S H,SIDDIQUE K H M,VARSHNEY R K. Breeding more crops in less time:A perspective on speed breeding[J]. Biology,2022,11(2):275.

[113] HICKEY L T,HAFEEZ A N,ROBINSON H,JACKSON S A,LEAL-BERTIOLI S C M,TESTER M,GAO C X,GODWIN I D,HAYES B J,WULFF B B H. Breeding crops to feed 10 billion[J]. Nature Biotechnology,2019,37(7):744-754.

[114] HOU B H,TSAI Y H,CHIANG M H,TSAO S M,HUANG S H,CHAO C P,CHEN H M. Cultivar-specific markers,mutations,and chimerisim of Cavendish banana somaclonal variants resistant to Fusarium oxysporum f. sp. cubense tropical race 4[J]. BMC Genomics,2022,23(1):470.

[115] AHMAD F,MARTAWI N M,POERBA Y S,DE JONG H,SCHOUTEN H,KEMA G H J. Genetic mapping of Fusarium wilt resistance in a wild banana Musa acuminata ssp. malaccensis accession[J]. Theoretical and Applied Genetics,2020,133(12):3409-3418.

[116] CHEN A,SUN J M,MARTIN G,GRAY L A,H?IBOV? E,CHRISTELOV? P,YAHIAOUI N,ROUNSLEY S,LYONS R,BATLEY J,CHEN N,HAMILL S,RAI S K,COIN L,UWIMANA B,DHONT A,DOLE?EL J,EDWARDS D,SWENNEN R,AITKEN E A B. Identification of a major QTL-controlling resistance to the subtropical race 4 of Fusarium oxysporum f. sp. cubense in Musa acuminata ssp. malaccensis[J]. Pathogens,2023,12(2):289.

[117] BIABIANY S,ARAOU E,CORMIER F,MARTIN G,CARREEL F,HERVOUET C,SALMON F,EFILE J C,LOPEZ-LAURI F,D'HONT A,L?CHAUDEL M,RICCI S. Detection of dynamic QTLs for traits related to organoleptic quality during banana ripening[J]. Scientia Horticulturae,2022,293:110690.

[118] REEVES G,TRIPATHI A,SINGH P,JONES M R W,NANDA A K,MUSSEAU C,CRAZE M,BOWDEN S,WALKER J F,BENTLEY A R,MELNYK C W,HIBBERD J M. Monocotyledonous plants graft at the embryonic root-shoot interface[J]. Nature,2022,602(7896):280-286.

[119] TRIPATHI J N,NTUI V O,MALARVIZHI M,MUIRURI S,RAVISHANKAR K V,TRIPATHI L. Improvement of nutraceutical traits of banana:New breeding techniques[M]//KOLE C. Compendium of crop genome designing for nutraceuticals. Singapore:Springer,2023:1-33.

[120] 羅德超. 浅谈香蕉品种选育目标[J]. 福建热作科技,1991,16(2):37-38.

LUO Dechao. Talking about the objective of banana variety breeding[J]. Fujian Science & Technology of Tropical Crops,1991,16(2):37-38.

[121] BRISIBE E A,UBI G M,EKANEM N G. Descriptive and multivariate analyses of morphotaxonomic and yield-related traits in inflorescence dichotomous cultivars of Musa species (AAB genome)[J]. Genetic Resources and Crop Evolution,2021,68(8):3357-3372.

[122] MIAO Y L,WANG L Y,PENG C W,LI H,LI X H,ZHANG M. Banana plant counting and morphological parameters measurement based on terrestrial laser scanning[J]. Plant Methods,2022,18(1):66.

[123] MIAO H X,SUN P G,LIU Q,LIU J H,JIA C H,ZHAO D F,XU B Y,JIN Z Q. Molecular identification of the key starch branching enzyme-encoding gene SBE2.3 and its interacting transcription factors in banana fruits[J]. Horticulture Research,2020,7:101.

[124] XIAO Y Y,KUANG J F,QI X N,YE Y J,WU Z X,CHEN J Y,LU W J. A comprehensive investigation of starch degradation process and identification of a transcriptional activator MabHLH6 during banana fruit ripening[J]. Plant Biotechnology Journal,2018,16(1):151-164.

[125] SHENG O,YIN Z B,HUANG W J,CHEN M Y,DU M Y,KONG Q,FERNIE A R,YI G J,YAN S J. Metabolic profiling reveals genotype-associated alterations in carotenoid content during banana postharvest ripening[J]. Food Chemistry,2023,403:134380.

[126] ZHU L S,CHEN L,WU C J,SHAN W,CAI D L,LIN Z X,WEI W,CHEN J Y,LU W J,KUANG J F. Methionine oxidation and reduction of the ethylene signaling component MaEIL9 are involved in banana fruit ripening[J]. Journal of Integrative Plant Biology,2023,65(1):150-166.

[127] HAN Y C,KUANG J F,CHEN J Y,LIU X C,XIAO Y Y,FU C C,WANG J N,WU K Q,LU W J. Banana transcription factor MaERF11 recruits histone deacetylase MaHDA1 and represses the expression of MaACO1 and expansins during fruit ripening[J]. Plant Physiology,2016,171(2):1070-1084.

[128] YANG Y Y,SHAN W,YANG T W,WU C J,LIU X C,CHEN J Y,LU W J,LI Z G,DENG W,KUANG J F. MaMYB4 is a negative regulator and a substrate of RING-type E3 ligases MaBRG2/3 in controlling banana fruit ripening[J]. The Plant Journal,2022,110(6):1651-1669.

[129] 李丰年,许林兵,黄秉智,杨护,曾惜冰,钟明. 香蕉组培苗大田变异调查与分析[J]. 中国南方果树,1996,25(1):39-40.

LI Fengnian,XU Linbing,HUANG Bingzhi,YANG Hu,ZENG Xibing,ZHONG Ming. Investigation and analysis on field variation of banana tissue culture seedlings[J]. South China Fruits,1996,25(1):39-40.

[130] 吳元立,杨乔松,李春雨,黄秉智,董涛,盛鸥,毕方铖,邓贵明,胡春华,高慧君,窦同心,何维弟,刘思文,易干军. 香蕉-尖孢镰刀菌互作机理及抗病育种研究进展[J]. 广东农业科学,2020,47(11):32-41.

WU Yuanli,YANG Qiaosong,LI Chunyu,HUANG Bingzhi,DONG Tao,SHENG Ou,BI Fangcheng,DENG Guiming,HU Chunhua,GAO Huijun,DOU Tongxin,HE Weidi,LIU Siwen,YI Ganjun. Research progress in the mechanisms of banana-Fusarium oxysporum f. sp. cubense interaction and genetic improvement for resistance to Fusarium wilt[J]. Guangdong Agricultural Sciences,2020,47(11):32-41.

[131] 孙雪丽,郝向阳,王天池,赖钟雄,程春振. 香蕉枯萎病防控和抗病育种研究进展[J]. 果树学报,2018,35(7):870-879.

SUN Xueli,HAO Xiangyang,WANG Tianchi,LAI Zhongxiong,CHENG Chunzhen. Researches on the control and disease resistance breeding of Banana Fusarium wilt disease[J]. Journal of Fruit Science,2018,35(7):870-879.

[132] 吴元立,黄秉智,张智胜,杨兴玉. 香蕉枯萎病抗性离体接种鉴定方法的优化[J]. 园艺学报,2020,47(8):1577-1584.

WU Yuanli,HUANG Bingzhi,ZHANG Zhisheng,YANG Xingyu. Modification of in vitro bioassay for screening Musa species against Fusarium oxysporum f. sp. cubense[J]. Acta Horticulturae Sinica,2020,47(8):1577-1584.

[133] 徐春香,陳佳越,潘晓,王泽槐,陈厚彬. 利用胚性细胞悬浮系研究香蕉枯萎病抗性离体筛选技术[J]. 果树学报,2008,25(5):686-690.

XU Chunxiang,CHEN Jiayue,PAN Xiao,WANG Zehuai,CHEN Houbin. Study on in vitro screening technique for mutants resistant to Fusarium wilt through embryogenic cell suspension of banana (Musa spp. AAA group)[J]. Journal of Fruit Science,2008,25(5):686-690.

[134] 刘海瑞. 应用病菌毒素筛选香蕉抗枯萎病突变体[D]. 福州:福建农林大学,2007.

LIU Hairui. Screening the resistant mutants to banana vascular wilt using the crude toxins of Fusarium oxysporum f. sp. cubense[D]. Fuzhou:Fujian Agriculture and Forestry University,2007.

[135] 张静,孙秀秀,徐碧玉,金志强,刘菊华. 香蕉分子育种研究进展[J]. 分子植物育种,2018,16(3):914-923.

ZHANG Jing,SUN Xiuxiu,XU Biyu,JIN Zhiqiang,LIU Juhua. Research advances in molecular breeding of banana[J]. Molecular Plant Breeding,2018,16(3):914-923.

[136] ROCHA A J,SOARES J M D S,NASCIMENTO F D S,SANTOS A S,AMORIM V B O,FERREIRA C F,HADDAD F,SANTOS-SEREJO J A D,AMORIM E P. Improvements in the resistance of the banana species to Fusarium wilt:A systematic review of methods and perspectives[J]. Journal of Fungi,2021,7(4):249.

[137] LI H C,HU C H,XIE A F,WU S P,BI F C,DONG T,LI C Y,DENG G M,HE W D,GAO H J,SHENG O,YI G J,YANG Q S,DOU T X. Overexpression of MpbHLH transcription factor,an encoding ICE1-like protein,enhances Foc TR4-resistance of Cavendish banana[J]. Scientia Horticulturae,2022,291:110590.

[138] DALE J,JAMES A,PAUL J Y,KHANNA H,SMITH M,PERAZA-ECHEVERRIA S,GARCIA-BASTIDAS F,KEMA G,WATERHOUSE P,MENGERSEN K,HARDING R. Transgenic Cavendish bananas with resistance to Fusarium wilt tropical race 4[J]. Nature Communications,2017,8:1496.

[139] TRIPATHI L,NTUI V O,TRIPATHI J N. Control of bacterial diseases of banana using CRISPR/Cas-based gene editing[J]. International Journal of Molecular Sciences,2022,23(7):3619.

[140] TRIPATHI L,DHUGGA K S,NTUI V O,RUNO S,SYOMBUA E D,MUIRURI S,WEN Z Y,TRIPATHI J N. Genome editing for sustainable agriculture in Africa[J]. Frontiers in Genome Editing,2022,4:876697.

[141] TRIPATHI L,NTUI V O,TRIPATHI J N. CRISPR/Cas9-based genome editing of banana for disease resistance[J]. Current Opinion in Plant Biology,2020,56:118-126.

[142] WANG X Y,YU R B,LI J Y. Using genetic engineering techniques to develop banana cultivars with Fusarium wilt resistance and ideal plant architecture[J]. Frontiers in Plant Science,2021,11:617528.

[143] RAY J D,SUBANDIYAH S,RINCON-FLOREZ V A,PRAKOSO A B,MUDITA I W,CARVALHAIS L C,MARKUS J E R,ODWYER C A,DRENTH A. Geographic expansion of banana blood disease in southeast Asia[J]. Plant Disease,2021,105(10):2792-2800.

[144] 蔣礼珍. 香蕉种植中的几个气象问题及生产对策[J]. 广西气象,1995,16(3):44-45.

JIANG Lizhen. Several meteorological problems and production countermeasures in banana planting[J]. Journal of Guangxi Meteorology,1995,16(3):44-45.

[145] 黄相,邹瑜,赵明,武鹏,龙芳,何海旺,莫天利,秦献泉. 多效唑对3个香蕉品种旱地栽培的矮化效应[J]. 中国南方果树,2022,51(4):63-67.

HUANG Xiang,ZOU Yu,ZHAO Ming,WU Peng,LONG Fang,HE Haiwang,MO Tianli,QIN Xianquan. Dwarfing effect of paclobutrazol (PP333) on three different banana cultivars grown in dryland[J]. South China Fruits,2022,51(4):63-67.

[146] 舒海燕,孙威,王展,银曼妮,韩谦,周兆禧,戴敏洁,金志强,李敬阳,常胜合. 香蕉抗风育种的可行性分析[J]. 分子植物育种,2016,14(12):3511-3515.

SHU Haiyan,SUN Wei,WANG Zhan,YIN Manni,HAN Qian,ZHOU Zhaoxi,DAI Minjie,JIN Zhiqiang,LI Jingyang,CHANG Shenghe. The possible analysis for breeding banana varieties with high resistance to typhoon[J]. Molecular Plant Breeding,2016,14(12):3511-3515.

[147] HASHIM N,BIN JANIUS R,BARANYAI L,RAHMAN R A,OSMAN A,ZUDE M. Kinetic model for colour changes in bananas during the appearance of chilling injury symptoms[J]. Food and Bioprocess Technology,2012,5(8):2952-2963.

[148] 王伟英,邹晖,林江波,戴艺民. 香蕉抗寒技术研究进展[J]. 东南园艺,2018,6(6):61-66.

WANG Weiying,ZOU Hui,LIN Jiangbo,DAI Yimin. Research progress on techniques involved in cold resistance of banana[J]. Southeast Horticulture,2018,6(6):61-66.

[149] 王安邦. 香蕉抗寒种质创新、筛选及鉴定[D]. 海口:海南大学,2013.

WANG Anbang. Creating,screening and identification of cold-tolerance germplasm in banana (Musa AAA Cavendish cv. Brazil)[D]. Haikou:Hainan University,2013.

[150] 李卫亮,李茂富,贺军虎,赵小青,冯顺,周海兰,李绍鹏. 香蕉抗寒相关功能基因研究进展[J]. 分子植物育种,2015,13(5):1185-1192.

LI Weiliang,LI Maofu,HE Junhu,ZHAO Xiaoqing,FENG Shun,ZHOU Hailan,LI Shaopeng. Research progress on banana functional genes involved in cold resistance[J]. Molecular Plant Breeding,2015,13(5):1185-1192.

[151] DOU T X,HU C H,SUN X X,SHAO X H,WU J H,DING L J,GAO J,HE W D,BISWAS M K,YANG Q S,YI G J. MpMYBS3 as a crucial transcription factor of cold signaling confers the cold tolerance of banana[J]. Plant Cell,Tissue and Organ Culture,2016,125(1):93-106.

[152] GAO J,DOU T,HE W D,SHENG O,BI F,DENG G,GAO H J,DONG T,LI C Y,ZHANG S,YI G,HU C H,YANG Q S. MaMAPK3-MaICE1-MaPOD P7 pathway,a positive regulator of cold tolerance in banana[J]. BMC Plant Biology,2021,21(1):97.

[153] RAVI I,UMA S,VAGANAN M M,MUSTAFFA M M. Phenotyping bananas for drought resistance[J]. Frontiers in Physiology,2013,4:9.

[154] EYLAND D,LUCHAIRE N,CABRERA-BOSQUET L,PARENT B,JANSSENS S B,SWENNEN R,WELCKER C,TARDIEU F,CARPENTIER S C. High-throughput phenotyping reveals differential transpiration behaviour within the banana wild relatives highlighting diversity in drought tolerance[J]. Plant,Cell & Environment,2022,45(6):1647-1663.

[155] WEI J Y,LIU D B,LIU Y W,WEI S X. Physiological analysis and transcriptome sequencing reveal the effects of salt stress on banana (Musa acuminata cv. BD) leaf[J]. Frontiers in Plant Science,2022,13:822838.

[156] MIAO H X,SUN P G,LIU J H,WANG J Y,XU B Y,JIN Z Q. Overexpression of a novel ROP gene from the banana (MaROP5g) confers increased salt stress tolerance[J]. International Journal of Molecular Sciences,2018,19(10):3108.

[157] NANSAMBA M,SIBIYA J,TUMUHIMBISE R,KARAMURA D,KUBIRIBA J,KARAMURA E. Breeding banana (Musa spp.) for drought tolerance:A review[J]. Plant Breeding,2020,139(4):685-696.

[158] TRIPATHI L,NTUI V O,TRIPATHI J N. Application of genetic modification and genome editing for developing climate-smart banana[J]. Food and Energy Security,2019,8(4):e00168.

[159] SREEDHARAN S,SHEKHAWAT U K S,GANAPATHI T R. Transgenic banana plants overexpressing a native plasma membrane aquaporin MusaPIP1;2 display high tolerance levels to different abiotic stresses[J]. Plant Biotechnology Journal,2013,11(8):942-952.

[160] XU Y,HU W,LIU J H,SONG S,HOU X W,JIA C H,LI J Y,MIAO H X,WANG Z,TIE W W,XU B Y,JIN Z Q. An aquaporin gene MaPIP2-7 is involved in tolerance to drought,cold and salt stresses in transgenic banana (Musa acuminata L.)[J]. Plant Physiology and Biochemistry,2020,147:66-76.

[161] 紀峰. 香蕉酒生产工艺研究进展[J]. 现代食品,2021,27(2):55-57.

JI Feng. Research progress on production technology of banana wine[J]. Modern Food,2021,27(2):55-57.

[162] 傅金凤,涂师运,王娟,盛鸥. 美食蕉的降血糖活性及其对糖脂代谢指标、激素的影响[J]. 食品科学,2022,43(19):165-173.

FU Jinfeng,TU Shiyun,WANG Juan,SHENG Ou. Anti-hyperglycemic activity and effects of plantain on glucolipid metabolism indices and hormones[J]. Food Science,2022,43(19):165-173.

[163] PAUL J Y,KHANNA H,KLEIDON J,HOANG P,GEIJSKES J,DANIELLS J,ZAPLIN E,ROSENBERG Y,JAMES A,MLALAZI B,DEO P,ARINAITWE G,NAMANYA P,BECKER D,TINDAMANYIRE J,TUSHEMEREIRWE W,HARDING R,DALE J. Golden bananas in the field:Elevated fruit pro-vitamin A from the expression of a single banana transgene[J]. Plant Biotechnology Journal,2017,15(4):520-532.

[164] YADAV K,PATEL P,SRIVASTAVA A K,GANAPATHI T R. Overexpression of native ferritin gene MusaFer1 enhances iron content and oxidative stress tolerance in transgenic banana plants[J]. PLoS One,2017,12(11):e0188933.

[165] SUNIL KUMAR G B,SRINIVAS L,GANAPATHI T R. Iron fortification of banana by the expression of soybean ferritin[J]. Biological Trace Element Research,2011,142(2):232-241.

[166] CHAN H T,CHIA M Y,PANG V F,JENG C R,DO Y Y,HUANG P L. Oral immunogenicity of porcine reproductive and respiratory syndrome virus antigen expressed in transgenic banana[J]. Plant Biotechnology Journal,2013,11(3):315-324.

[167] ZOU F L,TAN C M,ZHANG B,WU W,SHANG N. The valorization of banana by-products:Nutritional composition,bioactivities,applications,and future development[J]. Foods,2022,11(20):3170.

[168] 胡玲玉,黃秉智,杨兴玉,吴元立,许林兵. 香蕉种质资源的安全保存与有效利用[J]. 广东农业科学,2020,47(12):24-31.

HU Lingyu,HUANG Bingzhi,YANG Xingyu,WU Yuanli,XU Linbing. Safe conservation and effective utilization of banana germplasm resources[J]. Guangdong Agricultural Sciences,2020,47(12):24-31.

[169] LI Z Y,WANG J B,FU Y L,JING Y L,HUANG B L,CHEN Y,WANG Q M,WANG X B,MENG C Y,YANG Q,XU L. The Musa troglodytarum L. genome provides insights into the mechanism of non-climacteric behaviour and enrichment of carotenoids[J]. BMC Biology,2022,20(1):186.

猜你喜欢

育种种质资源香蕉
快手香蕉饼
摘香蕉
瓶里有香蕉
香蕉
绿肥作物紫云英研究进展
大白菜种质资源抗根肿病基因CRa和CRb的分子标记鉴定与分析
茄子种质资源农艺性状遗传多样性分析
玉米种质资源抗旱性鉴定研究进展
迷你南瓜育种与栽培研究进展
浅析林业育种和生物技术的应用