文昌市椰子资源果实表型和品质综合评价
2023-10-09郑奋李智虓李梓华韩学倩黄允柯亚丽陈丽周韬
郑奋,李智虓,李梓华,韩学倩,黄允,柯亚丽,陈丽,周韬*
1(文昌市林业科学研究所,海南 文昌,571321)2(海南大学,热带特色林木花卉遗传与种质创新教育部重点实验室,海南省热带特色花木资源生物学重点实验室,海南五指山森林生态系统国家定位观测研究站,海南 海口,570228)3(海南大学 林学院,海南 海口,570228)
种质资源是种业发展的物质基础,是一类重要的战略资源。2022年2月22日,新华社发布中央一号文件《中共中央、国务院关于做好2022年全面推进乡村振兴重点工作的意见》,其中明确指出“大力推进种源等农业关键核心技术攻关。全面实施种业振兴行动方案。加快推进农业种质资源普查收集,强化精准鉴定评价。”开展种质资源的收集和评价研究,对于推进优良品种选育和种子品质提升工作具有重要的意义。
椰子(CocosnuciferaL.)是棕榈科椰子属的常绿乔木,广泛分布于热带地区,用途十分广泛。椰子作为海南热带农业发展的“三棵树”(椰子、橡胶和槟榔)之一,具有重要的经济价值和社会价值,也是海南的文化标志。根据2021年海南统计年鉴,全省椰子种植面积为35 695 hm2,产量为2.1亿个[1]。椰子的相关产业链长,从业人口多,培育出椰树、春光和南国等一批知名企业。
但海南的椰子生产存在着产量低、品质差和缺乏新品种等难题,严重制约着产业发展。本地椰子产量无法满足需求,每年需从国外进口椰子20亿个。海南栽培的椰子可分为高种椰子、矮种椰子和杂种椰子3个类型,从种植面积上看高种椰子占绝大部分,矮种椰子和杂种椰子占比较低。我国椰子育种工作者引进了东南亚矮种椰子资源,采用混系连续选择与定向跟踪筛选等方法,陆续选育出文椰2号、3号、4号、5号和6号等矮种椰子品种,具有结果早、口感好等优点[2-6]。但是矮种椰子的耐寒能力弱,低温天气时会受到严重影响。2008年海南出现低温寒害天气,调查发现本地高种椰子死亡率为0.33%,而矮种椰子的死亡率高达6%~6.67%,落裂果率也高于本地高种椰子[7-8]。选育高种椰子优良品种,是提高椰子产量,实现椰子产业健康可持续发展的重要保障。
椰子遗传资源的收集利用是品种选育和种质改良的基础。从20世纪80年代起,我国开始了椰子种质资源的收集工作,组织过多次考察活动,收集了超过200份的资源,发现了一些特色椰子资源如红色中果皮、多胚和双层花苞等[9-11]。文昌市是海南椰子的主要种植区,占全省椰子种植总面积的43.5%,种植历史悠久,椰子资源丰富多样。2021年文昌市林业科学研究所和海南大学开展了文昌高种椰子资源的调查,筛选出一批产量高和长势优良的椰子资源。在前期工作的基础上,本研究收集了62份椰子资源的果实进行表型和品质综合评价,期望为椰子资源的评价和品种选育工作提供基础。
1 材料与方法
1.1 材料
2021年7月~11月,对文昌市所辖乡镇进行了高种椰子资源调查(表1)。对于产量高或者有优良特性的椰子资源,调查生长性状并拍照记录。从调查结果中选择62份椰子种质资源,每棵树收集9月龄左右的果实5个,在实验室中进行果实指标测定。
表1 文昌市椰子种质资源信息Table 1 Information of Wenchang coconut germplasm resources
1.2 仪器与设备
YP6001N电子天平,上海精科天美科学仪器有限公司;DL91300数显游标卡尺,得力集团有限公司;雷磁PHS-3C台式酸度计,上海仪电科学仪器股份有限公司;LB32T手持式折光仪,广州市速为电子科技有限公司。
1.3 果实表型和品质指标测定
参照NY/T 1810—2009《椰子 种质资源描述规范》进行描述和记录果实的颜色、形状;使用电子天平称量果实质量;使用数显游标卡尺测量果实横径和纵径;使用卷尺测量果实的横周长和纵周长。果形指数的计算如公式(1)所示:
(1)
使用台式酸度计测量椰子水pH值;使用手持式折光仪测量椰子水的可溶性固形物含量;采用GB 12456—2021《食品安全国家标准 食品中总酸的测定》的酸碱指示剂滴定法测定椰子水总酸度;采用GB 5009.86—2016《食品安全国家标准 食品中抗坏血酸的测定》中的2, 6-二氯酚靛酚滴定法测量椰子水的维生素C含量;采用考马斯亮蓝法测定椰子水的蛋白质含量;采用茚三酮比色法测量椰子水的氨基酸含量[12]。
固酸比的计算如公式(2)所示:
(2)
椰子水口感、椰子水香气、椰肉口感和椰肉香气采用主观评分:由5人组成评价小组品尝,分别进行果实风味评分,10分最佳,1分最差,计算平均分值。
1.4 数据处理
数据采用Excel 2010和SPSS 22.0处理。相关性分析采用Origin 2022软件作图。
主成分分析(principal component analysis,PCA):使用SPSS软件对椰子的表型数据进行主成分分析。具体步骤为:a)对数据进行标准化处理;b)计算特征值、方差贡献率、累计贡献率和特征向量;c)计算主成分分数,计算各资源的综合得分。
聚类分析:使用Origin 2022对椰子表型数据进行层次聚类分析。聚类方法选用类平均法,距离设为欧式距离,使用Polar heatmap插件完成热力图和聚类图绘制。
2 结果与分析
2.1 椰子果实表型和品质性状的统计特征值分析
对椰子果实的颜色、形状和重量等24项指标进行了统计分析[图1以及附表1、附表2(https://doi.org/10.13995/j.cnki.11-1802/ts.032452)]。全部指标的变异系数为6.49%~37.56%,各指标间存在明显的差异。其中蛋白质含量的变异系数最大,达37.56%,其次为氨基酸含量,为33.99%。一些主要农艺性状如果实重量、椰子水重量和椰肉重量等的变异系数分别为32.97%、26.00%和22.22%,存在丰富的遗传变异。椰子水口感、椰子水香气、椰肉口感、椰肉香气、可溶性固形物含量和固酸比等风味指标的变异系数为13.56%~21.88%,存在着一定的变异。果实的宽度、高度、横周长、纵周长和pH值的变异系数均低于10%,表明这些性状在不同个体间差异较小。
附表1 椰子资源果实的表型性状Supplementary table 1 Phenotypic traits of coconut germplasm fruit
附表2 椰子资源果实的品质性状Supplementary table 2 Fruit quality traits of coconut germplasm fruit
a-椰子果实颜色;b-椰子果实外形图1 椰子果实颜色和外形Fig.1 Color and shape of coconut fruit
2.2 椰子果实表型和品质性状的相关性分析
对62份资源的22个性状进行Pearson相关性分析,结果表明,有28对指标的相关性达到了显著水平(P<0.05),101对指标的相关性达到了极显著水平(P<0.01)(图2)。
图2 椰子果实表型和品质性状的相关性分析Fig.2 Correlation analysis between fruit phenotype and quality traits of coconut germplasm注:*表示P<0.01。
其中果实重量与果实的宽度、高度、椰子水含量、椰肉厚、椰子水香气、椰肉口感、可溶性固形物和蛋白质含量等16项指标均呈现极显著相关,表现为椰子越重,则椰子水越多、香气越佳,同时椰肉更薄、口感更佳,但椰子重量与椰子水口感并无显著相关。
椰子水重与13项指标呈现极显著相关,具体表现为椰子水越多,则椰肉越薄,椰子水香气和椰肉口感越好,但蛋白质含量会减少。
椰肉厚度与椰子重、椰子水口感、椰肉口感、可溶性固形物含量和蛋白质含量等9项指标呈现极显著相关,表现为椰肉越厚,则椰子水含量越少,椰子水口感和椰肉口感变差,可溶性固形物含量降低,而蛋白质含量增加。
椰子水口感与果实外形各项指标没有显著相关,与椰肉厚度和椰肉重为极显著负相关,与椰子水香气、可溶性固形物和总酸度为极显著正相关。
2.3 椰子果实表型和品质性状的PCA
对各项指标进行PCA(表2)。前7个主成分的方差贡献率为25.305%、14.786%、11.320%、11.001%、6.970%、6.182%和5.280%,累积解释总方差的80.845%,因此选择前7个主成分作为椰子果实的综合评价指标。第一主成分中重量、宽度、高度、横周长、纵周长和椰子水重的特征向量较大,为0.614~0.884,主要代表了果实的大小因子。第二主成分中椰肉厚、椰肉重的特征向量负值较大,pH和可溶性固形物的特征向量正值较大,分别为-0.689、-0.595、0.717和0.817,代表了果实的成熟程度因子。第三主成分中核果高和核果宽的特征向量值较大,为0.557和0.602,反映了核果的形状因子。第四主成分中椰肉口感和椰肉香气特征向量值较大,为0.778和0.743,代表了果实的椰肉风味因子。第五主成分中,果形指数的特征向量值最大,为0.752,代表了果实的果形指数因子。第六主成分中,维生素C、蛋白质和氨基酸含量的特征向量值较大,分别为0.472、0.405和0.526,代表了果实的营养因子。第七主成分中,椰子水口感和椰子水香气的特征向量值较大,分别为0.529和0.534,代表了果实的椰子水风味因子。
表2 椰子果实性状的主成分分析Table 2 Principal component analysis of coconut germplasm fruit traits
2.4 椰子资源果实综合评价
根据公式(3)计算主成分特征向量系数,并构建椰子果实性状的成分载荷矩阵(表3):
表3 椰子果实性状的成分载荷矩阵Table 3 Component loading matrix of coconut germplasm fruit traits
(3)
以每个主成分所对应的特征值占所提取主成分总的特征值之和的比例作为权重计算综合评价值F。得到椰子种质资源综合得分公式(4):
F=0.313 0F1+0.182 9F2+0.140 0F3+0.136 1F4+0.086 2F5+0.076 5F6+0.076 3F7
(4)
最终计算获得文昌市高种椰子资源果实综合得分和排序(表4)。其中DJ150、PL163、WC105、DG133、CX032、DJ014和DG135的综合得分F>1,排名靠前,在果实大小、椰子水含量、口感和营养成分各方面具有较为优异的表现。
表4 文昌市高种椰子资源果实的主成分得分和排序Table 4 Principal component factor scores and ranking of coconut germplasm fruit
2.5 聚类分析
基于22项表型和品质数据,对不同的椰子资源进行层次聚类分析(图3)。第一类为WC104,表现为总酸度高,椰肉口感香气差,维生素含量低,属于总体品质较差的椰子类型。第二类为PQ128,表现为核果较大,椰肉较厚较重,蛋白质含量高,其他方面指标较低,属于过成熟的椰子类型。第三类为WJ108和CX034,表现为椰子果大,椰子水多,但椰子水风味和营养成分都较差,属于果实品质不佳的椰子类型。第四类为HW051、PL163、DJ150、WC105、CX032和DJ014,表现为椰肉含量少、椰子水含量多、口感好并且营养成分丰富,属于综合表现最优的椰子类型。第五类为剩余的52份椰子资源,总体指标比较平均,属于品质普通的椰子类型。
图3 椰子资源的聚类分析Fig.3 Hierarchical analysis of coconut germplasm
对聚类分析和主成分分析获得的结果进行比较。聚类分析中综合表现最优的是第四类型,该类群中包含的椰子与主成分分析中排名前列的椰子高度一致,DJ150、PL163、WC105、CX032、DJ014和HW051在主成分综合评分结果中分别排名第1、2、3、5、6和11位。两类方法都可以准确地筛选出优质的椰子资源,结果可以互相验证。
为了进一步简化椰子的果实品质评价因子,对11项椰子品质指标进行了聚类分析(图4)。在距离为0.7时,果实品质指标可以聚为5类。第一类为固酸比。第二类为维生素C。第三类为氨基酸。第四类包括椰肉口感和椰肉香气。第五类包括了蛋白质、总酸度、可溶性固形物、pH、椰子水香气和椰子水口感。因为椰肉口感和椰肉香气之间为极显著正相关,因此椰肉口感可以作为第四类因子的代表。而可溶性固形物与椰子水口感、椰子水香气、pH和总酸度4个指标均为极显著正相关,因此可以将可溶性固形物含量作为第五类因子的代表。最终可以将椰子11项果实品质评价因子简化为5个,分别是固酸比、维生素C、氨基酸、椰肉口感和可溶性固形物,可以用于快速鉴定椰子的果实品质。
图4 椰子品质指标的聚类分析Fig.4 Cluster analysis of coconut fruit quality characters
3 结论与讨论
3.1 文昌高种椰子资源果实性状的遗传多样性
椰子果实的表型和品质性状受到遗传因素和外界环境的共同影响,通过对果实指标的测定和统计,能够有效地发掘和利用优良的椰子种质资源,推动育种工作的开展。孙程旭等[13]以13份椰子资源为材料,测定了果形指数、单果重和果实风味等12项指标,结果发现果形指数和核形指数的变化较大,通过相关性分析与聚类分析,椰子的评测因子可简化为果重、蒂孔距、可溶性固形物、脂肪含量和固酸比这5项指标。曹红星等[14]以6份越南椰子、文椰和高种椰子为材料,对果重、果形指数、可溶性固形物等10个品质指标进行了分析,结果表明品质指标变化较大,果实风味与可溶性固形物、固酸比之间呈现极显著正相关,聚类分析将果实评价指标简化为单果重、果实风味或可溶性固形物、脂肪含量和固酸比。本研究中对62份椰子资源果实的22项指标进行统计和分析,结果表明果实重量、椰子水重量和椰肉重量等重要农艺性状都存在明显差异,变异系数分别为32.97%、26.00%和22.22%。同时椰子水口感、椰子水香气、椰肉口感、椰肉香气、可溶性固形物含量和固酸比等果实风味指标的变异系数为13.56%~21.88%。这些遗传改良的目标性状都存在丰富遗传变异,具有优异的育种潜力。对果实品质指标进行聚类分析,结果显示可以将椰子果实品质评价因子简化为5个指标,分别是固酸比、维生素C、氨基酸、椰肉口感和可溶性固形物。本研究结果与孙程旭等[13]和曹红星等[14]的研究结论相比,因为测定具体指标不同,所以得出的简化评测因子有部分差异。但固酸比和可溶性固形物在3项研究中都被选择作为评价因子,可被认为是椰子简化评价体系中共同的关键因子。
相关性分析结果显示,果实的22项指标之间存在大量的显著或极显著的相关性,采用主成分分析可以取得良好的降维效果。椰子水在椰子较嫩、椰肉较薄的时候口感较好,同时可溶性固形物含量同样显著地影响了椰子水的口感和风味。但无法单独通过果实外形指标来判断椰子水口感的好坏。另外,椰子水的可溶性固形物含量与椰子水口感和香气均存在极显著正相关。椰子水中的可溶性固形物以糖分为主,有研究表明糖分含量是影响椰子果实脱落的重要因子[15-16]。因此,可溶性固形物含量可能会同时影响果实风味和果实产量2个方面,是一个值得关注的育种选择指标。在椰子育种工作中,应选择可溶性固形物含量高的育种亲本,提高后代的果实产量和品质。
3.2 主成分分析法和聚类分析
在果实评价方面,主成分分析方法是一种有效简化评价体系的方法。这种方法起到了数据降维的作用,可以全面客观地评价果实的综合品质。主成分分析法已经被广泛地应用到果实综合评价的研究中。江锡兵等[17]应用主成分分析法对板栗的栽培品种的果实表型和品质性状进行了综合评价,对30个品种的20项指标进行了主成分分析,筛选出了乌壳栗、浅刺大板栗等6个适合于长江中下游地区栽培的板栗品种,与灰色关联法的分析结果基本一致。喻华平等[18]以23份黄皮资源果实为材料,测定了单果重、果实纵径和果实横径等11项指标,通过主成分分析提取出了4个具有代表性的主成分,通过计算筛选出综合评价得分最高的资源A3。主成分分析法在树番茄[19]和木通属果实[20]的综合评价中也取得了有价值的研究成果。本研究中,对22个指标进行了测定和主成分分析,获得了7项主成分因子,累积方差贡献率达80.845%,反映了果实的主要信息。其中第一主成分代表了果实的大小因子,第二主成分代表了果实的成熟程度因子,第三主成分代表了核果的形状因子,第四主成分代表了果实的椰肉风味因子,第五主成分中代表了果实的果形指数因子,第六主成分中代表了果实的营养因子,第七主成分中代表了果实的椰子水风味因子。7个主成分涵盖了果实品质的各主要方面,能够反映椰子果实的整体信息,同时减少了关联数据的干扰。通过计算综合评分,DJ150、PL163、WC105、DG133、CX032、DJ014和DG135的综合得分F>1,具有较好的综合品质。通过聚类分析法筛选出综合品质最优的第四类型椰子,同样包含了DJ150、PL163、WC105、CX032和DJ014。通过2种方法获得了高度一致的结果,验证了主成分分析法和聚类分析法在椰子果实综合评价中的有效性和准确性。综合2种分析方法获得的结果,筛选出DJ150、PL163、WC105、CX032和DJ014五份优良的种质资源,在果实表型和品质各方面都具有较为优异的表现,可以为椰子果实的综合评价以及遗传资源的筛选提供参考依据。