APP下载

土壤与大气Cu处理下迎春的耐性和富集特征研究

2023-11-01王天琪徐瑞瑞侯立娜阮坤非毕宁宁刘忠华

广西植物 2023年9期
关键词:耐性迎春

王天琪 徐瑞瑞 侯立娜 阮坤非 毕宁宁 刘忠华

摘 要:作為北京市常见园林灌木树种之一,迎春(Jasminum nudiflorum)因其在早春独特的观赏性而深受市民喜爱。Cu污染是北京市较为严重的重金属污染类型之一。为探讨迎春对城市Cu污染的修复作用,该文通过模拟北京市土壤和大气Cu污染条件,采用盆栽试验,设置9种不同浓度的土壤和大气Cu处理,以验证迎春Cu富集能力及生理生长特性。结果表明:(1)土壤和大气沉降处理均能显著增加迎春根、茎、叶中的Cu含量,其中土壤贡献率为63.48%~96.99%。各处理中Cu含量均表现为根>茎>叶。(2)大气处理下光化学转化效率(Fv/Fm)和相对叶绿素含量(SPAD值)提高,初始荧光(F0)降低,光合能力增强,而土壤处理及土壤和大气双重处理则对迎春的光合作用产生抑制影响。(3)与大气处理相比,土壤处理及土壤和大气双重处理导致活性氧(ROS)积累增多,膜脂过氧化作用加剧,丙二醛(MDA)含量大幅升高,抗氧化酶活性与脯氨酸(PRO)含量逐渐下降,造成生物膜系统损伤。(4)低浓度Cu处理对迎春生长有促进作用,而高浓度Cu处理(SHAL、SHAH)则抑制迎春生长,迎春根系耐性指数(TI)最小值为69.19%,属于高耐受型植物。综上认为,在模拟北京市Cu污染处理下,迎春可以在维持自身正常生理生长活动的同时,有效吸收土壤和大气中的Cu。该研究结果为北京市Cu污染防治、生态环境修复提供一定的理论依据。

关键词: Cu处理, 迎春, 土壤和大气沉降处理, 耐性, 富集

中图分类号:Q945

文献标识码:A

文章编号:1000-3142(2023)09-1656-12

收稿日期:2022-10-21

基金项目:国家林业和草原局项目(2020104020); 北京市园林绿化局计划项目(2021-STBHXFC-04-11)。

第一作者: 王天琪(1999-),硕士研究生,研究方向为植物逆境生理学,(E-mail)wangtianqi0817@163.com。

*通信作者:刘忠华,博士,副教授,研究方向为树木生长发育及其调控,(E-mail)liuzh6@bjfu.edu.cn。

Tolerance and enrichment characteristics of Jasminum

nudiflorum under copper treatment

from soil and atmosphere

WANG Tianqi1,2, XU Ruirui1,2, HOU Lina1,2, RUAN Kunfei1,2,

BI Ningning1,2, LIU Zhonghua1,2*

( 1. National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry

of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing

100083, China; 2. College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China )

Abstract:As one of the common garden shrub species in Beijing, Jasminum nudiflorum is very popular among citizens for its unique ornamental properties in early spring. Copper (Cu) pollution is one of the most serious heavy metal pollution types in Beijing. To explore the remediation effect of J. nudiflorum on urban copper pollution. By simulating the soil and atmospheric copper pollution conditions in Beijing, pot experiments were conducted to set up nine different concentrations of soil and atmosphere Cu treatments to verify the Cu enrichment ability and physiological growth characteristics of J. nudiflorum. The results were as follows: (1) Soil treatment and atmospheric deposition treatment and were able to significantly increase Cu content in root, stem and leaf of J. nudiflorum, among them, the contribution of soil ranged from 63.48% to 96.99%. The Cu content in each treatment showed the order of root>stem>leaf. (2) Under atmospheric treatment, photochemical conversion efficiency (Fv/Fm) and relative chlorophyll content (SPAD value) were increased, initial fluorescence (F0) was decreased, and photosynthetic capacity was promoted. The photosynthesis of J. nudiflorum was inhibited by soil treatment and co-treatment with soil and atmosphere. (3) Compared with atmospheric single factor treatment, soil single factor treatment and co-treatment with soil and atmosphere resulted in increased accumulation of reactive oxygen species (ROS), increased membrane lipid peroxidation, increased malondialdehyde (MDA) content, and decreased antioxidant enzyme activity and proline (PRO) content, and finally led to damage of the biofilm system. (4) The low-concentration Cu treatment promoted the growth of J. nudiflorum, while the high-concentration copper treatments (SHAL, SHAH) inhibited the growth of J. nudiflorum. The minimum value of the root tolerance index (TI) of J. nudiflorum was 69.19%, which indicated that J. nudiflorum belonged to a highly tolerant plant. In conclusion, under the simulated treatment ofsoil and atmosphere Cu pollution in Beijing, J. nudiflorum can effectively absorb and enrich Cu in soil and atmosphere while maintaining its own normal physiological and growth activities. This conclusion provides a certain theoretical basis for the prevention and control of Cu pollution and the maintenance and restoration of the ecological environment in Beijing.

Key words: copper (Cu) treatment, Jasminum nudiflorum, soil and atmospheric deposition treatment, tolerance, enrichment

《“十四五”规划纲要》提出:推动绿色发展,促进人与自然和谐共生;要深入打好污染防治攻坚战,推进城乡生活环境治理工作。随着城镇化进程加快、工业化迅猛发展以及城市人口激增,城市生态环境正面临日益严峻的考验。其中,重金属污染一直是危害城市生态安全不可忽视的问题。铜(copper,Cu )、铬(chromium,Cr)等重金属污染物在城市生态环境中滞留时间长,难以降解,从而不断积累,影响土壤、大气及水质安全,进而威胁人类健康(Leveque et al.,2014)。北京市作为我国政治、经济中心城市,市区内Cu污染分布广且程度高(陈同斌等,2004;李婧等,2019;顾家伟,2019),亟须治理修复。

植物生长生理指标能体现土壤Cu污染程度,并且植物通过对土壤中Cu的富集,可以实现生态修复(王庆仁等,2001;李永杰,2010)。曾巧英等(2019)研究了不同浓度Cu胁迫对甘蔗(Saccharum officinarum)生长指标、叶绿素含量及抗氧化酶活性的影响。黄国勇(2018)通过对Cu胁迫下蓖麻(Ricinus communis)富集重金属部位、形态及亚细胞分布的研究,系统解析了蓖麻对Cu的积累和转移机制。以往对植物修复重金属污染的报道多集中于土壤污染,但有研究表明,工业废气、煤炭燃烧、汽车尾气的排放致使大气重金属含量上升并在沉降后进一步导致土壤重金属含量升高(杨忠平等,2009;熊秋林等,2021)。章明奎等(2010)研究发现,露天生长的白菜(Brassica rapa var. glabra)中镉(cadmium,Cd)含量较覆膜条件下高约1.5倍。Zhang等(2018)通过对工业区附近农田土壤和水稻(Oryza sativa)中汞(mercury,Hg)含量的研究发现,土壤与水稻中Hg污染与当地主导风向有关。由此可见,土壤、大气污染协同治理将是城市重金属治理的工作重点,但目前此方向的植物修复研究却相对较少。实践证实,草本植物在重金属修复过程中存在生物量小且需反复种植收割等弊端,而木本植物因其生物量大、根系发达、寿命长、造型美观等优势,正逐步成为城市重金属污染植物修复的热点(朱健等,2016;朱成豪等,2019)。园林灌木是城市绿化广泛应用的木本植物类型,研究土壤和大气Cu污染下园林灌木的耐性及富集能力,对城市重金属污染防治工作具有重要意义。

迎春(Jasminum nudiflorum)是北京市常见园林灌木树种之一。迎春即迎春花,为木樨科(Oleaceae)素馨属(Jasminum)落叶灌木;其小枝绿色;三出复叶对生;花黄色,单生,花冠常6裂;早春叶前开花,易成活且有较强的观赏价值。郑滨洁等(2014)和林星宇等(2019)研究发现,迎春对城市环境中的Cu有较好的滞留和吸收作用,但目前迎春在Cu处理下自身调节机制、耐受能力及富集能力的研究还尚未见报道。因此,本研究以2年生迎春为试验对象,依托北京市土壤和大气Cu污染研究进展,采用盆栽法,通过探究土壤和大气沉降双重处理对迎春Cu含量积累、叶绿素荧光参数、生理响应以及生长指标的影响,拟探讨以下问题:(1)迎春能否有效富集土壤和大气中的Cu污染;(2)Cu处理下,迎春的生理响应机制;(3)迎春对Cu处理的耐受能力。以期为北京市土壤和大气Cu污染地区园林灌木树种的选择和城市Cu污染植物修复技术及其改良提供理论依据。

1 材料与方法

1.1 材料及试验设计

本试验供试苗木为2年生迎春实生苗,购自江苏省宿迁市苗木园艺场,由北京林业大学刘忠华副教授经植物形态学鉴定为木犀科素馨属植物迎春。盆栽试验场地为北京林业大学苗圃温室。土壤类型为沙壤土(河沙+壤土1∶1混匀)。供试土壤基本理化性质:pH 5.0,有机质15%,氮(nitrogen,N)300 mg·kg-1,磷(phosphorus,P)150 mg·kg-1,钾(potassium,K)255 mg·kg-1,铜(Cu)20 mg·kg-1。每盆装土4.5 kg,移栽苗木1株,盆下放置托盘,以防重金属流失及试验造成污染。

苗木移栽1个月后,挑选生长状态一致的苗木进行土壤和大气沉降双因素Cu处理,外源铜为CuSO4·5H2O(分析纯),每个因素分别设置对照、低浓度和高浓度3个梯度。土壤处理的模拟浓度参考北京市土壤重金属污染研究进展(刘玲玲,2016;康帅,2020),以Cu2+溶液的形式加入其中,对照组使用等体积去离子水代替。大气沉降的模拟浓度参考北京市大气沉降重金属污染研究进展(许栩楠等,2016;熊秋林,2021),大气沉降分为干沉降与湿沉降(Pan et al.,2015),其中湿沉降占主导地位且易被植物吸收(Liu et al.,2019)。本研究参照Cui J等(2019)和Cao等(2020)的研究方法,采用喷洒重金属溶液的形式,以湿沉降代表大气沉降,按大气沉降通量设置为对照(0 mg·m-2·d-1 )、低浓度(0.04 mg·m-2·d-1 )、高浓度(0.4 mg·m-2·d-1 ),换算成喷洒溶液的浓度为0、0.024、0.24 mg·L-1。具体土壤、大气处理设计见表1。

大气沉降溶液喷洒周期为5 d,每盆喷洒量为250 mL。噴洒时不同处理组之间用塑料膜进行遮挡,避免干扰。根据苗木生长状况补充等量水分。每个处理设3个重复,共27 盆。处理60 d后,测定各项生理生长指标。

1.2 试验方法

叶绿素荧光参数的测定:每组处理中随机选取3个重复,使用 PAM-2500 便携式调制叶绿素荧光仪和SPAD-502Plus叶绿素含量测量仪分别测定荧光参数(何童童,2018)及相对叶绿素含量(用SPAD值表示)。

生理指标的测定:每组处理中选取3份生长状况相近的新鲜叶片0.1 g,分别加入0.9 mL磷酸缓冲液(phosphate buffer solution,PBS,pH=7.4、0.1 mol·L-1、4 ℃预冷)研磨成匀浆后离心,取上清液备用。丙二醛(malonaldehyde,MDA)含量、脯氨酸(proline,PRO)含量以及超氧化物歧化酶(superoxide dismutase,SOD)、过氧化物酶(peroxidase,POD)、過氧化氢酶(catalase,CAT)的活性均使用南京建成生物公司出品的试剂盒测定。

生长指标的测定:采集迎春完整植株后,清水冲净,再用去离子水清洗3次,以去除附着在表面的杂质。吸水纸吸干表面水分后,测量株高和最大根长。称量根、茎、叶鲜重,70 ℃烘干后记录干重。根冠比及根系耐性指数(root tolerance index,TI)计算公式如下(Lux et al.,2004):

根冠比=地下部鲜重(g)/地上部鲜重(g);

根系耐性指数(%)=处理组的根长(cm)/对照组的根长(cm)×100。

植物Cu含量的测定:烘干的根、茎、叶样品研磨成粉,土壤样品室内风干后过100目筛。采用微波消解法 (HNO3-H2O2), 电感耦合等离子质谱仪(inductively coupled plasma-mass spectrometry,ICP-MS)测定样品Cu含量。迁移系数(translocation factor,TF)及富集系数(bioconcentration factor,BCF)计算公式如下(Baker et al.,1994):

迁移系数=地上部重金属含量(mg·kg-1)/地下部重金属含量(mg·kg-1);

地上部(地下部)富集系数=地上部(地下部)重金属含量(mg·kg-1)/土壤中重金属含量(mg·kg-1)。

1.3 数据分析处理

试验数据均以3个平行独立试验的平均值±标准差表示,使用SPSS 26.0进行双因素方差分析、多重比较及相关性分析,使用Excel 2019以及Origin 8.0进行数据处理和制图。

双因素方差分析贡献率计算公式如下:

贡献率(%)= [某一因素的离差平方和(SS)-该因素的自由度(df)×误差的均方(MSe)]/总离差平方和×100。

2 结果与分析

2.1 土壤与大气沉降处理下Cu在迎春体内的富集

由图1可知,随着土壤和大气Cu处理浓度的升高,迎春根、茎、叶中Cu含量均有不同程度的增加,各处理中Cu含量表现为根>茎>叶。土壤和大气沉降双重处理组(SLAL、SLAH、SHAL、SHAH)中各器官Cu含量随处理浓度增加而显著提高(P<0.05),并且根、茎、叶Cu含量均在SHAH处理组达到最大值,分别为对照组的13.54、4.30及3.25倍。

CK. 对照组; AL. 大气低浓度处理; AH. 大气高浓度处理; SL. 土壤低浓度处理; SLAL. 土壤低浓度大气低浓度双重处理; SLAH. 土壤低浓度大气高浓度双重处理; SH. 土壤高浓度处理; SHAL. 土壤高浓度大气低浓度双重处理; SHAH. 土壤高浓度大气高浓度双重处理。柱上不同小写字母表示各处理之间差异显著(P<0.05)。下同。

CK. Control group; AL. Low atmosphere concentration treatment; AH. High atmosphere concentration treatment; SL. Low soil concentration treatment; SLAL. Low soil concentration and low atmosphere concentration co-treatment; SLAH. Low soil concentration and high atmosphere concentration co-treatment; SH. High soil concentration treatment; SHAL. High soil concentration and low atmosphere concentration co-treatment; SHAH. High soil concentration and high atmosphere concentration co-treatment.Different lowercase letters on the bars indicate significant differences between treatments (P<0.05). The same below.

由表2可知,土壤处理、大气沉降处理对迎春根、茎、叶Cu含量均有显著影响(P<0.05),并且两者之间存在着显著的交互作用(P<0.05)。虽然各器官富集的Cu主要来源于土壤处理(63.48%~96.99%),但是大气沉降也是植株中Cu富集的重要因素,在茎和叶中,大气沉降贡献率分别为19.22%和14.22%。

由表3可知,随着Cu2+浓度升高,地下部富集系数呈现先上升后下降的趋势,在SLAH处理组达到最大值0.749,显著高于其他处理组(P<0.05)。除AH处理组外,其他处理组地下部富集系数均高于对照组。地上部富集系数则随Cu浓度的增加基本呈下降趋势且各处理组中地上部富集系数均小于地下部富集系数。迁移系数范围为0.097~0.545,均小于1,与对照组相比,AL、AH迁移系数变化不显著(P>0.05),SL、SH处理组则显著下降(P<0.05)。

2.2 土壤与大气沉降处理下Cu对迎春叶绿素荧光参数的影响

F0为暗适应状态下最小初始荧光,表示光系统Ⅱ反应中心全部开放时叶绿素荧光产量。由图2可知,各处理组F0整体呈先降后升的趋势但不显著(P>0.05)。AL、AH和SL处理组中F0低于对照组,说明低浓度Cu处理在一定程度上促进迎春的光合作用。

Fv/Fm是PSⅡ最大量子效率,反映PSⅡ所捕获的光量子转化成化学能的效率,間接反映潜在光合能力。高等植物Fv/Fm正常范围为0.75~0.85,各处理组均在此范围内。大气单一处理中Fv/Fm随处理浓度增加而上升,在AH处理组达到最高且呈显著性差异。在SLAL、SLAH、SHAL、SHAH处理组中,Fv/Fm随处理浓度的增加呈下降趋势,但降幅变化不显著(P>0.05)。

SPAD值与叶绿素实际含量呈正相关。试验中SPAD值的变化趋势与Fv/Fm类似,AH处理时最高达对照组的1.19倍。土壤和大气双重处理组的SPAD值呈轻微下降趋势且均低于对照组。

2.3 土壤与大气沉降处理下Cu对迎春生理指标的影响

MDA是膜脂过氧化的产物,可反映植物体过氧化强度及生物膜系统受损程度(张利红等,2005)。由图3可知,MDA含量在大气单一处理组中与对照组相比显著降低(P<0.05), 在土壤单一处理及土壤和大气双重处理组中逐渐升高,其中SH、SHAL、SHAH处理组的MDA含量均显著高于对照组(P<0.05),分别为对照组的1.07、1.43和1.62倍。

CAT活性在大气单一处理时呈升高趋势,最高值为944.879 U·g-1,而后显著下降(P<0.05),在土壤和大气沉降双重处理组中显著低于对照组(P<0.05)。POD活性呈现小幅度升降,除AH处理组外,均无显著差异(P>0.05)。SOD活性变化趋势与CAT类似,但各处理组SOD活性均高于对照组,并且AH处理组显著高于其他处理(P<0.05)。

各处理组PRO含量均与对照组呈显著性差异(P<0.05),土壤低浓度处理组(SL、SLAL、SLAH)中PRO含量较高,分别为对照组的2.68、2.60和1.94倍。而土壤高浓度处理(SH、SHAL、SHAH)条件下PRO含量随Cu浓度升高显著降低(P< 0.05)。

2.4 土壤与大气沉降处理下Cu对迎春生长的影响

生长指标可以评价植物重金属胁迫下的响应能力。由表4可知,与对照组相比,大气单一处理组(AL、AH)的株高、根长、地上部鲜重及地上部干重与对照组相比均有所增加,这表明低浓度Cu处理有利于迎春的生长。但 是,随着土壤和大气Cu处理浓度的升高,迎春的生长也逐渐受到抑制。SHAH处理组中株高和根长显著低于对照组(P<0.05),降幅分别为15.79%和31.70%。此外,迎春鲜重、干重和根冠比也在SHAH处理组达到最小值。

根系耐性指数(TI)可以反映植物根系对胁迫的耐受程度。AL、AH、SL的TI均大于100%,说明在这3个处理组浓度下,迎春根系生长得到促进。Lux等(2004)依据耐性指数将植物分为敏感型(TI<35)、中等敏感型(35≤TI≤60)和高耐受型(TI>60)。由图4可知,SHAH处理组中TI达到最小值69.19%,说明迎春在本试验最高Cu处理浓度下仍具较强耐性。

2.5 迎春叶绿素荧光参数、生理指标及生长参数双因素方差分析

叶绿素荧光参数、生理指标及生长参数(除根冠比外)主要受土壤Cu处理的影响(P<0.05),大气沉降对这些参数的影响较小,其中除MDA、CAT、POD、PRO外均不显著(P>0.05)。土壤和大气交互作用对Fv/Fm、SPAD值、生理指标、株高和根长存在显著影响(P<0.05)(表5)。

2.6 迎春响应土壤与大气Cu处理参数相关性分析

利用双变量相关性分析进行Pearson相关系数检验。由图5可知,土壤浓度与根、茎、叶Cu含量和MDA含量呈显著正相关(P<0.05),与株高、根长、耐性指数、Fv/Fm、SPAD值、CAT活性呈显著负相关(P<0.05)。大气浓度与茎Cu含量呈显著正相关(P<0.05),与叶Cu含量、F0以及MDA含量呈正相关但不显著(P>0.05),与其他各项参数均无显著性相关(P>0.05)。

3 讨论

3.1 土壤与大气沉降Cu处理对迎春Cu富集的影响

园林灌木在修复城市重金属污染的同时兼顾美化环境、净化空气功能,并且成本低廉、普遍适用,不会通过食物链进入人体。本试验中迎春吸收土壤和大气中的Cu并在根部大量富集,从而达到清除Cu污染的目的。土壤处理是根、茎、叶Cu富集的主要来源,但大气沉降也能显著提升迎春Cu含量。大气沉降中Cu通过气孔吸附和角质层渗透等方式进入植株(Sumel et al.,2012 ),影响植物对Cu的富集,从而增加重金属含量(Xiong et al.,2016,2019;刘楚藩等,2020)。植物的富集系数和迁移系数是评价植物修复效果的重要标准。本研究中处理组地下部富集系数基本高于对照组,但迎春的富集系数均小于1,这说明迎春对Cu具有富集作用,但未达到超富集水平。土壤和大气双重处理组的迁移系数基本小于土壤、大气单一处理组,说明双重处理中根系吸收的Cu较单一处理相比更难迁移至地上部。目前,尚无对Cu在迎春根部富集转运机理的研究报道。但有研究表明,木本植物在受到Cu胁迫时根部细胞壁产生大量多糖和蛋白质,与Cu2+结合形成沉淀, 将其固定在细胞壁及液泡中, 根细胞Cu2+转运蛋白表达被抑制,限制Cu2+跨膜运输,阻止Cu2+向地上部转运(Yang et al.,2015;王子诚等,2021)。因此当迎春吸收过量Cu2+时,根系可能会启动防御,减少进入茎、叶的重金属含量,将Cu2+截留在根部,这可能是迎春缓解Cu毒害作用的机制之一。

3.2 土壤与大气沉降Cu处理对迎春叶绿素荧光参数的影响

叶绿素荧光参数是描述植物光合生理状况的参数,可反映植物重金属胁迫下的受损程度。本试验发现随土壤和大气处理浓度的增加,F0先降低后升高,Fv/Fm与SPAD值先上升后下降。这是由于Cu是叶绿体中的重要组成元素,适量的Cu促进叶绿素合成,增强光合作用,但过量的Cu则导致叶绿素蛋白失活,类囊体结构受损,叶绿素含量降低。此外,Cu胁迫下1,5-二磷酸核酮糖羧化酶/加氧酶(RuBisCu)效率降低,进而导致电子传递受阻,光化学效率被抑制,光合活性下降(Boussadia et al.,2015;许喆等,2019)。另外,过量的Cu2+还会替代叶绿素中的Mg2+,引发叶绿体膜的过氧化作用(Aly et al.,2012)。尽管试验中叶绿素荧光参数变化不显著,但双重处理下迎春叶绿素含量和光化学转换效率仍受到影响,最终表现为生物量的下降。这与Rodriguez(2012)和Shahbaz等(2010)的研究相近。

3.3 土壤与大气沉降Cu处理对迎春生理指标的影响

重金属胁迫下,植物会产生过量活性氧(ROS),导致膜脂过氧化,生物膜选择透性降低(刘文英,2015)。MDA是膜脂过氧化的产物,能够引起生物大分子间的交联聚合,加剧膜结构的损伤(张博宇和滕维超,2020)。当ROS累积过量时,植物通过增加抗氧化酶系统活性来降低ROS造成的细胞损伤(Venkatachalam et al.,2017)。其中,SOD将O-2转化为H2O2和O2,CAT与POD将H2O2催化分解为H2O和O2,从而保护细胞免受氧化毒害 (刘朝荣等,2020)。PRO积累可以调节渗透平衡,维持细胞膨压和质膜完整,减轻胁迫伤害(Mattioli et al.,2009)。本研究中,大气单一处理下MDA含量降低,抗氧化酶活性提升,PRO含量增加,有效清除ROS并减缓膜脂过氧化作用。然而,土壤单一处理及土壤和大气双重处理导致MDA含量大幅升高,抗氧化酶活性与PRO含量逐渐降低,这与刘建宏(2014)的研究一致。迎春体内酶系统功能紊乱,细胞膜透性增加,细胞器被破坏,渗透调节物质合成受阻影响植物生理代谢活动,这可能是迎春生长受到抑制的原因之一。

3.4 土壤与大气沉降Cu处理对迎春生长的影响

生长指标的变化可以综合反映植株对重金属胁迫的响应。本研究中,迎春各生长指标在大气单一处理组中基本高于对照组且呈上升趋势。在土壤单一处理及土壤和大气双重处理组中,生长指标则出现了低浓度促进、高浓度抑制的变化规律。适宜浓度的Cu可以促进迎春微量元素吸收,有利于生长;而过量的Cu则会导致迎春根系生长被抑制,株高降低,生物量下降。Cui YC等(2019)研究表明,Cu在植物根细胞中积累,会减少生长素、细胞分裂素等植物激素的分泌,抑制根部酶活性,减缓细胞增殖速度,从而影响根系生长发育及地上部生长。根系是植物吸收重金属污染的重要器官,根系耐性指数是反映植物对重金属耐受程度的重要参数。本试验中,迎春耐性指数最小值大于高耐受型标准(TI>60),说明迎春属于高耐受型植物并对Cu有较强适应性。

3.5 迎春响应土壤与大气Cu处理参数的综合分析

双因素方法分析及Pearson相关性分析表明,迎春对Cu的富集和生理生长响应主要受到土壤Cu处理的影响,而大气沉降的影响则相对较小。各项参数与Cu处理的浓度和方式密切相关,通过相关性分析得出各参数彼此间亦存在一定相关性,可从中选择相关性较强的因素,作为评定迎春对土壤及大气Cu处理响应的重要指标。

4 结论

(1)土壤Cu处理是迎春根、茎、叶Cu含量增加的主要因素,但大气处理也能显著增加迎春各部位Cu含量,两者交互作用对茎、叶中Cu含量的贡献率分别为16.66%和6.70%。迎春各器官Cu富集含量表现为根>茎>叶,植株整体表现出对土壤和大气Cu污染较强的富集特征。

(2)迎春在适量Cu处理下可以通过提升光合能力、维持活性氧平衡、积累渗透调节物质等方式,来促进生理代谢以及生长情况,但超出耐受界限后,就会造成生理生长损伤。

(3)试验中迎春根系耐性指数最小值高于高耐受型(TI>60)标准,说明迎春属于高耐受型植物并对Cu有较强适应性。

(4)迎春花色鲜亮,枝条婀娜,在模拟北京市土壤和大气Cu浓度處理下,能有效富集土壤和大气中Cu污染,并仍维持良好的生长状态,兼顾美观性与植物修复实用性。这为北京市Cu污染治理工作及园林灌木树种选育工作提供了理论参考。

参考文献:

ALY AA, MOHAMED AA, 2012. The impact of copper ion on growth, thiol compounds and lipid peroxidation in two maize cultivars(Zea mays L.)grown‘in vitro’ [J]. Aust J Crop Sci, 6(3): 541-549.

BAKER AJM, MCGRATH SP, SIDOLI CMD, et al., 1994. The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants [J]. Resour Conserv Recyc, 11(1/4): 41-49.

BOUSSADIA O, STEPPE K, VAN LABEKE MC, et al., 2015. Effects of nitrogen deficiency on leaf chlorophyⅡ fluorescence parameters in two olive tree cultivars ‘Meski’ and ‘Koroneiki’ [J]. J Plant Nutr, 38(14): 2230-2246.

CAO XY, TAN CY, WU LH, et al., 2020. Atmospheric deposition of cadmium in an urbanized region and the effect of simulated wet precipitation on the uptake performance of rice [J]. Sci Total Environ, 700: 134513.

CHEN TB, ZHENG YM, CHEN H, et al., 2004. A systematic study on the background values of heavy metals in soils in Beijing [J]. Environ Sci, 25(1): 117-122.[陈同斌, 郑袁明, 陈煌, 等, 2004. 北京市土壤重金属含量背景值的系统研究 [J]. 环境科学, 25(1): 117-122.]

CUI J, WANG W, PENG Y, et al., 2019. Effects of simulated Cd deposition on soil Cd availability, microbial response, and crop Cd uptake in the passivation-remediation process of Cd-contaminated purple soil [J]. Sci Total Environ, 683: 782-792.

CUI YC, WANG ML, YIN XM, et al., 2019. OsMSR3, a small heat shock protein, confers enhanced tolerance to copper stress in Arabidopsis thaliana [J]. Int J Mol Sci, 20(23): 6096.

GU JW, 2019. Research progress and trend of heavy metal pollution in urban atmospheric particulate matter in my country [J]. Earth Environ, 47(3): 385-396.[顾家伟, 2019. 我国城市大气颗粒物重金属污染研究进展与趋势 [J]. 地球与环境, 47(3): 385-396.]

HE TT, 2018. Physiological response and enrichment capacity of Celosia argentea and Celosia japonica to copper stress [D].Wuhan: University of Chinese Academy of Sciences (Wuhan Botanical Garden, Chinese Academy of Sciences).[何童童, 2018. 青葙和鸡冠花对铜胁迫的生理响应和富集能力研究 [D]. 武汉: 中国科学院大学(中国科学院武汉植物园).]

HUANG GY, 2018. Mechanism of copper accumulation in castor (Ricinus communis L.) and its application on remediation of copper contaminated soil [D]. Wuhan: Huazhong Agricultural University.[黄国勇, 2018. 蓖麻(Ricinus communis L.)富集铜的机制及其对铜污染土壤的修复 [D]. 武汉: 华中农业大学.]

KANG S, 2020. Research progress on heavy metal pollution in Beijing urban green space soil [J]. Contemp Hortic, 43(21): 27-31.[康帅, 2020. 北京城市绿地土壤重金属污染研究进展 [J]. 现代园艺, 43(21): 27-31.]

LEVEQUE T, CAPOWIEZ Y, SCHRECK E, et al., 2014. Earthworm bioturbation influences the phytoavailability of metals released by particles in cultivated soils [J]. Environ Pollut, 191: 199-206.

LI J, LI SY, SUN XY, et al., 2019. Distribution characteristics and influencing factors of soil heavy metals in green space in Chaoyang District (inside the Fifth Ring Road) of Beijing [J]. Res Soil Water Conserv, 26(3): 311-317.[李婧, 李素艳, 孙向阳, 等, 2019. 北京市朝陽区(五环内)绿地土壤重金属分布特征及其影响因素 [J]. 水土保持研究, 26(3): 311-317.]

LI YJ, 2010. Physiological response and tolerance evaluation on six urban greening seedlings under soil Cu and Pb contamination [D]. Beijing: Beijing Forestry University.[李永杰, 2010. 6种城市绿化树种苗木对土壤Cu、Pb污染的生理响应及耐性评价 [D]. 北京: 北京林业大学.]

LIN XY, LI HM, LI YH, et al., 2019. Relationship between dust retention ability and the heavy metal content of shrubs [J]. Jiangsu Agric Sci, 47(15): 180-183. [林星宇, 李海梅, 李彦华, 等, 2019. 灌木滞尘能力与重金属含量间的关系 [J]. 江苏农业科学, 47(15): 180-183.]

LIU CF, XIAO RB, HUANG F, et al., 2020. Accumulation and physiological response of Amaranthus tricolor L. seedlings to lead under soil and atmospheric stress [J]. Acta Ecol Sin, 40(24): 9174-9183.[刘楚藩, 肖荣波, 黄飞, 等, 2020. 土壤与大气双重胁迫下苋菜幼苗对铅的累积与生理响应 [J]. 生态学报, 40(24): 9174-9183.]

LIU CR, ZHANG LQ, YANG Y, et al., 2021. Responses of physiological and biochemical indexes of Dove tree seedlings to heavy metal lead and cadmium stress [J]. Guihaia, 41(9): 1401-1410.[刘朝荣, 张柳青, 杨艳, 等, 珙桐幼苗生理生化指标对重金属铅、镉胁迫的响应 [J]. 广西植物, 41(9): 1401-1410.]

LIU HL, ZHOU J, LI M, et al., 2019. Study of the bioavailability of heavy metals from atmospheric deposition on the soil-pakchoi (Brassica chinensis L.) system [J]. J Hazard Mat, 362: 9-16.

LIU JH, 2014. Tolerance and enrichment characteristics of two species of eucalyptus under cadmium, copper, lead and zinc stress [D]. Ya’an: Sichuan Agricultural University.[刘健宏, 2014. 两种桉树在镉、铜、铅和锌胁迫下的耐性和富集特征研究 [D]. 雅安: 四川农业大学.]

LIU LL, 2020. Evaluation and risk assessment of heavy metal pollution in surface soils of urban parks in Beijing [D]. Hefei:Anhui University.[刘玲玲, 2020. 北京城市公园表层土壤重金属污染评价及风险评估 [D].合肥: 安徽大学.]

LIU WY, 2015. Plant adversity and genes [M]. Beijing: Beijing Institute of Technology Press.[劉文英, 2015. 植物逆境与基因 [M]. 北京: 北京理工大学出版社.]

LUX A, OTTNIKOVA A, OPATMA J, et al., 2004. Differences in structure of adventitious roots in salix clones with contrasting characteristics of cadmium accumulation and sensitivity [J]. Physiol Plant, 120(4): 537-545.

MATTIOLI R, COSTANTINO P, TROVATO M, 2009. Proline accumulation in plants [J]. Plant Sign Behav, 4(11): 1016-1018.

PAN YP, WANG YS, 2015. Atmospheric wet and dry deposition of trace elements at 10 sites in Northern China [J]. Atmos Chem Phys, 15(2): 951-972.

RODRIGUEZ E, SANTOS C, AZEVEDO R, et al., 2012. Chromium (VI) induces toxicity at different photosynthetic levels in pea[J]. Plant Physiol Biochem, 53: 94-100.

SAUMEL I, KOTSYUK I, HOLSCHER M, et al., 2012. How healthy is urban horticulture in high traffic areas? Trace metal concentrations in vegetable crops from plantings within inner city neighbourhoods in Berlin, Germany [J]. Environ Pollut, 165: 124-132.

SHAHBAZ M, MEI HT, STUIVER CEE, et al., 2010. Copper exposure interferes with the regulation of the uptake, distribution and metabolism of sulfate in Chinese cabbage [J]. J Plant Physiol, 167(6): 438.

VENKATACHALAM P, JAYALAKSHMI N, GEETHA N, et al., 2017. Accumulation efficiency, genotoxicity and antioxidant defense mechanisms in medicinal plant Acalypha indica L. under lead stress[J]. Chemosphere, 171: 544-553.

WANG QR, CUI YS, DONG YT, 2001. Phytoremediation: an effective approach to remediation of heavy metal contaminated soils [J]. Acta Ecol Sin, 21(2): 326-331.[王庆仁, 崔岩山, 董艺婷, 2001. 植物修复——重金属污染土壤整治有效途径 [J]. 生态学报, 21(2): 326-331.]

WANG ZC, CHEN MX, YANG YX, et al., 2021. Research progress on the effects of copper stress on plant growth and development and the mechanism of plant copper tolerance [J]. J Plant Nutr Fertil, 27(10): 1849-1863.[王子誠, 陈梦霞, 杨毓贤, 等, 2021. 铜胁迫对植物生长发育影响与植物耐铜机制的研究进展 [J]. 植物营养与肥料学报, 27(10): 1849-1863.]

XIONG QL, 2021. Characteristics of dustfall elements and causes of heavy metal pollution in Beijing [J]. Acta Geod et Cartograph Sin, 50(2): 281.[熊秋林, 2021. 北京降尘元素特征与重金属污染成因分析 [J]. 测绘学报, 50(2): 281.]

XIONG QL, XIAO HW, CHENG PG, et al., 2021. Distribution of heavy metal pollution in Beijings topsoil and its contribution to atmospheric deposition [J]. Ecol Environ Sci, 30(4): 816-824.[熊秋林, 肖红伟, 程朋根, 等, 2021. 北京表层土壤重金属污染分布及大气沉降贡献 [J]. 生态环境学报, 30(4): 816-824.]

XIONG T, AUSTRUY A, PIERART A, et al., 2016. Kinetic study of phytotoxicity induced by foliar lead uptake for vegetables exposed to fine particles and implications for sustainable urban agriculture [J]. J Environ Sci, 46: 16-27.

XIONG T, ZHANG T, DUMAT C, et al., 2019. Airborne foliar transfer of particular metals in Lactuc sativa L.: translocation, phytotoxicity, and bioaccessibility [J]. Environ Sci Pollut Res, 26(20): 20064-20078.

XU XN, ZENG LM, ZHANG YH, et al., 2016. Analysis of heavy metal pollution in winter in Huairou District, Beijing [J]. Environ Chem, 35(12): 2460-2468.[许栩楠, 曾立民, 张远航, 等, 2016. 北京市怀柔区冬季大气重金属污染状况分析 [J]. 环境化学, 35(12): 2460-2468.]

XU Z, REN J, TIAN Y, et al., 2019. Effects of exogenous ABA on photosynthetic characteristics of perennial ryegrass under drought stress [J]. Acta Agr Sin, 27(5): 1243-1249.[许喆, 任健, 田英, 等, 2019. 外源ABA 对干旱胁迫下多年生黑麦草光合特性的影响 [J]. 草地学报, 27(5): 1243-1249.]

YANG JL, CHEN Z, WU SQ, et al., 2015. Overexpression of the Tamarix hispida ThMT3 gene increases copper tolerance and adventitious root induction in Salix matsudana Koidz [J]. Plant Cell Tiss Organ Cult (PCTOC), 121(2): 469-479.

YANG ZP, LU WX, LONG YQ, 2009. Characteristics of atmospheric dry and wet dustfall of heavy metals in Changchun City [J]. Res Environ Sci, 22(1): 28-34.[杨忠平, 卢文喜, 龙玉桥, 2009. 长春市城区重金属大气干湿降尘特征 [J]. 环境科学研究, 22(1): 28-34.]

ZENG QY, LING QP, YANG ZD, et al., 2019. Effects of copper stress on growth and antioxidant enzymes in sugarcane [J]. Guihaia, 39(7): 951-958.[曾巧英, 凌秋平, 杨湛端, 等, 铜胁迫对甘蔗生长及抗氧化酶活性的影响 [J]. 广西植物,

39(7): 951-958.]

ZHANG BY, TENG WC, 2020. Effects of lead stress on growth and physiology of Tabebuia chrysantha seedlings [J]. J NE For Univ, 48(7): 7-10.[张博宇, 滕维超, 2020. 铅胁迫对黄花风铃木幼苗生长和生理指标的影响 [J]. 东北林业大学学报, 48(7): 7-10.]

ZHANG LH, LI PJ, LI XM, et al., 2005. Effects of cadmium stress on the growth and physiological characteristics of wheat seedlings [J]. Chin J Ecol, 24(4): 458-460.[张利红, 李培军, 李雪梅, 等, 2005. 镉胁迫对小麦幼苗生长及生理特性的影响 [J]. 生态学杂志, 24(4): 458-460.]

ZHANG YX, WANG M, HUANG B, et al., 2018. Soil mercury accumulation, spatial distribution and its source identification in an industrial area of the Yangtze Delta, China [J]. Ecotoxicol Environ Saf, 163: 230-237.

ZHANG MK, LIU ZY, ZHOU C, 2010. The effect of atmospheric deposition on heavy metal accumlation in vegetable crop near a lead-zinc mine [J]. J Zhejiang Univ (Agric Life Sci Ed), 36(2): 221-229.[章明奎, 劉兆云,周翠, 2010. 铅锌矿区附近大气沉降对蔬菜中重金属积累的影响 [J]. 浙江大学学报(农业与生命科学版), 36(2): 221-229.]

ZHENG BJ, HAN YC, TANG W, et al., 2014. The influence on urban river water quality and characteristic of pollutants captured by vine-like shrubs along the bank [J].Environ Eng, 32(S1):95-98.[郑滨洁, 韩轶才, 唐伟, 等, 2014. 岸边藤状灌木滞留污染物特征及对城市河道水质的影响 [J]. 环境工程, 32(S1): 95-98.]

ZHU CH, TANG JM, GAO LM, et al., 2019. Effects of combined stress of heavy metals Cu, Zn and Cd on physiology and biochemistry of Jatropha curcas seedlings [J]. Guihaia, 39(6): 752-760.[朱成豪, 唐健民, 高丽梅, 等, 2019. 重金属铜、锌、镉复合胁迫对麻疯树幼苗生理生化的影响 [J]. 广西植物, 39(6): 752-760.]

ZHU J, WANG P, JIA SS, et al., 2016. Tolerance, accumulation, translocation and stress response of Salix matsudana Koidz to lead [J]. Acta Sci Circumst, 36(10): 3876-3886.[朱健, 王平, 夹书珊, 等, 2016. 旱柳(Salix matsudana Koidz)对Pb的耐性、富集、转运与胁迫响应研究 [J]. 环境科学学报, 36(10): 3876-3886.]

(责任编辑 李 莉 王登惠)

猜你喜欢

耐性迎春
迎春
迎春
没耐性的小猴
何迎春
让我们携手迎春
马年迎春等
迎春
尿素增强烯草酮胁迫下紫苏幼苗耐性的研究
水稻苗期不同阶段与低氮耐性相关的QTL分析