APP下载

有机肥替代化肥对砂姜黑土区小麦-玉米轮作系统N2O排放的影响

2023-09-27刘高远和爱玲杜君吕金岭聂胜委潘秀燕许纪东李珏杨占平

中国农业科学 2023年16期
关键词:砂姜通量排放量

刘高远,和爱玲,杜君,吕金岭,聂胜委,潘秀燕,许纪东,李珏,杨占平

有机肥替代化肥对砂姜黑土区小麦-玉米轮作系统N2O排放的影响

刘高远1,2,和爱玲1,杜君1,吕金岭1,聂胜委1,潘秀燕3,许纪东3,李珏4,杨占平1

1河南省农业科学院植物营养与资源环境研究所,郑州 450002;2河南省农业生态环境重点实验室,郑州 450002;3遂平县农业科学试验站,河南驻马店 463100;4河南省水利水电学校,河南周口 466000

【目的】探究有机肥替代化肥条件下砂姜黑土区小麦-玉米轮作系统N2O排放特征及与土壤环境因子的关系,为实现农田温室气体减排提供理论依据。【方法】以砂姜黑土区小麦-玉米轮作系统为研究对象,采用静态箱-气相色谱法与常规土壤参数分析相结合,研究不施肥(CK)、常规施肥(CF)、有机肥氮替代20%化肥氮及有机肥氮替代40%化肥氮(R2FM及R4FM,有机肥于小麦季施用)对小麦-玉米轮作系统N2O排放的影响及与关键驱动因子的关系。【结果】R2FM及R4FM处理小麦产量显著高于CF处理,增幅分别为12.2%和10.2%,而不同施肥处理之间玉米产量无显著差异。CK、CF、R2FM及R4FM处理周年N2O平均排放通量分别为5.9、50.3、43.9及39.6 μg·m-2·h-1,其中小麦季为3.1、23.6、25.0及26.4 μg·m-2·h-1,玉米季为8.8、77.0、62.8及52.9 μg·m-2·h-1;不同施肥处理下N2O排放通量与土壤NO3--N含量呈极显著正相关,同时还与小麦季土壤温度、玉米季土壤含水量呈显著或极显著正相关。CF、R2FM及R4FM处理周年N2O累积排放量分别为2.38、2.44及2.53 kg·hm-2,较CK处理(0.56 kg·hm-2)显著增加325%—354%,N2O-N排放系数为0.40%—0.44%,但CF、R2FM及R4FM处理之间周年N2O累积排放量、N2O-N排放系数均无显著差异。不同施肥处理下季节性N2O累积排放量存在差异,与CF处理相比,R2FM及R4FM处理在小麦季N2O累积排放量分别显著提高28.3%和62.6%,且二者N2O-N排放系数(0.35%和0.41%)显著增加,而在玉米季N2O累积排放量分别显著降低15.8%和33.8%;N2O累积排放量与小麦季土壤全氮、碱解氮、微生物量碳含量及玉米季土壤全氮含量呈显著或极显著正相关,而与玉米季土壤有机碳含量呈显著负相关。【结论】在有机肥氮替代化肥氮条件下,优化小麦季施肥管理是减少砂姜黑土区小麦-玉米轮作系统N2O排放的关键。

小麦-玉米轮作;化肥减施;畜禽粪便;氧化亚氮;温室气体;砂姜黑土

0 引言

【研究意义】N2O是全球增温的三大温室气体之一,百年增温潜势是CO2的298倍[1]。农田是N2O的重要排放源,对全球N2O排放的贡献率为60%左右,对我国N2O排放的贡献率高达70%以上[2-3]。施肥是农田N2O排放的关键驱动因子[4],持续关注施肥管理对农田N2O排放的影响具有重要意义。有机肥替代化肥是农田化肥使用量零增长及地力持续提升的一种重要施肥方式,但在如何影响农田N2O排放的问题上仍存在争议,明确该施肥方式下农田N2O排放特征及环境因子之间的关系,有助于实现农田温室气体减排。【前人研究进展】已有相关文献报道,有机肥替代化肥能够改善土壤团聚体分布[5]、养分特性[6]及微生物群落特征[7],还能够提高作物产量与品质[8]。然而,有机肥替代化肥改变了施肥结构与土壤性质,加之区域性气候、土壤类型等因素的差异,导致硝化与反硝化作用强度发生变化,进而影响农田土壤N2O排放[9]。目前,在同一种植制度下,有机肥替代化肥对土壤N2O排放的影响结果并不一致,如已有研究指出,在等氮量条件下,有机肥氮替代部分化肥氮处理较单施化肥处理显著提高了土壤N2O排放量[10-11];但也有研究发现,在等氮量条件下,有机肥替代部分化肥处理较单施化肥处理显著降低了土壤N2O排放量[12]。此外,还有研究发现,在等氮量条件下,有机肥替代化肥处理土壤N2O排放量与单施化肥处理之间差异并不显著[13]。有机肥替代化肥比例及种类不同也会导致土壤N2O排放产生很大差异,如侯苗苗等[14]发现,与单施化肥处理相比,有机肥氮替代75%及100%化肥氮处理均显著降低了土壤N2O排放量,而低于75%替代比例处理则有所增加;李燕青等[15]发现,与单施化肥处理相比,3种有机肥氮替代化肥氮处理土壤N2O排放量各不相同,由高至低依次为猪粪、鸡粪、牛粪处理。因此,在多变的气候背景下,有机肥替代化肥对农田N2O排放的影响及作用机理仍需进一步研究。【本研究切入点】砂姜黑土是我国典型的中低产土壤类型之一,主要分布在黄淮海平原南部,总面积约371万hm2,在保障国家粮食安全中起着关键作用[16]。小麦-玉米轮作是砂姜黑土区最常见、最重要的种植制度,但由于多发性土壤障碍因子的存在及长期采用“高投入、高消耗、高产出”的耕种方式,导致土壤肥力持续下降[17]。前人研究发现,有机肥替代部分化肥能够改善砂姜黑土小麦-玉米轮作系统土壤性质及提高肥料利用率与作物产量[18-19],但关于农田N2O排放及与环境因子关系的研究鲜有报道。【拟解决的关键问题】本研究以砂姜黑土区小麦-玉米轮作系统为研究对象,探究有机肥替代化肥对土壤N2O排放的影响及与关键驱动因子之间的关系,以期为砂姜黑土区农田地力提升及温室气体减排提供理论与技术支撑。

1 材料与方法

1.1 试验地概况

试验于2019—2020年在河南省驻马店市遂平县农业科学试验站(113°97′E,33°15′N)开展。该地区属暖温带大陆性季风气候,年均气温14.9 ℃,年均降雨量972 mm,降雨主要集中在6—8月份,约占全年降雨量的70%,年均蒸发量1 574 mm,无霜期220 d。土壤类型为砂姜黑土,耕层(0—20 cm)土壤砂粒(0.05—2 mm)、粉粒(0.05—0.002 mm)及黏粒(<0.002 mm)含量分别为30.9%、25.8%及43.3%。试验期间温度及降雨量的变化见图1。

图1 2019—2020年试验期间气温及降雨量的变化

1.2 试验设计

在2017年小麦-玉米轮作定位试验基础上,于2019年小麦季选择不施肥(CK)、常规施肥(CF)、有机肥氮替代20%化肥氮(R2FM)及有机肥氮替代40%化肥氮(R4FM)4个处理开展本研究。所有处理均为3次重复,共12个小区,小区面积5 m×6 m=30 m2,完全随机排列。化肥种类为尿素(N 46%)、过磷酸钙(P2O512%)和氯化钾(K2O 60%);有机肥种类为猪粪(干基),其有机质、全氮、全磷及全钾含量分别为31.9%、2.2%、1.0%及0.6%。不同处理施肥量见表1。化肥施用方式如下:在小麦季,70%氮肥及全部磷钾肥基施、翻压,深度15 cm左右,剩余氮肥于拔节期追施;在玉米季,采用免耕,种、肥同播的方式,无追肥。由于玉米季常年采用免耕,种、肥同播的方式,有机肥施用难度大,故将R2FM及R4FM处理全部有机肥在小麦季施用,施用方式为基施、翻压,深度15 cm左右,并依据有机肥中磷钾量减量施用化肥的磷钾量。

供试小麦及玉米品种分别为郑麦7698和郑单1002。小麦播量180 kg·hm-2,行距20 cm,于当年10月下旬播种,翌年6月上旬收获;玉米种植密度75 000株·hm-2,株行距22 cm×60 cm,于当年6月上旬种、肥同播,当年9月下旬收获。所有处理田间管理水平一致,灌水、病虫草害防控等措施参考当地农户习惯。

表1 不同处理施肥量

1.3 样品采集与分析

采用静态箱-气相色谱法观测土壤N2O排放。每个小区均设置1个气体采样箱,采样箱制作规格参考小麦及玉米行距。采样箱由底座和顶箱组成,材料为聚乙烯塑料,底座规格为60 cm×20 cm×10 cm,底座上端有密封水槽;顶箱规格为60 cm×20 cm×20 cm,上端有封闭在箱体内部的电子温度计探头、小风扇及采集接口。安装时,将底座全部嵌入行间土壤,密封水槽上沿与地面相平,扣上顶箱并加水密封。样品采集频率不等,施肥后每周3—5次,之后其他时期每周1—2次,冬季每周2—3次,雨后增加1—2次。采样前,准备好50 mL一次性注射器、真空集气袋,并将顶箱放入底座水槽、注水密封;采集时间为9:00—11:00,于0、10、20、30、40 min分别用注射器抽取箱内气体样品30 mL,注入真空集气袋内,密封避光保存;采样后真空集气袋带回实验室,4 ℃低温保存,并于72 h内利用气相色谱仪(Agilent 6820,美国Agilent公司)分析N2O浓度。

收集N2O样品时,利用土壤温度测定仪(HZ-TJ1,北京合众博普科技发展有限公司)测定耕层土壤温度,采用土壤水分速测仪(M12x,英国DELTA-T公司)测定耕层土壤体积含水量;同时,采集耕层土样,利用连续流动分析仪(AA3,德国SEAL公司)测定土壤无机氮(NO3--N和NH4+-N)含量。以上指标用于分析N2O排放与关键驱动因子的关系。

于小麦及玉米收获期,采用人工收割的方式,将各小区籽粒样品全部收获,脱粒、晒干,测定并计算产量。在小麦及玉米收获后,采用“五点式”取样法,利用直径3 cm土钻采集耕层土样,测定土壤pH、有机碳、全氮、碱解氮和微生物量碳,用于分析N2O累积排放量与土壤基本性质的关系。pH采用电位测定法(水土比=2.5﹕1)测定,微生物量碳采用氯仿熏蒸-提取测定法测定[20],有机碳、全氮和碱解氮的测定方法均参考鲍士旦的《土壤农化分析(第三版)》[21]。

1.4 数据处理与统计分析

按LÜ等[22]的方法计算N2O排放通量()及累积排放量(),公式如下:

式中,为N2O排放通量(μg·m-2·h-1),为标准状态下N2O气体密度(1.977 g·m-3),为采集箱高度(m),为箱内气体浓度的变化(μg·h-1),为采样箱内平均温度(℃)。

式中,为N2O累积排放量(kg·hm-2),为N2O气体排放通量(μg·m-2·h-1),为采样次数,d+1-d为相邻两次采样间隔天数(d),0.01为转换系数。

N2O-N排放系数()采用以下公式计算:

式中,为N2O-N排放系数(%),C及0分别为施肥及不施肥处理下N2O累积排放量(kg·hm-2),为施氮量(kg·hm-2)。

采用Excel 2013整理数据。利用SPSS 21.0进行数据统计分析,多样本组间比较采用单因素方差分析(one-way ANOVA)和最小显著差数法(LSD法)比较分析;相关性分析采用Pearson相关系数法。利用OriginPro 2017绘图。

2 结果

2.1 不同处理对作物产量的影响

与CK处理相比,不同施肥处理均显著提高了作物产量,其中小麦产量增幅为35.1%—58.9%,玉米产量增幅为51.2%—57.9%,且R2FM及R4FM处理小麦产量显著高于CF处理,增幅分别为12.2%和10.2%,但不同施肥处理之间玉米产量无显著差异(图2)。

2.2 不同处理下季节性N2O排放通量与关键驱动因子的关系

2.2.1 N2O排放通量的季节性变化 不同处理下N2O排放通量的季节性变化结果表明(图3),在施肥处理下,N2O排放通量的变化趋势较为一致,周年累积出现3次排放峰值且均在施肥后,其中小麦季出现2次,玉米季出现1次。此外,N2O排放通量在降雨后也会有一定程度的增加,出现短暂的排放高峰。在作物生长季内,CK、CF、R2FM及R4FM处理周年N2O排放通量为0.11—28.5、0.28—431.4、0.23—351.9及0.21—301.0 μg·m-2·h-1,平均排放通量分别为5.9、50.3、43.9及39.6 μg·m-2·h-1,且整体呈现施肥处理高于CK处理、玉米季高于小麦季的现象,如CK、CF、R2FM及R4FM处理在小麦季N2O平均排放通量分别为3.1、23.6、25.0及26.4 μg·m-2·h-1,而在玉米季分别为8.8、77.0、62.8及52.9 μg·m-2·h-1。

柱子上不同小写字母表示处理间差异显著(P<0.05)

箭头表示施肥时间Arrows indicate fertilization time

2.2.2 N2O排放关键驱动因子的季节性变化 不同处理下土壤温度及体积含水量明显受季节性变化的影响(图4)。周年土壤温度为-0.1—28.4 ℃,均值17.1 ℃,小麦季及玉米季土壤温度分别为-0.1—22.8和23.5—28.4 ℃,均值分别为9.6及24.6 ℃;周年土壤体积含水量为13.2—33.9 m3·m-3,均值21.1 m3·m-3,小麦季及玉米季土壤体积含水量分别为13.2—27.4及14.1—33.9 m3·m-3,均值分别为18.8及23.4 m3·m-3。此外,土壤体积含水量变化与季节性降雨量呈显著或极显著相关,如与小麦季降雨量呈显著正相关,2为0.30(<0.05);与玉米季降雨量呈极显著正相关,2为0.42(<0.01)。

不同处理下土壤无机氮含量的季节性变化结果表明(图5),CK处理土壤无机氮含量受季节性影响较小,NO3--N及NH4+-N含量分别为3.67—9.64及0.45—1.14 mg·kg-1。然而,在施肥处理下,土壤无机氮含量受季节性影响较大,NO3--N及NH4+-N含量分别为5.63—37.91及0.58—8.39 mg·kg-1。此外,不同施肥处理的土壤无机氮含量较CK处理明显增加,其增幅与化肥氮用量相关,由高至低依次为CF、R2FM及R4FM处理。

2.2.3 季节性N2O排放通量与关键驱动因子的关系 N2O排放通量与土壤温度、体积含水量及无机氮之间的相关性分析结果表明(表2),不同处理下N2O排放通量与周年土壤NO3--N含量呈显著正相关,且与施肥处理的土壤NO3--N含量呈极显著正相关。施肥处理的N2O排放通量与周年土壤NH4+-N含量、温度及体积含水量无显著相关性,但与小麦季土壤温度、玉米季土壤体积含水量呈显著或极显著正相关。

2.3 不同处理下N2O累积排放量及与土壤特性的关系

2.3.1 N2O累积排放量及N2O-N排放系数的变化 表3所示,不同处理对N2O累积排放量及N2O-N排放系数的影响。施肥处理之间周年N2O累积排放量(2.38—2.53 kg·hm-2)、N2O-N排放系数(0.40%—0.44%)均无显著差异,但施肥处理的N2O累积排放量较CK处理显著提高325%—354%,其中小麦季增幅209%—404%,玉米季增幅288%—479%。在同一作物季节内,不同施肥处理之间N2O累积排放量、N2O-N排放系数存在很大差异,如与CF处理相比,R2FM及R4FM处理在小麦季N2O累积排放量分别显著增加28.4%和62.6%,N2O-N排放系数分别为0.35%和0.41%;而二者在玉米季N2O累积排放量分别显著降低15.8%和33.8%,N2O-N排放系数分别为0.52%和0.50%。

表2 N2O排放通量与土壤温度、体积含水量及无机氮之间的相关性

T和VWC分别表示土壤温度和体积含水量; *和**分别表示在<0.05和<0.01水平上显著相关。下同

T and VWC indicate soil temperature and soil volumetric water content, respectively. * and ** indicate significant correlation at<0.05 and<0.01 levels, respectively. The same below

表3 不同处理对N2O累积排放量及N2O-N排放系数的影响

2.3.2 土壤基本性质 与CK处理相比,施肥处理显著提高了小麦季及玉米季土壤有机碳、全氮、碱解氮和微生物量碳含量,小麦季增幅分别为11.3%—49.5%、51.1%—77.8%、53.7%—116.9%和58.6%—147.1%,玉米季增幅分别为12.3%—44.3%、60.5%—72.1%、55.0%—83.8%和59.3%—88.0%,且R2FM及R4FM处理小麦季以上指标及玉米季土壤有机碳增幅显著高于CF处理;不同施肥处理之间土壤pH无显著差异,但较CK处理均显著降低(表4)。

2.3.3 N2O累积排放量与土壤基本性质的关系 由表5可知,小麦季N2O累积排放量与土壤全氮含量、微生物量碳含量呈极显著正相关,与土壤碱解氮含量呈显著正相关,说明小麦季N2O累积排放量主要受土壤氮储量、转化及有效性的影响;在玉米季,N2O累积排放量与土壤全氮呈显著正相关,但与土壤有机碳、碳氮比呈显著负相关,说明玉米季N2O累积排放量主要受土壤碳氮储量的影响。

表4 不同处理下土壤基本性质的变化

表中OC、TN、AHN和MBC分别表示有机碳、全氮、碱解氮和微生物量碳。同列不同字母表示处理间差异显著(<0.05)。下同

In the table, OC, TN, AHN and MBC indicate organic C, total N, alkali-hydrolyzed N and microbial biomass C, respectively. Different letters in the same column indicate significant differences (<0.05) between different treatments. The same below

表5 N2O累积排放量与土壤基本性质之间的相关性

3 讨论

3.1 有机肥替代化肥对作物产量的影响

长期定位试验结果[12,23]已表明,在小麦-玉米轮作系统中,与单施化肥处理相比,周年有机肥氮替代不同比例化肥氮能够实现小麦增产或稳产及玉米稳产,他们认为有机肥与化肥配施不仅能够改善土壤物理结构与养分状况,而且还能够促进土壤微生物生长繁殖与新陈代谢,进而提高了土壤养分有效性与固持能力及作物养分吸收。本研究也得到了相似的结果,说明周年有机肥替代化肥为小麦季提供足够养分的同时,仍可提供足够的养分供下茬玉米利用。在旱作小麦-玉米轮作系统中,低温不利于有机质分解,有机肥矿化分解慢、残留量高,而高温、多雨能够促进有机肥矿化分解及养分释放[24]。本试验地所在区域,小麦季气候多以低温、干燥为主,而玉米季气候多以高温、多雨为主,这种季节性有机肥矿化特性更有利于满足周年有机肥替代化肥条件下作物养分需求。

3.2 有机肥替代化肥对小麦-玉米轮作系统N2O排放的影响

SHCHERBAK等[25]通过分析全球土壤N2O排放与施氮量的响应关系发现,N2O排放与施氮量之间存在指数增长关系,尤其是施氮量超过作物需求时,N2O排放增幅明显升高。本研究也得到了类似的结果,即不同施肥处理下N2O排放通量排放峰值均出现在施肥后,其原因主要与土壤中底物氮含量的增加有关。N2O排放受反应底物碳、氮的双重影响,当底物碳充足时,N2O排放主要受氮供应水平的制约,反之则受碳供应水平的制约[26]。施用化学氮肥提供了大量的无机氮作为底物氮,而施用有机肥提供了大量的有机氮及底物碳,碳、氮供应效率的差异导致N2O排放亦不同[27]。在本研究中,与常规施肥处理相比,有机肥替代化肥处理下小麦季N2O平均排放通量较高,且N2O累积排放量显著增加,并随替代比例增加而增加。而玉米季N2O排放特征则与小麦季完全相反。这一结果主要是由于施用有机肥改善了小麦季土壤特性,且在有机氮矿化过程中能够产生大量的无机氮,刺激了硝化与反硝化作用,导致土壤N2O排放增加[28-29];而玉米季N2O排放量下降的原因一方面与化学氮肥用量(底物氮含量)减少有关[30],另一方面可能与土壤碳氮比增加有关,如增加碳氮比会抑制硝化作用[31]。但从周年N2O累积排放量来看,不同施肥处理之间周年N2O累积排放量无显著差异,其主要原因是由于不同作物生长季N2O累积排放量明显不同,如有机肥替代化肥处理较常规施肥处理增加了小麦季N2O累积排放量而降低了玉米季N2O累积排放量。在本研究同等施氮量条件下,有机肥氮替代20%及40%化肥氮处理N2O-N排放系数分别为0.42%和0.44%,这与LÜ等[12]、侯苗苗等[14]的研究结果基本一致,且从结果中也可看出,N2O-N排放系数均低于IPCC推荐值(1%),若按IPCC推荐N2O-N排放系数1%计算,将高估有机肥替代化肥条件下N2O排放量。此外,本研究还发现,砂姜黑土小麦-玉米轮作系统N2O-N排放系数明显低于紫色土[32]、土[12]和潮土[33],属于低排土壤类型,这一结果主要是由于砂姜黑土属于典型的高黏性土壤类型,黏粒含量高达30%以上,铵离子易被吸附固定,一定程度上能够抑制硝化与反硝化作用[34-35]。

3.3 N2O排放与土壤环境因子之间的关系

在农田生态系统中,土壤底物氮含量增加、温度升高及水分增加是驱动N2O生成与扩散的关键土壤因子[36]。本研究发现,所有处理在施肥后土壤无机氮含量迅速增加,导致N2O排放通量急剧上升且出现峰值,持续期5—10 d,其中周年N2O排放通量与NO3--N含量呈极显著正相关,充分显示了施肥对N2O排放的影响。DING等[37]通过室内培养试验发现,当土壤温度在5—25 ℃、体积含水量在15—45 m3·m-3范围内,N2O排放通量会随着土壤温度上升及含水量增加而增加。在本研究中,不同施肥处理N2O排放通量与小麦季土壤温度、玉米季土壤体积含水量呈显著或极显著正相关,该结果主要是由于小麦季土壤温度(-0.1—22.8 ℃)及玉米季土壤体积含水量(14.1— 33.9 m3·m-3)的变化范围均有利于N2O排放。但本研究结果与侯苗苗等[14]在西北地区的研究结果不一致,他们认为不同施肥处理下N2O排放通量与小麦季土壤温度之间并无显著相关性,这可能与地域性气候(降雨量、温度等)及施氮量的差异较大有关。

土壤基本性质决定着土壤硝化与反硝化作用过程,与N2O排放密切相关[38]。DING等[31]发现,在单施化肥、单施有机肥及有机无机肥配施等方式下,N2O累积排放量与小麦季土壤全氮及速效氮含量(有机肥矿化氮+化肥氮)呈显著正相关,本研究也得到了相似的结果。但与之不同的是,本研究发现N2O累积排放量与小麦季土壤微生物量碳含量呈极显著正相关,这可能与本试验中小麦季土壤碳氮比(10.3—13.9﹕1)更接近于微生物生长适宜的(25﹕1)比例有关。本研究还发现,N2O累积排放量与玉米季土壤全氮呈显著正相关,但与土壤有机碳、碳氮比呈显著负相关,该结果可能是由于土壤碳氮比增加及底物氮含量降低抑制了土壤硝化与反硝化作用[39]。

4 结论

与不施肥处理相比,施肥处理显著提高了小麦-玉米轮作系统周年N2O累积排放量,但不同施肥处理之间周年N2O累积排放量及N2O-N排放系数均无显著差异。不同施肥处理下季节性N2O累积排放量差异明显,与常规施肥处理(单施化肥)相比,有机肥氮替代20%及40%化肥氮小麦季N2O累积排放量及N2O-N排放系数均显著增加,且有机肥替代化肥比例越大增幅越高,而玉米季N2O累积排放量则显著下降。因此,在有机肥氮替代化肥氮条件下,优化小麦季施肥管理是减少砂姜黑土区小麦-玉米轮作系统N2O排放的关键。

[1] STOCKER T. Climate Change 2013: the Physical Science Basis: Working Group I contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. New York: Cambridge University Press, 2014.

[2] SYAKILA A, KROEZE C. The global nitrous oxide budget revisited. Greenhouse Gas Measurement and Management, 2011, 1(1): 17-26.

[3] DING T, NING Y D, ZHANG Y. Estimation of greenhouse gas emissions in China 1990-2013. Greenhouse Gases: Science and Technology, 2017, 7(6): 1097-1115.

[4] ZHU G D, SONG X T, JU X T, ZHANG J B, MÜLLER C, SYLVESTER-BRADLEY R, THORMAN R E, BINGHAM I, REES R M. Gross N transformation rates and related N2O emissions in Chinese and UK agricultural soils. Science of the Total Environment, 2019, 666: 176-186.

[5] MENG Q F, SUN Y T, ZHAO J, ZHOU L R, MA X F, ZHOU M, GAO W, WANG G C. Distribution of carbon and nitrogen in water-stable aggregates and soil stability under long-term manure application in solonetzic soils of the Songnen plain, northeast China. Journal of Soils and Sediments, 2014, 14(6): 1041-1049.

[6] ASHRAF M N, HU C, XU X R, AZIZ T, WU L, WAQAS M A, FAROOQ M, HU X, ZHANG W J, XU M G. Long-term manure application increased soil organic carbon and nitrogen mineralization through accumulation of unprotected and physically protected carbon fractions. Pedosphere, 2023, 33(2): 343-354.

[7] ZHONG W H, GU T, WANG W, ZHANG B, LIN X G, HUANG Q R, SHEN W S. The effects of mineral fertilizer and organic manure on soil microbial community and diversity. Plant and Soil, 2010, 326(1): 523.

[8] 裴雪霞, 党建友, 张定一, 张晶, 高璐, 程麦凤, 王姣爱. 化肥减量配施有机肥对旱地小麦产量、品质和水分利用率的影响. 水土保持学报, 2021, 35(4): 250-258.

PEI X X, DANG J Y, ZHANG D Y, ZHANG J, GAO L, CHENG M F, WANG J A. Effects of chemical fertilizer reduction combined with organic fertilizer on the yield, quality, and water use efficiency of dryland wheat. Journal of Soil and Water Conservation, 2021, 35(4): 250-258. (in Chinese)

[9] ZHANG Y, LIU S Y, CHENG Y, CAI Z C, MÜLLER C, ZHANG J B. Composition of soil recalcitrant C regulates nitrification rates in acidic soils. Geoderma, 2019, 337: 965-972.

[10] 刘韵, 柳文丽, 朱波. 施肥方式对冬小麦—夏玉米轮作土壤N2O排放的影响. 土壤学报, 2016, 53(3): 735-745.

LIU Y, LIU W L, ZHU B. Effect of fertilization regime on soil N2O emission from upland field under wheat-maize rotation system. Acta Pedologica Sinica, 2016, 53(3): 735-745. (in Chinese)

[11] ZHOU M H, ZHU B, BRÜGGEMANN N, BERGMANN J, WANG Y Q, BUTTERBACH-BAHL K. N2O and CH4emissions, and NO3−leaching on a crop-yield basis from a subtropical rain-fed wheat-maize rotation in response to different types of nitrogen fertilizer. Ecosystems, 2014, 17(2): 286-301.

[12] LÜ F L, SONG J S, GILTRAP D, FENG Y T, YANG X Y, ZHANG S L. Crop yield and N2O emission affected by long-term organic manure substitution fertilizer under winter wheat-summer maize cropping system. Science of the Total Environment, 2020, 732: 139321.

[13] 孟磊, 蔡祖聪, 丁维新. 长期施肥对华北典型潮土N分配和N2O排放的影响. 生态学报, 2008, 28(12): 6197-6203.

MENG L, CAI Z C, DING W X. Effects of long-term fertilization on N distribution and N2O emission in fluvo-aquci soil in North China. Acta Ecologica Sinica, 2008, 28(12): 6197-6203. (in Chinese)

[14] 侯苗苗, 吕凤莲, 张弘弢, 周应田, 路国艳, Ayaz Muhammad, 黎青慧, 杨学云, 张树兰. 有机氮替代比例对冬小麦/夏玉米轮作体系作物产量及N2O排放的影响. 环境科学, 2018, 39(1): 321-330.

HOU M M, LÜ F L, ZHANG H T, ZHOU Y T, LU G Y, MUHAMMAD A, LI Q H, YANG X Y, ZHANG S L. Effect of organic manure substitution of synthetic nitrogen on crop yield and N2O emission in the winter wheat-summer maize rotation system. Environmental Science, 2018, 39(1): 321-330. (in Chinese)

[15] 李燕青, 温延臣, 林治安, 赵秉强. 不同有机肥与化肥配施对作物产量及农田氮肥气态损失的影响. 植物营养与肥料学报, 2019, 25(11): 1835-1846.

LI Y Q, WEN Y C, LIN Z A, ZHAO B Q. Effect of different manures combined with chemical fertilizer on yields of crops and gaseous N loss in farmland. Journal of Plant Nutrition and Fertilizers, 2019, 25(11): 1835-1846. (in Chinese)

[16] 李德成, 张甘霖, 龚子同. 我国砂姜黑土土种的系统分类归属研究. 土壤, 2011, 43(4): 623-629.

LI D C, ZHANG G L, GONG Z T. On taxonomy of Shajiang black soils in China. Soils, 2011, 43(4): 623-629. (in Chinese)

[17] 陈欢, 曹承富, 张存岭, 李玮, 乔玉强, 杜世州, 赵竹. 基于主成分-聚类分析评价长期施肥对砂姜黑土肥力的影响. 土壤学报, 2014, 51(3): 609-617.

CHEN H, CAO C F, ZHANG C L, LI W, QIAO Y Q, DU S Z, ZHAO Z. Principal component-cluster analysis of effects of long-term fertilization on fertility of lime concretion black soil. Acta Pedologica Sinica, 2014, 51(3): 609-617. (in Chinese)

[18] 李太魁, 寇长林, 郭战玲, 张香凝. 有机氮替代部分无机氮对砂姜黑土冬小麦产量及氮肥利用率的影响. 江苏农业科学, 2021, 49(5): 97-101.

LI T K, KOU C L, GUO Z L, ZHANG X N. Influences of partial substitution of chemical nitrogen with manure on yield and nitrogen use efficiency of winter wheat in lime concretion black soil. Jiangsu Agricultural Sciences, 2021, 49(5): 97-101. (in Chinese)

[19] 沈冰涛, 张孝倩, 陈红, 江旭聪, 李孝良, 汪建飞, 肖新. 有机肥替代化肥对小麦产量及土壤养分和酶活性的影响. 长江大学学报(自然科学版), 2019, 16(5): 46-52, 7.

SHEN B T, ZHANG X Q, CHEN H, JIANG X C, LI X L, WANG J F, XIAO X. Effect of substituting organic fertilizer for chemical fertilizer on wheat yield and soil nutrient and enzyme activity. Journal of Yangtze University (Natural Science Edition), 2019, 16(5): 46-52, 7. (in Chinese)

[20] WU J, JOERGENSEN R G, POMMERENING B, CHAUSSOD R, BROOKES P C. Measurement of soil microbial biomass C by fumigation-extraction—an automated procedure. Soil Biology and Biochemistry, 1990, 22(8): 1167-1169.

[21] 鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2000.

BAO S D. Soil and Agricultural Chemistry Analysis. 3rd ed. Beijing: China Agriculture Press, 2000. (in Chinese)

[22] LÜ J L, GAO Y B, LI T K, KONG H J, ZHANG J P, KOU C L. Effect of nitrogen fertilizer amount on N2O emission from wheat-maize rotation system in lime concretion black soil. Chinese Journal of Eco-Agriculture, 2021, 29(11): 1846-1856.

[23] CELESTINA C, HUNT J R, SALE P W G, FRANKS A E. Attribution of crop yield responses to application of organic amendments: a critical review. Soil and Tillage Research, 2019, 186: 135-145.

[24] LI S, WU J C, WANG X Q, MA L. Economic and environmental sustainability of maize-wheat rotation production when substituting mineral fertilizers with manure in the North China Plain. Journal of Cleaner Production, 2020, 271: 122683.

[25] SHCHERBAK I, MILLAR N, ROBERTSON G P. Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(25): 9199-9204.

[26] CHADWICK D R, PAIN B F, BROOKMAN S K E. Nitrous oxide and methane emissions following application of animal manures to grassland. Journal of Environmental Quality, 2000, 29(1): 277-287.

[27] OMIROU M, ANASTOPOULOS I, FASOULA D A, IOANNIDES I M. The effect of chemical and organic N inputs on N2O emission from rain-fed crops in Eastern Mediterranean. Journal of Environmental Management, 2020, 270: 110755.

[28] XIA F, MEI K, XU Y, ZHANG C, DAHLGREN R A, ZHANG M H. Response of N2O emission to manure application in field trials of agricultural soils across the globe. Science of the Total Environment, 2020, 733: 139390.

[29] 李燕青, 唐继伟, 车升国, 温延臣, 孙文彦, 赵秉强. 长期施用有机肥与化肥氮对华北夏玉米N2O和CO2排放的影响. 中国农业科学, 2015, 48(21): 4381-4389. doi: 10.3864/j.issn.0578-1752.2015.21. 018.

LI Y Q, TANG J W, CHE S G, WEN Y C, SUN W Y, ZHAO B Q. Effect of organic and inorganic fertilizer on the emission of CO2and N2O from the summer maize field in the North China plain. Scientia Agricultura Sinica, 2015, 48(21): 4381-4389. doi: 10.3864/j.issn. 0578-1752.2015.21. 018. (in Chinese)

[30] PAREJA-SÁNCHEZ E, CANTERO-MARTÍNEZ C, ÁLVARO-FUENTESJ, PLAZA-BONILLA D. Impact of tillage and N fertilization rate on soil N2O emissions in irrigated maize in a Mediterranean agroecosystem. Agriculture, Ecosystems & Environment, 2020, 287: 106687.

[31] DING W X, LUO J F, LI J, YU H Y, FAN J L, LIU D Y. Effect of long-term compost and inorganic fertilizer application on background N2O and fertilizer-induced N2O emissions from an intensively cultivated soil. Science of the Total Environment, 2013, 465: 115-124.

[32] 肖乾颖, 黄有胜, 胡廷旭, 朱波. 施肥方式对紫色土农田生态系统N2O和NO排放的影响. 中国生态农业学报, 2018, 26(2): 203-213.

XIAO Q Y, HUANG Y S, HU T X, ZHU B. Effects of fertilization regimes on N2O and NO emissions from agro-ecosystem of purplish soil. Chinese Journal of Eco-Agriculture, 2018, 26(2): 203-213. (in Chinese)

[33] 孙赫阳, 万忠梅, 刘德燕, 廖霞, 丁维新. 有机肥与无机肥配施对潮土N2O排放的影响. 环境科学, 2020, 41(3): 1474-1481.

SUN H Y, WAN Z M, LIU D Y, LIAO X, DING W X. Effect of organic fertilizer and inorganic fertilizer application on N2O emissions from fluvo-aquic soil in the North China plain. Environmental Science, 2020, 41(3): 1474-1481. (in Chinese)

[34] 曹文超, 宋贺, 王娅静, 覃伟, 郭景恒, 陈清, 王敬国. 农田土壤N2O排放的关键过程及影响因素. 植物营养与肥料学报, 2019, 25(10): 1781-1798.

CAO W C, SONG H, WANG Y J, QIN W, GUO J H, CHEN Q, WANG J G. Key production processes and influencing factors of nitrous oxide emissions from agricultural soils. Journal of Plant Nutrition and Fertilizers, 2019, 25(10): 1781-1798. (in Chinese)

[35] 赵燕. 河南省砂姜黑土系统分类归属及代表土系的建立[D]. 郑州: 郑州大学, 2012.

ZHAO Y. Calcic black soils classified in Chinese soil taxonomy and the soil series established in Henan Province[D]. Zhengzhou: Zhengzhou University, 2012. (in Chinese)

[36] 张玉铭, 胡春胜, 张佳宝, 董文旭, 王玉英, 宋利娜. 农田土壤主要温室气体(CO2、CH4、N2O)的源/汇强度及其温室效应研究进展. 中国生态农业学报, 2011, 19(4): 966-975.

ZHANG Y M, HU C S, ZHANG J B, DONG W X, WANG Y Y, SONG L N. Research advances on source/sink intensities and greenhouse effects of CO2, CH4and N2O in agricultural soils. Chinese Journal of Eco-Agriculture, 2011, 19(4): 966-975. (in Chinese)

[37] DING W X, MENG L, CAI Z C, HAN F X. Effects of long-term amendment of organic manure and nitrogen fertilizer on nitrous oxide emission in a sandy loam soil. Journal of Environmental Sciences, 2007, 19(2): 185-193.

[38] STEHFEST E, BOUWMAN L. N2O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions. Nutrient Cycling in Agroecosystems, 2006, 74(3): 207-228.

[39] LIN S, IQBAL J, HU R G, RUAN L L, WU J S, ZHAO J S, WANG P J. Differences in nitrous oxide fluxes from red soil under different land uses in mid-subtropical China. Agriculture, Ecosystems & Environment, 2012, 146(1): 168-178.

Effect of Organic Fertilizer Replacing Chemical Fertilizer on Nitrous Oxide Emission from Wheat-Maize Rotation System in Lime Concretion Black Soil

LIU GaoYuan1, 2, HE AiLing1, DU Jun1, LÜ JinLing1, NIE ShengWei1, PAN XiuYan3, XU JiDong3, LI Jue4, YANG ZhanPing1

1Institute of Plant Nutrition, Resources and Environment, Henan Academy of Agricultural Sciences, Zhengzhou 450002;2Henan Provincial Key Laboratory of Agro-ecological Environment, Zhengzhou 450002;3Suiping Experimental Station of Agricultural Sciences, Zhumadian 463100, Henan;4Henan Water Conservancy and Hydropower School, Zhoukou 466000, Henan

【Objective】Under the condition of organic fertilizer replacing chemical fertilizer, the relationship between nitrous oxide (N2O) emissions and soil environmental factors in wheat-maize rotation system of lime concretion black soil was researched, which could provide theoretical basis for greenhouse gas emission reduction from farmland. 【Method】In this study, taking wheat-maize rotation system of lime concretion black soil as research object, the effects of no fertilization (CK), conventional fertilization (CF) and organic fertilizer-N replacing 20% or 40% of chemical fertilizer-N (R2FM and R4FM, organic fertilizer-N were applied in the wheat season) on N2O emissions and environmental factors driving N2O emissions were analyzed by the method of static box-gas chromatography and conventional soil parameter analysis. 【Result】The wheat yields under R2FM and R4FM were significantly increased by 12.2% and 10.2% than those under CF, respectively, but there was no significant difference in the maize yields between fertilization treatments. Average annual N2O emission fluxes under CK, CF, R2FM, and R4FM were 5.9, 50.3, 43.9 and 39.6 μg·m-2·h-1, with 3.1, 23.6, 25.0 and 26.4 μg·m-2·h-1in the wheat season and 8.8, 77.0, 62.8 and 52.9 μg·m-2·h-1in the maize season, respectively. Under fertilization treatments, N2O emission fluxes were significantly positively correlated with soil NO3--N in the whole season, as well as soil temperature in the wheat season and soil water content in the maize season. Cumulative annual N2O emissions were 2.38, 2.44 and 2.53 kg·hm-2for CF, R2FM and R4FM, which were significantly increased by 325%-354% in comparison to CK (0.56 kg·hm-2), and the range of their emission factors was 0.40%-0.44%. However, there was no significant difference between cumulative annual N2O emissions or N2O-N emission factors under CF, R2FM and R4FM. Cumulative seasonal N2O emissions were obviously different between fertilizer treatments, such as R2FM and R4FM significantly increased cumulative N2O emissions by 28.3% and 62.6% in the wheat season in comparison to CF, and their N2O-N emission factors (0.35% and 0.41%) were also significantly increased, but they significantly decreased cumulative N2O emissions by 15.8% and 33.8% in the maize season, respectively. Cumulative N2O emissions were significantly positively correlated with soil total nitrogen, alkali-hydrolyzable nitrogen, microbial biomass carbon in the wheat season as well as soil total nitrogen in the maize season, but they were significantly negatively correlated with soil organic carbon in the maize season, respectively. 【Conclusion】Under the condition of organic fertilizer-N replacing chemical fertilizer-N, optimizing fertilization management in the wheat season is the key to reduce N2O emissions from wheat-maize rotation system in lime concretion black soil.

wheat-maize rotation; fertilizer reduction; livestock manure; nitrous oxide; greenhouse gas; lime concretion black soil

10.3864/j.issn.0578-1752.2023.16.009

2022-08-25;

2022-11-10

河南省重大科技专项(221100110700)、河南省农业科学院自主创新项目(2021ZC36)、河南省科技创新引导计划资金项目(Zhs202106)

刘高远,E-mail:liugaoyuan678@163.com。通信作者杨占平,E-mail:zhpyang3@163.com

(责任编辑 李云霞)

猜你喜欢

砂姜通量排放量
河北省砂姜黑土分类及综合治理
冬小麦田N2O通量研究
长期施肥对砂姜黑土可溶性碳淋溶的影响
淮北平原砂姜黑土区砂姜的空间分布及其驱动因素*
天然气输配系统甲烷排放量化方法
黑龙江省碳排放量影响因素研究
徐州地铁车站含砂姜黏土层水土压力研究
缓释型固体二氧化氯的制备及其释放通量的影响因素
全国机动车污染物排放量
——《2013年中国机动车污染防治年报》(第Ⅱ部分)
江苏省火力发电机组二氧化碳排放量估算