川芎-丹参药对主要药理成分的网络药理学和指纹图谱研究
2023-09-21刘明月杨玉梅郑延泽
刘明月, 杨玉梅, 郑延泽
(1. 内蒙古自治区锡林郭勒盟安神医院, 内蒙古 锡林浩特, 026000;2. 内蒙古自治区锡林郭勒盟中心医院, 内蒙古 锡林浩特, 026000)
丹参具有活血祛瘀、通经止痛、清心除烦和凉血消痈功效,其主要活性成分为丹参酮、丹参酚酸类化合物和挥发油等[1]。川芎活血行气,其主要活性成分包括阿魏酸、绿原酸、洋川芎内酯Ⅰ、阿魏酸松柏酯、迷迭香酸、洋川芎内酯A、阿魏酸松柏酯、藁本内酯等。川芎-丹参药对可活血行气,其中丹参活血而不伤血,川芎辛温香燥,走而不守,上行头目,下入血海,两者配伍可使活血化瘀、行气止痛之功倍增,为典型的相须配伍[2]。目前,参芎葡萄糖注射液、冠心宁注射液、冠心宁片等多种川芎-丹参配伍制剂已被用于临床疾病的治疗中。孙青[3]利用高效液相色谱法(HPLC)检测川芎-丹参药对不同配比的有效成分含量,发现合煎液中各成分提取率显著高于单煎液提取率。张聪等[4]利用中药方剂数据库计算川芎与其他中药配伍出现的频率,其中川芎-丹参药对居第1位。相关研究[5]表明,川芎-丹参配伍可治疗心肌梗死、阿尔茨海默病、动脉粥样硬化等疾病。近年来,基于网络药理学探讨中药复方作用机制的研究众多,中药复方的多层次多靶点网络可阐释药物的治病机理。本研究基于网络药理学研究方法分析川芎-丹参药对的活性成分、靶点和对疾病的作用机制,以期为临床合理使用川芎-丹参药对提供参考依据。
1 材料与方法
1.1 成分和靶点的收集与筛选
在中药系统药理学分析平台(TCMSP)数据库(https: //old.tcmsp-e.com/tcmsp.php)中搜索川芎和丹参的活性成分和作用靶点。药物经肝脏进入体循环血液中的药量占口服剂量的百分比称为口服生物利用度(OB), 是中药制剂研发过程中的关键药动学指标。类药性(DL)指活性成分与已知药物的相似性,是筛选药用成分的关键参数。通常OB值越高,活性成分的药用价值越高。中药药用成分筛选条件为OB≥30%, DL≥0.18[6-7]。
1.2 疾病数据收集和靶点对应基因获取
依照“1.1”方法筛选靶点,检索TCMSP数据库中与其对应的疾病,通过Uniprot网站(https://www.uniprot.org/)的UniprotKB数据库获取靶点相应基因,以Excel格式导出,使用VLOOKUP函数将靶点与基因信息一一对应[8]。
1.3 多层次多靶点网络的构建
使用Cytoscape 3.9.1软件将已收集的川芎和丹参的活性成分、靶点和疾病整合后,构建“药物-成分-靶点-疾病”网络[9]。构建的网络中,点和线的颜色、粗细均可赋值表示相应指标,如圆圈的大小和颜色表示药物-成分-靶点-疾病的连通性和权重高低。Degree表示某一节点与其他节点连接边的数量。Cytoscape网络分析常以Degree值高作为筛选参数,川芎-丹参药对的网络构建亦参考此方法,即筛选Degree值高的关键参数,构建川芎-丹参“药物-成分-靶点-疾病”网络,并探讨川芎-丹参药对的作用机制。
1.4 基因本体论(GO)和京都基因与基因组百科全书(KEGG)通路富集分析
利用GO基因功能注释分析和KEGG通路富集分析方法分析川芎-丹参药对的作用机制。在DAVID数据库(https://david.ncifcrf.gov/)中导入整理好的靶点基因,选择与靶点基因名称对应的选项,点击"Homo Sapiens", 提交基因列表。数据处理后,导出生物过程、分子功能、细胞成分和KEGG通路数据,设定阈值P<0.05, 绘图[10-12]。
1.5 川芎-丹参药对指纹图谱研究
1.5.1 溶液制备: 取15批药材(每批药材为丹参、川芎各5 g), 分别置于锥形瓶中,加100 mL水浸泡 1 h后,回流提取2.5 h, 抽滤后得丹参-川芎合煎液,加入70%乙醇稀释后得到供试品溶液。
1.5.2 混合对照品溶液制备: 取谷甾醇、川芎嗪、丹参醇B、鼠尾草酚酮、木犀草素、川芎哚对照品,加70%乙醇制成混合对照品溶液。
1.5.3 色谱条件: 使用Agilent XDB C18色谱柱(150 mm×4.6 mm, 5 μm), 流动相为乙腈(A)-水(B), 梯度洗脱(0~35 min、17%~28% A, 35~50 min、28%~75% A, 50~60 min、75%~80% A), 流速1.0 mL/min, 检测波长280 nm, 柱温20 ℃, 进样量20 μL。
2 结 果
2.1 川芎-丹参药对的活性成分筛选
搜索TCMSP数据库发现川芎-丹参药对的活性成分324个(川芎175个,丹参149个),根据条件(OB≥30%, DL≥0.18)筛选后共得到15个主要活性成分,见表1。
表1 川芎-丹参药对中15个活性成分信息
2.2 多层次多靶点网络的构建与分析
川芎-丹参药对的“药物-成分-靶点-疾病”网络图含有259个节点(2种药物, 15个成分, 72个靶点,187种疾病)和453条边线。以Degree≥10为条件筛选关键活性成分和靶点,以Degree≥5为条件筛选疾病。筛选结果显示, Degree≥10的活性成分有谷甾醇(编号CX-1)、丹参醇B(编号DS-2)、川芎嗪(编号CX-8)、木犀草素(编号DS-7)、鼠尾草酚酮(编号DS-5), 其Degree值分别为43、36、32、29、22, 说明这5个活性成分是构建网络中关键活性成分,在川芎-丹参药对的药理作用中具有功效; Degree≥10的靶标蛋白有10个,包括醛糖还原酶(AKR1B1)、碳酸酐酶2(CA2)、碳酸酐酶1(CA1)、乙醛脱氢酶2(ALDH2)、前列腺素G/H合成酶1(PTGS1)、表皮生长因子受体(EGFR)、基质金属蛋白酶9(MMP9)、基质金属蛋白酶2(MMP2)、去甲肾上腺素转运体(SLC6A2)和腺苷受体A1(ADORA1),以上靶标蛋白中Degree最高的为AKR1B1,表明川芎-丹参药对可以调节其表达,对机体产生作用; Degree≥5的疾病有8种,包括疼痛、心血管疾病、阿尔茨海默病、前列腺癌、脑损伤、炎症、焦虑症、精神分裂症,其中Degree最高的为心血管疾病,这与川芎-丹参药对主要治疗心血管疾病相吻合。见表2。
表2 “药物-成分-靶点-疾病”网络节点及参数
2.3 GO富集分析结果
利用DAVID 6.8数据库,以P<0.05且人类物种为条件进行GO功能富集分析。GO富集分析共得到条目223条: 生物过程165条,包括对药物的反应、增殖过程的正调控、转录的正调控和DNA模板化、Erk1和Erk2级联的正调控、缺氧反应等; 分子功能30条,包括序列特异性DNA结合、转录调节区DNA结合、药物结合、蛋白酶结合和细胞因子活性等; 细胞组成28条,包括质膜、含胶原的细胞外基质、质膜组成部分、膜区、细胞表面等。GO富集分析的主要结果见图1、表3。
A: 生物过程; B: 分子功能; C: 细胞组成。
表3 川芎-当归药对相应基因GO富集分析结果(各类型前5条条目)
2.4 KEGG通路富集分析结果
利用DAVID 6.8数据库进行KEGG通路富集分析,共得到78条信号通路,包括癌症通路、神经活性配体-受体相互作用、PI3K-Akt信号通路、乙肝信号通路、癌症中的蛋白多糖等。KEGG通路富集分析的主要结果见图2、表4。
图2 KEGG富集结果(前20条通路)
表4 川芎-当归药对相应基因KEGG富集分析结果(前16条通路)
2.5 川芎-丹参药对指纹图谱的建立
分别取15批川芎-丹参饮片(S1~S15), 制备供试品溶液并分别进样,记录色谱图,导入中药色谱指纹图谱相似度评价系统(2012版)中,设置时间窗宽度为0.3, 采用中位数法,进行色谱峰匹配,生成对照图谱,共标定11个共有峰,得到川芎-丹参药对指纹图谱,见图3。与混合对照品溶液色谱图相比,色谱图标定谷甾醇、川芎嗪、丹参醇B、鼠尾草酚酮、木犀草素、川芎哚这6个色谱峰,见图4。15批川芎-丹参药对指纹图谱相似度分别为0.999、0.998、1.000、1.000、1.000、0.999、0.999、0.998、0.999、1.000、0.999、1.000、0.997、0.999、1.000,提示15批饮片均质量稳定。
图3 15批川芎-丹参样品的HPLC指纹图谱
图4 混合对照品溶液的色谱图
3 讨 论
本研究基于网络药理学研究方法,通过TCMSP和DAVID 6.8数据库分析川芎-丹参药对的活性成分、靶标蛋白和疾病,并对靶点基因进行GO和KEGG富集分析,发现川芎-丹参药对有72个靶点, 2种药物的15种活性成分参与调节靶标基因的生物学过程、细胞功能和分子组成,从而达到治疗相关疾病的药理作用。
“药物-成分-靶点-疾病”网络图中,川芎和丹参中Degree值排名前2位的活性成分分别为谷甾醇和丹参醇B, HPLC指纹图谱检测表明谷甾醇和丹参醇B为川芎和丹参中的活性成分。裴浩等[13]发现,谷甾醇可以抑制口腔鳞状细胞癌增殖。陈颖[14]通过微量稀释法发现丹参醇B具有抗菌抑菌作用,与头孢噻肟联用抑菌效果可提高6倍。本研究发现,靶标蛋白AKR1B1、CA2、CA1、ALDH2、PTGS1、EGFR、MMP9、MMP2、SLC6A2和ADORA1的Degree值高于10, 说明以上靶标蛋白作为关键靶点参与调控疾病信号通路。疼痛等疾病的靶点AKR1B1、CA2与细胞凋亡和心肌纤维化等信号转录因子相关度较高,说明这2个靶标蛋白参与川芎-丹参治疗疾病的免疫反应过程。王倩婷等[15]研究了AKR1B1对乳腺癌患者MCF-7细胞的调节机制,发现AKR1B1能有效抑制细胞凋亡现象。
GO富集分析和KEGG富集分析结果表明,大部分靶标蛋白富集在增殖过程的正调控、Erk1和Erk2级联的正调控生物学过程, Erk1和Erk2为细胞外信号调节激酶的成员,参与调控细胞分化和细胞凋亡过程,可促进细胞增殖,在多种肿瘤中异常表达[16-17],推测抗癌可能是川芎-丹参药对的重要药理作用之一。
综上所述,川芎-丹参药对治疗疼痛、炎症、癌症等多种疾病与AKR1B1、CA2、CA1、ALDH2等靶点有关,也与癌症信号通路、PI3K-Akt信号通路和神经活性配体-受体相互作用信号通路等有关,故推测川芎-丹参药对中的活性成分通过参与调控关键通路中的关键靶标基因表达而达到治疗疾病的目的。本研究基于网络药理学方法挖掘川芎-丹参药对的“药物-成分-靶点-疾病”网络关系,进行GO和KEGG通路富集分析,有助于从基因和细胞组成层面揭示川芎-丹参药对治疗疾病的机制,进而为临床应用川芎-丹参复方提供借鉴。