中药通过调控PGC-1α治疗非酒精性脂肪肝病的研究进展
2023-08-14李亚楠,彭泉,冯馨瑶,康徐瑞,陈伶利,成细华
李亚楠,彭泉,冯馨瑶,康徐瑞,陈伶利,成细华
〔摘要〕 非酒精性脂肪肝病(non-alcoholic fatty liver disease, NAFLD)是一种以肝细胞内脂质的异常累积为特征的代谢性疾病,包括单纯性脂肪肝(simple fatty liver, SFL)、非酒精性脂肪性肝炎(non-alcoholic steatohepatitis, NASH)及相关肝硬化和肝细胞癌。过氧化物酶体增殖物激活受体-γ共激活因子-1α(proliferator-activated receptor-γ coactivator-1α, PGC-1α)是一种转录共激活因子,能调控能量代谢,在线粒体的生物合成、糖脂代谢、机体适应性产热等过程中发挥着重要作用。NAFLD存在复杂的病因病机,临床上尚无有效治疗手段和特效药。中药擅长多靶点、多途径治疗疾病,临床已广泛用于治疗NAFLD。本文综述中药调控PGC-1α,从影响胰岛素抵抗、脂质堆积、氧化应激、炎症反应等方面改善NAFLD,为中药治疗NAFLD机制研究提供部分参考。
〔关键词〕 非酒精性脂肪肝病;中药;PGC-1α;胰岛素抵抗;炎症;氧化应激
〔中图分类号〕R285.5 〔文献标志码〕A 〔文章编号〕doi:10.3969/j.issn.1674-070X.2023.07.029
Research progress on treating non-alcoholic fatty liver disease by regulating PGC-1α with Chinese medicines
LI Yanan1, PENG Quan2, FENG Xinyao1, KANG Xurui1, CHEN Lingli1, CHENG Xihua1*
1. Medical School, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; 2. School of Acupuncture-Moxibustion and Tuina, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
〔Abstract〕 Non-alcoholic fatty liver disease (NAFLD) is a metabolic disorder characterized by abnormal accumulation of lipids, including simple fatty liver (SFL), non-alcoholic steatohepatitis (NASH), and associated cirrhosis and hepatocellular carcinoma. Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) is a transcriptional coactivator that regulates energy metabolism and plays an important role in processes such as mitochondrial biosynthesis, glycolipid metabolism, and adaptive thermogenesis in the body. Due to the complex etiology and pathogenesis of NAFLD, there is no effective treatment or specific drug in clinic. Chinese medicines can treat diseases through multiple targets and pathways, which has been widely used clinically for the treatment of NAFLD. This paper reviews the regulation of PGC-1α by Chinese medicines from the aspects of affecting insulin resistance, lipid accumulation, oxidative stress, and inflammatory response, providing some references for mechanism research of Chinese medicines in treating NAFLD.
〔Keywords〕 non-alcoholic fatty liver disease; Chinese medicines; proliferator-activated receptor-γ coactivator-1α; insulin resistance; inflammation; oxidative stress
非酒精性脂肪肝病(non-alcoholic fatty liver disease, NAFLD)指除酒精和其他明确的损肝因素所致的肝细胞内脂肪过度沉积为主要特征的临床病理综合征,与胰岛素抵抗和遗传易感性密切相关的获得性代谢应激性肝损伤,包括单纯性脂肪肝(simple fatty liver, SFL)、非酒精性脂肪性肝炎(non-alcoholic steatohepatitis, NASH)及相关的肝硬化和肝细胞癌。我国成人NAFLD患病率高達29.81%,男性患病率(37.11%)明显高于女性(22.67%)[1]。NAFLD的发病机制仍无定论,胰岛素抵抗(insulin resistance, IR)、氧化应激、炎症、脂毒性、脂肪因子等在NAFLD的发生发展中均发挥着关键作用。过氧化物酶体增殖物激活受体-γ共激活因子-1α(proliferator-activated receptor-γ coactivator-1α, PGC-1α)是线粒体生物合成的关键调节因子,调节能量稳态,参与NAFLD、心血管疾病、糖尿病肾病、肿瘤以及神经退行性疾病等的发生发展。中药在治疗NAFLD中发挥了其独特优势,本文综述中药调控PGC-1α治疗NAFLD的研究成果,为中医药治疗NAFLD提供更广阔的视野。
1 PGC-1α的生物学功能
PGC-1家族由PGC-1α、PGC-1β和PRC(PGC-1相关的共激活因子)3个成员组成,PGC-1α是1998年由PUIGSERVER在棕色脂肪组织中发现并命名[2]。PGC-1α是一种营养信号感知分子,是能量代谢关键调控因子,在心脏、肝脏、骨骼肌、大脑等能量代谢旺盛的组织器官中呈现高表达,在线粒体的生物合成、糖脂代谢、机体适应性产热、骨骼肌纤维类型转换中发挥着重要作用,同时还可以调节内皮细胞的稳态。PGC-1α在NAFLD、心血管疾病、糖尿病肾病、肿瘤以及神经退行性疾病等患者中的表达异常,有可能成为NAFLD等疾病治疗的新靶点[3]。
PGC-1α可调节多种转录因子的活性,主要包括核受体-雌激素相关受体(estrogen-relatedreceptor, ERR)、过氧化物酶体增殖物激活受体(peroxidase proliferation activated receptor, PPAR)、非核受体-核呼吸因子(nuclear respiratory factor, NRF)和叉头盒受体O1(forkhead box protein O1, FoxO1)等。ERRα与PGC-1α结合,可调节参与脂质和葡萄糖代谢的线粒体呼吸复合物和代谢酶的基因表达,以及编码三羧酸循环、线粒体氧化磷酸化和脂肪酸β氧化酶的基因表达;研究表明,抑制ERRα可阻断由高碳水化合物饮食或高脂饮食诱导的NAFLD发展[4]。PPARα主要富集在肝脏中,研究发现,在新西兰肥胖小鼠中脂肪酸和胆固醇代谢主要受PGC-1α/ PPARα途径的影响[5];PPARγ可上调脂联素的表达,增加循环脂联素含量,循环脂联素与肝脏中的受体结合,引发信号级联反应,导致IR和糖异生减少,β氧化增加,从而减少肝细胞脂肪堆积[6]。PGC-1α的激活可促进Kelch样环氧氯丙烷相关蛋白1(Kelch-like ECH-associated protein 1, Keap1)与核因子红细胞系2相关因子2(nuclear factor erythroid 2 related factor 2, NRF2)的解离,从而使NRF2入核,激活一系列的抗氧化反应,在NAFLD中发挥保护作用[7];PGC-1α可激活NRF1,提高NRF1靶基因如线粒体转录因子A(mitochondrial transcription factor A, mtTFA)的转录,mtTFA活化后易位至线粒体,活化mtDNA的转录及复制,增加了线粒体的生物发生[8]。FoxO1是调节肝脏脂质代谢的重要转录因子,研究发现,抑制FoxO1泛素化和蛋白酶体降解可加重脂肪肝[9]。临床研究显示,肝脏中PGC-1α mRNA的低表达是NAFLD的重要病因之一[10-11]。
2 中药调控PGC-1α防治NAFLD
NAFLD的特征是脂质积累过多、炎症和氧化还原稳态不平衡。在NAFLD期间,肝细胞不再耐受累积的脂肪酸毒性,导致细胞线粒体β氧化和内质网应激等功能障碍,随后过量产生内源性活性物质[由活性氧(reactive oxygen species, ROS)、活性氮(reactive nitrogen species, RNS)和活性硫物质(reactive sulfur substance, RSS)组成]导致肝细胞损伤,促进炎症细胞因子(TNF-α、IL-6、IL-10)的分泌和细胞死亡,而线粒体和过氧化物酶体中的促炎信号通路导致抗氧化稳态失调。
NAFLD属于中医学“肝癖”“胁痛”“积聚”等范畴,其发病原因与饮食不节、情志失调、劳逸失度等有关,导致痰、湿、浊、瘀、热伏结肝体。中医药治疗肝脏疾病,具有标本兼治、毒副作用小、耐药性低的优势[12]。然而,其基础研究欠深入、药物作用机制不明等问题一直困扰着其发展。新近研究表明,PGC-1α在中药防治肝脏疾病中成为新的研究热点[13-14]。下文对中药调控PGC-1α治疗NAFLD的核心文献进行总结,以期为中药治疗NAFLD的机制研究提供部分参考。
2.1 中药调控PGC-1α影响IR与糖脂代谢改善NAFLD
IR与NAFLD互为因果,可促进NAFLD的发生发展。IR引起外周脂肪组织分解,过多的脂肪酸进入肝脏蓄积,同时肝脏脂肪堆积加重IR,通常伴随着线粒体功能障碍,导致糖脂代谢紊乱。PGC-1α能夠通过蛋白激酶B(protein kinase B, PKB)产生的胰岛素受体信号调节胰岛素受体底物1(insulin receptor substrate 1, IRS1)和胰岛素受体底物2(insulin receptor substrate 2, IRS2)之间的平衡,在糖异生的控制中起着双重作用。NAFLD小鼠肝脏乙酰CoA羧化酶(acetyl CoA carboxylase, ACC)、胆固醇调节元件结合蛋白1(sterol-regulatory regulatory element binding protein 1, SREBP1)及其脂生成靶基因[硬脂酰辅酶Al(Stearoyl Coenzyme A1, SCA1)和脂肪酸合酶基因(fatty acid synthase, FAS)]的蛋白表达上调,而参与脂肪酸β氧化的蛋白[如PPARα、PGC-1α、肉碱棕榈酰转移酶1(carnitine palmitoyl transferase 1, CPT1)、过氧化物酶体酰辅酶A氧化酶1(peroxisome acyl coa oxidase acyl-CoA oxidase, ACOX1)和人线粒体解偶联蛋白2(recombinant uncoupling protein 2, UCP2)]以及PGC-1α上游介质沉默信息调节因子1(silent mating type information regulation 1, SIRT1)和AMP依赖蛋白激酶(adenosine 5'-monophosphate-activated protein kinase α, AMPKα)表达下调,调控PGC-1α通路可改善肝脏脂质积累[15]。
中药复方糖肝康治疗糖尿病脂肪肝大鼠,抑制肝脏组织PGC-1α的异常表达,通过调节糖脂代谢紊乱和胰岛素敏感性而改善肝脏脂肪变性[16]。研究发现,三黄汤预防NAFLD机制是通过激活PGC-1α及其下游信号通路来实现的[17]。平汤方治疗NAFLD模型大鼠,发现肝脏PGC-1α、PPARα等关键脂解调节基因的表达上调,而脂肪生成基因如SREBPc等的表达下降,证明平糖方通过調节PGC-1α信号通路,减轻了肝脏脂肪变性[18]。泽泻汤处理棕榈酸诱导的脂质堆积细胞模型和高脂诱导的非酒精性脂肪肝动物模型,激活了PGC-1α,并上调其靶基因酰基辅酶A脱氢酶(acyl-Coenzyme A dehydrogenase, ACADS)、CPT1α、CPT1β、线粒体棕色脂肪解偶联蛋白1(recombinant uncoupling protein 1, UCP1)、长链脂肪酸辅酶A连接酶1(long chain fatty acid coenzyme A ligase 1, ACSL1)、NRF1等的表达,从而改善了肝细胞脂质堆积[19]。虎金方治疗高脂饮食(high fat diet, HFD)喂养的C57/BL6J小鼠,明显减少肝细胞脂肪堆积,其作用机制可能与其调节SIRT1/PPAR-α通路、减轻肝脏脂质沉积有关[13]。藜麦复合物处理高脂饮食喂养的C57BL/6J小鼠,可明显降低血清谷草转氨酶(aspartate transaminase, AST)、甘油三酯(triglyceride, TG)、纤维蛋白原(fibrinogen, FBG)、空腹胰岛素(fasting insulin, FINS)含量以及胰岛素抵抗指数(insulin resistance index, IRI),明显升高肝脏组织SIRT1、PGC-1α蛋白表达水平,表明藜麦复合物可能通过促进SIRT1/PGC-1α的表达改善胰岛素抵抗和糖脂代谢紊乱,从而减轻糖尿病肝损伤[20]。
中药单体白藜芦醇可激活肥胖男性肌肉组织AMPK,增加SIRT1和PGC-1α蛋白水平,促进肌肉线粒体呼吸和产热,从而减少肝脏脂质合成,改善饮食引起的脂肪肝[21]。金线莲多糖可能激活AMPK/SIRT1/PGC-1α信号通路促进脂肪产热,增加葡萄糖耐量和胰岛素敏感性,从而通过减少脂质合成和增加氧化来减少肝脏脂质积累[14]。桑根酮C可明显下降HepG2细胞内脂滴数及TG含量,升高PGC-1α、PPARα、CPT-1、SIRT1的mRNA和蛋白表达水平,改善HepG2细胞的脂质蓄积[22]。淫羊藿苷可上调NAFLD大鼠肝组织AMPKα1、PGC-1α、葡萄糖转运蛋白4(glucose transporter 4, GLUT4)、CPT-1、B淋巴细胞瘤-2(B-cell lymphoma-2, Bcl-2)蛋白相对表达量,下调了ACC蛋白相对表达量,从而改善了肝脏脂肪变性[23]。红景天根可通过调节PGC-1α信号通路,改善SD大鼠肝脂肪变性[24]。
2.2 中药调控PGC-1α减少炎症反应改善NAFLD
体内炎症因子失衡参与NAFLD的第2次打击,并推进NAFLD进程。临床NAFLD患者血清中,TNF-α、IL-6、IL-10和高敏C反应蛋白含量显著升高。高浓度棕榈酸盐和胆固醇处理后的HepG2细胞,检测到PGC-1α蛋白表达下调,同时激活了核因子κB(nuclear factor kappa-B, NF-κB)信号,导致TNF-α蛋白质水平上升,而非甾体抗炎药阿司匹林治疗可调节以上蛋白表达,缓解炎症[25]。
中药复方苓桂术甘汤加味通过调节PI3K-Akt/mTOR-S6K1/AMPK-PGC-1α通路,改善糖脂代谢和炎症[26]。葛根芩连汤联合白藜芦醇明显升高NAFLD 模型大鼠肝脏SIRT1及PGC-1α mRNA的表达,同时下调NF-κB基因的表达,缓解NAFLD的进展[27]。
中药单体山楂叶总黄酮上调了NAFLD大鼠肝脏法尼酯X受体(farnesoid X receptor, FXR)、PPARα、PGC-1α的表达,调节肝脏的脂质代谢,改善炎性反应[28]。枸杞多糖联合有氧运动激活AMPK/PPARα/PGC-1α途径,增加脂肪酸氧化,改善NASH鼠的肝脏炎症[29]。异甘草素激活PGC-1α表达,抑制ROS、TNF-α、IL-1β和IL-6的表达,改善NAFLD肝脏组织的脂质积累和炎症[30]。大叶茜草素上调AMPK、PPARγ、PGC-1α表达,降低磷酸化核因子-κB(phosphorylation nuclear factor-kappa B, pNF-κB)水平,改善NAFLD小鼠肝脏组织胞质内的脂滴积聚和炎性细胞浸润[31]。慈姑多糖可上调PGC-1α mRNA表达,降低TNF-α、IL-6 mRNA表达,从而改善NAFLD小鼠肝脏组织胞质内的脂滴积聚和炎性细胞浸润[32]。
2.3 中药调控PGC-1α减少氧化应激改善NAFLD
NAFLD与氧化应激密切相关,脂质代谢紊乱会导致肝脏脂质积聚,从而影响不同的ROS生成器,包括线粒体、内质网等。通过调查1651名脂肪肝指数>60和肝脂肪变性指数>36的NAFLD患者,发现血清高还原活性硫醇游离硫醇含量下降与NAFLD呈正相关[33]。在高脂肪高果糖饮食诱导形成NASH小鼠和棕榈酸处理的HepG2肝细胞中,NRF2的核易位减少,抑制下游抗氧化基因的表达,增加细胞内ROS,从而导致肝细胞损伤。增加的细胞内ROS导致线粒体功能基因线粒体动力相关蛋白(dynamin-like protein 1, Drp1)、线粒体转录因子A(transcription factor A mitochondrial, TFAM)、PGC-1α和NRF1表达下调,导致线粒体损伤,加剧肝细胞氧化损伤,一氧化碳释放分子A1可调节此过程[34]。
中药复方护肝清脂片可激活AMPK和PPARα通路,增加肝脂肪变性L02 和 HepG2 细胞中谷胱甘肽(L-Glutathione, GSH)水平和超氧化物歧化酶(superoxide dismutase, SOD)活性,增强抗氧化,改善肝细胞脂肪变性[35]。离肝石六八味散上调NAFLD大鼠和脂肪变性HepG2细胞中PPARα、PPARβ和核因子κB抑制因子(recombinant inhibitory subunit of NF kappa B alpha, IκBα)表達,下调一氧化氮合成酶(nitric oxide synthase, iNOS)表达,促进脂肪酸氧化,缓解氧化应激,改善肝细胞脂肪性变和损伤[36]。
中药单体灯盏花乙素可调节 PPARγ/PGC-1α-NRF2信号通路,从而抗氧化改善肝损伤[37]。枸杞多糖联合有氧运动能够降低NAFLD大鼠脂代谢紊乱的程度,降低肝脏氧化应激的水平,这一过程可能与PGC-1α和Ⅲ型纤连蛋白域蛋白5(fibronectin type Ⅲ domain containing protein 5, FNDC5)mRNA表达上调有关[38]。槲皮素通过诱导PGC-1α表达,激活脂肪酸β氧化,减轻氧化应激以及抑制炎性反应,从而改善肝细胞损伤[39]。胡柚皮黄酮可调节SIRT1/PGC-1α信号通路,增强肝脏抗氧化能力,减少脂肪酸代谢过程中ROS的损伤,从而防治NASH的发生发展[40]。Acerola多糖激活NAFLD小鼠NRF2,抑制氧化应激,激活PGC-1α,降低UCP2表达,从而改善NAFLD[41]。
3 结语
NAFLD并非一种独立的疾病,常常与代谢紊乱并存,合并肥胖、糖尿病、冠心病等。PGC-1α是线粒体生物合成的关键调节因子,研究证实PGC-1α通过IR、脂质堆积、氧化应激、炎症反应等途径参与了NAFLD的发生发展,在NAFLD中发挥着保护作用。
中药防治NAFLD疗效显著,然而作用机制尚未完全阐明。近期研究显示,中药在靶向调控PGC-1α方面发挥重要作用,改善NAFLD的效果显著。然而基础研究不深入、药物作用机制不清等问题一直困扰着中医药的发展。(1)中药复方或单体作用于PGC-1α及其信号通路的具体靶点仍未系统阐明。当前研究集中在中医药可调节NAFLD肝细胞PGC-1α表达,以及同时存在IR、糖脂代谢、炎症反应、氧化应激相关指标或基因表达变化,较少系统研究 PGC-1α信号的具体环节,限制了中医药作为精准医疗的应用。表观遗传学、代谢组学等新兴组学有望为筛选、发现中医药的可能作用靶点带来曙光。(2)PGC-1α信号通路目前没有研发出临床相关的诊断指标,临床报道罕见;中药调控PGC-1α作用于NAFLD的相关性研究大多为基础研究,其相关性和作用机制的阐明急需临床研究证实。(3)针灸治疗肥胖、NAFLD和心血管等疾病具有临床优势,然而,基于PGC-1α信号的治疗机制尚未得到很好阐明。综上所述,进一步深入探究PGC-1α与NAFLD的关联性,以及靶向调控机制,有望为中医药防治NAFLD带来新的契机。
参考文献
[1] JIE, LI, MD, et al. Prevalence, incidence, and outcome of non-alcoholic fatty liver disease in Asia, 1999—2019: A systematic review and meta-analysis[J]. The Lancet Gastroenterology & Hepatology, 2019, 4(5): 389-398.
[2] PUIGSERVER P, WU Z, PARK C W, et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis[J]. Cell, 1998, 92(6): 829-839.
[3] WU D, YANG Y, HOU Y R, et al. Increased mitochondrial fission drives the reprogramming of fatty acid metabolism in hepatocellular carcinoma cells through suppression of Sirtuin 1[J]. Cancer Communications, 2022, 42(1): 37-55.
[4] CHEN CY, LI Y, ZENG N, et al. Inhibition of estrogen-related receptor α blocks liver steatosis and steatohepatitis and attenuates triglyceride biosynthesis[J]. The American Journal of Pathology, 2021, 191(7): 1240-1254.
[5] KNEBEL B, G?DDEKE S, HARTWIG S, et al. Alteration of liver peroxisomal and mitochondrial functionality in the NZO mouse model of metabolic syndrome[J]. Proteomics Clinical Applications, 2018, 12(1): 1700028.
[6] SKAT-R?覫RDAM J, H?覫JLAND IPSEN D, LYKKESFELDT J, et al. A role of peroxisome proliferator-activated receptor γ in non-alcoholic fatty liver disease[J]. Basic & Clinical Pharmacology & Toxicology, 2019, 124(5): 528-537.
[7] LEE Y H, JANG H J, KIM S, et al. Hepatic MIR20B promotes nonalcoholic fatty liver disease by suppressing PPARA[J]. eLife, 2021, 10: e70472.
[8] CHEN J D, CHEN J X, FU H R, et al. Hypoxia exacerbates nonalcoholic fatty liver disease via the HIF-2α/PPARα pathway[J]. American Journal of Physiology Endocrinology and Metabolism, 2019, 317(4): E710-E722.
[9] GAO H Q, ZHOU L, ZHONG Y M, et al. Kindlin-2 haploinsufficiency protects against fatty liver by targeting Foxo1 in mice[J]. Nature Communications, 2022, 13(1): 1025.
[10] SAREMI L, LOTF?PANAH S, MOHAMMADI M, et al. Association between PPARGC1A single nucleotide polymorphisms and increased risk of nonalcoholic fatty liver disease among Iranian patients with type 2 diabetes mellitus[J]. Turkish Journal of Medical Sciences, 2019, 49(4): 1089-1094.
[11] YONEDA M, HOTTA K, NOZAKI Y, et al. Association between PPARGC1A polymorphisms and the occurrence of nonalcoholic fatty liver disease (NAFLD)[J]. BMC Gastroenterol, 2008, 8: 27.
[12] 廖小妹, 陈美丽, 王玺舜, 等. 加味消脂利肝方治疗非酒精性脂肪肝的网络药理学研究及实验验证[J]. 湖南中医药大学学报, 2023, 43(2): 317-326.
[13] 黄 明, 张嘉骏, 施旭光, 等. 虎金方對小鼠非酒精性脂肪肝的作用及对SIRT1/PPARα通路的影响[J]. 中药新药与临床药理, 2020, 31(4): 419-424.
[14] TIAN DM, ZHONG XY, FU LY, et al. Therapeutic effect and mechanism of polysaccharides from Anoectochilus Roxburghii (Wall.) Lindl. in diet-induced obesity[J]. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 2022, 99: 154031.
[15] CHEN X Y, CAI C Z, YU M L, et al. LB100 ameliorates nonalcoholic fatty liver disease via the AMPK/Sirt1 pathway[J]. World Journal of Gastroenterology, 2019, 25(45): 6607-6618.
[16] 钱秋海, 钱卫斌, 蔡欣蕊, 等. 糖肝康对糖尿病脂肪肝大鼠肝脏PGC-1α、PPARα表达的影响[J]. 中华中医药杂志, 2015, 30(7): 2525-2528.
[17] A P F, A Y S, A X G, et al. San-Huang-Tang protects obesity/diabetes induced NAFLD by upregulating PGC-1α/PEPCK signaling in obese and galr1 knockout mice models[J]. Journal of Ethnopharmacology, 2020, 250: 112483.
[18] SHU Y Y, NENG J Z, XUE J L, et al. Ping-Tang Recipe improves insulin resistance and attenuates hepatic steatosis in high-fat diet-induced obese rats[J]. Chinese Journal of Integrative Medicine, 2012, 18(4): 262-268.
[19] 王梦瑶, 高 改, 李二稳, 等. 基于LKB1/AMPK/PGC-1α的泽泻汤改善非酒精性脂肪肝作用机制研究[J]. 中国中药杂志, 2022, 47(2): 453-460.
[20] 胡媛媛, 姜广建, 祝嘉健, 等. 藜麦复合物调控SIRT1/PGC-1α通路改善糖尿病小鼠肝细胞损伤[J]. 湖南中医药大学学报, 2021, 41(12): 1863-1868.
[21] TIMMERS S, KONINGS E, BILET L, et al. Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans[J]. Cell Meta?鄄bolism, 2011, 14(5): 612-622.
[22] 邢菊玲, 刘 芬, 冯 萌, 等. 桑根酮C对游离脂肪酸诱导人肝癌HepG2细胞脂质蓄积的改善作用[J]. 中国药房, 2021, 32(15): 1868-1873.
[23] 宋正伟, 夏 平, 黎 黎, 等. 淫羊藿苷介导AMPK/PGC-1α/GLUT4通路对高脂诱导的大鼠非酒精性脂肪肝损伤和脂代谢的调节作用[J]. 临床和实验医学杂志, 2019, 18(16): 1702-1707.
[24] YUAN C L, JIN Y Q, YAO L, et al. Rhodiola crenulata root extract ameliorates fructose-induced hepatic steatosis in rats: Association with activating autophagy[J]. Biomedecine & Pharmacotherapie, 2020, 125: 109836.
[25] HAN Y M, LEE Y J, JANG Y N, et al. Aspirin improves nonalcoholic fatty liver disease and atherosclerosis through regulation of the PPARδ-AMPK-PGC-1αPathway in dyslipidemic conditions[J]. BioMed Research International, 2020, 2020: 1-17.
[26] SUN J P, SHI L, WANG F, et al. Modified Linggui Zhugan Decoction ameliorates glycolipid metabolism and inflammation via PI3K-Akt/mTOR-S6K1/AMPK-PGC-1 α signaling pathways in obese type 2 diabetic rats[J]. Chinese Journal of Integrative Medicine, 2022, 28(1): 52-59.
[27] GUO Y, LI JUN-XIANG, MAO TANG-YOU, et al. Targeting Sirt1 in a rat model of high-fat diet-induced non-alcoholic fatty liver disease: Comparison of gegen qinlian decoction and resveratrol[J]. Experimental and Therapeutic Medicine, 2017: 4279-4287.
[28] 何蓓暉, 陆永娟, 李宝华, 等. 山楂叶总黄酮对FXR及其相关基因调控治疗NAFLD模型大鼠的机制研究[J]. 中华中医药杂志, 2017, 32(4): 1807-1810.
[29] LI D D, MA J M, LI M J, et al. Supplementation of Lycium barbarum polysaccharide combined with aerobic exercise ameliorates high-fat-induced nonalcoholic steatohepatitis via AMPK/PPARα/PGC-1α pathway[J]. Nutrients, 2022, 14(15): 3247.
[30] WANG L, WANG X H, KONG L N, et al. Activation of PGC-1α via isoliquiritigenin-induced downregulation of miR-138-5p alleviates nonalcoholic fatty liver disease[J]. Phytotherapy Research, 2022, 36(2): 899-913.
[31] 周永静, 王肖辉, 李如意, 等. 大叶茜草素对高脂诱导小鼠非酒精性脂肪肝的影响[J]. 世界中西医结合杂志, 2022, 17(1): 86-91, 110.
[32] 柯秀慧, 董瑞娟, 葛东宇, 等. 慈姑多糖对非酒精性脂肪肝小鼠糖脂代谢的作用及机制[J]. 北京中医药, 2019, 38(7): 644-649, 封3.
[33] WANG S W, SHENG H, BAI Y F, et al. Neohesperidin enhances PGC-1α-mediated mitochondrial biogenesis and alleviates hepatic steatosis in high fat diet fed mice[J]. Nutrition & Diabetes, 2020, 10: 27.
[34] UPADHYAY K K, JADEJA R N, VYAS H S, et al. Carbon monoxide releasing molecule-A1 improves nonalcoholic steatohepatitis via Nrf2 activation mediated improvement in oxidative stress and mitochondrial function[J]. Redox Biology, 2020, 28: 101314.
[35] YIN J J, LUO Y Q, DENG H L, et al. Hugan Qingzhi medication ameliorates hepatic steatosis by activating AMPK and PPARα pathways in L02 cells and HepG2 cells[J]. Journal of Ethnopharmacology, 2014, 154(1): 229-239.
[36] JIANG Y Z, CHEN L, WANG H, et al. Li-Gan-Shi-Liu-Ba-Wei-San improves non-alcoholic fatty liver disease through enhancing lipid oxidation and alleviating oxidation stress[J]. Journal of Ethnopharmacology, 2015, 176: 499-507.
[37] ZHANG X X, JI R P, SUN H J, et al. Scutellarin ameliorates nonalcoholic fatty liver disease through the PPARγ/PGC-1α-Nrf2 pathway[J]. Free Radical Research, 2018, 52(2): 198-211.
[38] 郭怡瓊, 吴 琼, 吴雅婷, 等. 枸杞多糖和有氧运动对大鼠非酒精性脂肪肝的干预效果及其机制研究[J]. 上海交通大学学报(医学版), 2020, 40(1): 30-36.
[39] 李丽红, 李 欣, 李 硕, 等. PGC-1α在槲皮素通过雌激素样作用减轻FFA诱导肝细胞脂肪变性中的机制[J]. 中国比较医学杂志, 2022, 32(9): 47-54.
[40] 陈芝芸, 李剑霜, 蒋剑平, 等. 胡柚皮黄酮对非酒精性脂肪性肝炎小鼠肝组织SIRT1/PGC-1α通路的影响[J]. 中国中药杂志, 2014, 39(1): 100-105.
[41] HU Y Y, YIN F W, LIU Z Y, et al. Acerola polysaccharides ameliorate high-fat diet-induced non-alcoholic fatty liver disease through reduction of lipogenesis and improvement of mitochondrial functions in mice[J]. Food & Function, 2020, 11(1): 1037-1048.
(本文编辑 匡静之)