APP下载

长期覆膜和施用有机肥对黄土高原春玉米产量和品质的效应

2023-05-12尉亚囡薄其飞唐安高嘉瑞马田尉熊熊张方方周祥利岳善超李世清

中国农业科学 2023年9期
关键词:吐丝施氮氮素

尉亚囡, 薄其飞, 唐安, 高嘉瑞, 马田, 尉熊熊, 张方方, 周祥利,岳善超, 2, 李世清, 2

长期覆膜和施用有机肥对黄土高原春玉米产量和品质的效应

1西北农林科技大学资源环境学院,陕西杨凌 712100;2西北农林科技大学黄土高原土壤侵蚀与旱地农业国家重点实验室,陕西杨凌 712100;3西北农林科技大学生命科学学院,陕西杨凌 712100

【目的】通过田间定位试验探究长期覆膜和施用有机肥对春玉米产量、品质、干物质累积和氮素吸收的影响。【方法】长期定位试验在中国科学院水利部水土保持研究所长武黄土高原农业生态试验站开展。试验设4个处理:覆膜,不施氮,作为对照(F);不覆膜,施氮225 kg·hm-2(N);覆膜,施氮225 kg·hm-2(FN);覆膜,施氮225 kg·hm-2,并施有机肥(FSN)。2020和2021年在玉米吐丝期(R1)和收获期(R6)分别采集植株样品,测定植株生物量,并按器官分类测定不同部位的氮含量,收获期测定玉米籽粒粗蛋白、粗脂肪和粗淀粉含量。【结果】(1)施氮条件下覆膜显著提高春玉米产量,覆膜条件下增施有机肥能使产量进一步提高。不覆膜施氮处理与对照相比增产106%—176%,覆膜处理在此基础上产量增加21%—75%,在覆膜条件下增施有机肥后进一步增产6%—8%。(2)施氮条件下覆膜显著提高春玉米干物质累积和氮素吸收,施用有机肥后二者进一步得到提高。(3)不覆膜施氮处理的粗蛋白含量为8.67%—8.94%,施氮条件下覆膜使粗蛋白含量提高至8.99%—9.34%,增施有机肥后粗蛋白含量没有进一步提高。3个处理间粗脂肪和粗淀粉含量没有显著差异。【结论】覆膜(FN)可以显著提高春玉米产量和粗蛋白含量,覆膜条件下增施有机肥(FSN)在维持籽粒粗蛋白含量的基础上进一步增加产量,实现春玉米的高产优质。

春玉米;覆膜;有机肥;产量;粗蛋白;粗脂肪;粗淀粉

0 引言

【研究意义】玉米是重要的粮食、饲料和经济兼用作物,在我国主要粮食作物中播种面积最大,总产量最高[1]。2020年全国玉米平均产量6.3 t·hm-2,仅实现产量潜力的45%左右,还存在极大的增产空间[2-4]。从营养的角度看,玉米是淀粉、蛋白质和脂质的良好来源,到2050年全球对于作物蛋白质的需求将增加110%左右[5]。除了食用价值,玉米淀粉和脂肪在工业和生物等领域也具有非常广泛的用途[6],这意味着玉米的高品质与高产同样重要。【前人研究进展】前人研究表明,玉米的产量和品质均受遗传特性、栽培措施、生态环境和土壤养分状况等的影响[7-10]。遗传特性对于玉米产量产生的影响主要表现在不同品种间的产量差异,自20世纪中期至今,我国玉米产量持续稳定增长离不开优良品种的不断更新[11-12]。但事实上,在影响产量增加的因素中,遗传因素只占比13%,农艺管理措施却占比高达39%,是遗传因素占比的3倍,玉米杂交种的产量和品质在空间上没有显著变化[13],这意味着未来作物产量的增长将越来越依赖农艺措施的改进[14]。因地制宜的栽培措施更有利于作物基因型的表达[15],通过覆盖、起垄等措施改善土壤水热状况,在我国西北地区使作物最高增产84.7%[16]。合理施用氮肥不仅可以提高生育期内氮素累积和干物质累积进而达到增产效果[17-20],有机无机肥配施也可以在保持玉米高产的同时改善土壤肥力[21-22]。但随着玉米单产的不断提高,籽粒蛋白质浓度等品质却有所下降[3]。因此,在保障玉米增产的同时确保品质的提高具有重要意义。目前针对玉米籽粒营养品质的研究多集中在品种与施氮量方面,对于长期覆膜、施用有机肥等措施能否在稳定高产的条件下保持籽粒高品质尚不明确。【本研究切入点】黄土高原地区是我国典型旱作区,玉米是当地主要粮食作物,近年来覆膜作为增产的关键技术在该区域得到大面积推广应用,但对于覆膜、有机肥施用的研究主要集中在籽粒产量和农田土壤固碳方面,明确长期覆膜和施用有机肥在增产的同时能否保持玉米籽粒高品质具有重要意义。【拟解决的关键问题】本研究基于2009年开始的定位试验,研究长期地膜覆盖和有机肥施用对玉米产量和籽粒品质的影响,以期为黄土高原旱作玉米持续优质高产提供依据。

1 材料与方法

1.1 试验地概况

田间定位试验在中国科学院水利部水土保持研究所长武黄土高原农业生态试验站进行。该站位于陕西省咸阳市长武县洪家镇王东村(35°12′N,107°40′E,海拔1 220 m),属典型的旱作农业区,地貌为高原沟壑,地带性土壤为黑垆土。试验区气候属暖温带半湿润大陆性季风气候,年均降水578 mm(其中73%分布于5—9月,与春玉米生长季重合);年均气温9.7℃(5—9月平均温度为19℃),无霜期171 d。长期试验从2009年开始,种植作物为春玉米,单作,每年4月底播种,9月底收获,至本研究样品采集时,已经连续11年。试验开始前0—20 cm土层理化性质见表1。2020和2021年春玉米生育期日均气温和降雨情况如图1所示,两年春玉米生育期内降水量分别为413和380 mm。

表1 试验前土壤基本理化性质

图1 2020和2021年试验区降雨量和气温

1.2 试验设计

试验采用随机区组设计,共设置4个处理,即覆膜,不施氮,作为对照(F);不覆膜,施氮225 kg·hm-2(N);覆膜,施氮225 kg·hm-2(FN);覆膜,施氮225 kg·hm-2并施入有机肥(FSN)。小区面积为56 m2(7 m×8 m),白色地膜全膜覆盖模式,玉米品种为先玉335。

氮肥分3次施入,基肥在播种前施入,拔节期和吐丝期进行追肥,3次施肥按照4﹕3﹕3的比例施用。施入的氮肥为含氮量46%的尿素。磷肥、钾肥和有机肥在玉米播种前一次施入,施入量为40 kg P2O5·hm-2、80 kg K2O·hm-2,磷肥品种为过磷酸钙(含P2O512%),钾肥品种为硫酸钾(含K2O 45%),有机肥为自然堆腐牛粪,施用量为30 t·hm-2。

2020年4月24日播种,9月24日收获计产;2021年4月30日播种,9月22日收获计产。分别在玉米吐丝期(R1)及收获期(R6)采集植株样品。R1期时将植株按器官分为茎、叶及穗,R6期将植株按器官分为茎、叶、籽粒、穗轴及苞叶。所有植物样品在105℃下杀青30 min后,在80℃下烘至恒重,称干重后,用粉碎机粉碎植物样品,测定植株全氮含量。收获时每个小区选取8 m2作为测产区,计算籽粒产量(按含水量15.5%折算)。采用DA-7250近红外谷物分析仪测定玉米籽粒粗蛋白、粗脂肪和粗淀粉含量。

1.3 计算公式

氮素累积量=干物质累积量×氮素含量;

吐丝后氮素累积量=成熟期氮素累积量-吐丝期氮素累积量;

收获指数(HI)=籽粒产量/收获期干物质累积量;

氮素收获指数(NHI)=收获期籽粒氮素累积量/收获期地上部氮素累积量;

粗蛋白产量=籽粒产量×粗蛋白含量;

粗脂肪产量=籽粒产量×粗脂肪含量;

粗淀粉产量=籽粒产量×粗淀粉含量。

1.4 数据处理与分析

采用 Microsoft Excel 2019 软件对数据进行统计,采用 SPSS 18.0 进行方差齐性检验,方差分析和相关性分析,采用Origin2021b作图。

2 结果

2.1 春玉米籽粒产量和各项品质指标

施氮和覆膜显著影响春玉米产量(表2)。F处理产量最低,仅为4.24—4.94 t·hm-2,不覆膜施氮处理(N)的产量为10.24—11.74 t·hm-2,和对照(F)相比增产106%—176%。覆膜条件下(FN),产量提高至14.19—17.84 t·hm-2,和不覆膜(N)相比增加了21%—74%。在覆膜条件下增施有机肥后产量进一步提高至15.04—19.34 t·hm-2,进一步增产6%—8%。

玉米粗蛋白、粗脂肪和粗淀粉产量的变化趋势和籽粒产量的变化趋势基本一致。两年间的粗蛋白、粗脂肪和粗淀粉产量均为FSN>FN>N>F处理。对于粗蛋白产量,相比于不施氮肥处理,不覆膜施氮处理增加192%—264%,与不覆膜相比覆膜增加26%—81%,在覆膜条件下增施有机肥后进一步增加4%—12%。各处理粗蛋白产量的增加比例均高于籽粒产量的增加比例。对于粗脂肪产量,相比于不施氮肥处理,不覆膜施氮处理增加95%—135%,增加比例低于籽粒产量的增加比例;和不覆膜相比覆膜增加26%—61%,在覆膜条件下增施有机肥后进一步增加8%—17%。对于粗淀粉含量的增加比例,和籽粒产量的增加比例基本一致。

表2 春玉米籽粒产量与粗蛋白、粗脂肪和粗淀粉产量

F:覆膜、不施氮肥(对照);N:不覆膜、施氮225 kg·hm-2;FN:覆膜、施氮225 kg·hm-2;FSN:覆膜、施氮225 kg·hm-2,并施入有机肥。每年同列数据后不同小写字母表示处理间差异显著(<0.05)。下同

F: Film mulching no nitrogen fertilizer treatment (control); N: No film mulching, nitrogen 225 kg·hm-2; FN: Film mulching, nitrogen 225 kg·hm-2; FSN: Film mulching, nitrogen 225 kg·hm-2, and apply organic fertilizer. Values followed by different lowercase letters in the same column each year are significantly different between the treatments at the 0.05 level. The same as below

2.2 春玉米干物质累积及收获指数

施氮和覆膜都显著提高了春玉米总干物质累积量(图2),两年间总干物质累积量大小均依次为FSN>FN>N>F处理。和不施氮肥处理,不覆膜施氮处理总干物质累积量增加84%—171%,与不覆膜相比,覆膜处理总干物质累积量增加16%—78%,在覆膜条件下增施有机肥后总干物质累积量进一步增加9%—10%。对于吐丝前干物质累积量,与不覆膜相比,覆膜处理增加32%—116%,在覆膜条件下增施有机肥后进一步增加20%—42%。而对于吐丝后干物质累积量,和不覆膜处理相比,覆膜处理增加7%—59%,在覆膜条件下增施有机肥后没有进一步增加。不覆膜施氮处理、覆膜施氮处理和覆膜条件下增施有机肥处理的HI无显著差异,均在0.50—0.56之间。

2.3 春玉米氮素累积和氮收获指数

施氮和覆膜都显著提高了春玉米总吸氮量(图3),两年间总吸氮量大小均依次为FSN>FN>N>F处理。和不施氮肥处理相比,不覆膜施氮处理总吸氮量增加255%—284%,与不覆膜施氮处理相比,覆膜处理总吸氮量增加24%—80%,在覆膜条件下增施有机肥后总吸氮量进一步增加15%—22%。对于吐丝前吸氮量,和不覆膜处理相比,覆膜处理增加33%—87%,在覆膜条件下增施有机肥后吐丝前吸氮量进一步增加42%—53%。而对于吐丝后吸氮量,和不覆膜处理相比,覆膜处理增加12%—72%,在覆膜条件下增施有机肥后没有进一步增加。不覆膜施氮处理、覆膜施氮处理和覆膜条件下增施有机肥处理的NHI无显著差异,均在0.69—0.76之间。

2.4 玉米籽粒粗蛋白、粗脂肪和粗淀粉含量

图4显示,施用氮肥显著提高了春玉米籽粒粗蛋白含量。F处理的粗蛋白含量最低,仅为6.15%—6.80%;N处理为8.67%—8.94%。覆膜条件下(FN),粗蛋白含量提高至8.99%—9.34%,而在覆膜条件下增施有机肥后,粗蛋白含量没有进一步提高。对于粗脂肪含量,F处理最高,其余处理间无显著差异,含量范围为3.53%—5.05%。施氮及覆膜对于籽粒粗淀粉含量没有显著影响,两年籽粒粗淀粉含量都稳定在75%左右。

双变量Pearson检验结果(表3)显示,粗蛋白含量与吐丝前吸氮量呈显著正相关关系(=0.807,=0.015<0.05),与吐丝后吸氮量也呈显著正相关关系(=0.736,=0.037<0.05),与总吸氮量呈极显著正相关关系(=0.894,=0.003<0.01),而粗脂肪和粗淀粉含量与吸氮量不存在相关关系。

柱上不同字母表示在不同处理之间差异显著(P<0.05),图a、b不同大写字母表示生育时期总干物质累积之间差异显著(P<0.05),不同小写字母分别表示吐丝前、吐丝后干物质累积差异显著(P<0.05)。下同

表3 春玉米籽粒品质与氮素吸收的相关性分析

*.<0.05, **.<0.01

图3 2020—2021年各处理春玉米氮素吸收量(吐丝前和吐丝后)和氮收获指数

3 讨论

3.1 长期覆膜和施用有机肥对旱作春玉米籽粒产量的影响

相比于不覆膜施氮处理,在施氮条件下覆膜显著提高了春玉米籽粒产量。在本研究中,施氮和覆膜同时实现了高产量和高品质。两年中,FN和FSN实现的籽粒产量分别为14.19、17.84 t·hm-2和15.04、19.34 t·hm-2,分别达到了西北地区产量潜力的71%、90%和76%和97%,显著高于全国平均产量,这一产量水平略高于美国玉米带和南欧的产量水平[23]。水分是干旱地区作物生长的关键因素,缺乏水分会导致作物氮素吸收、转移和运输受限。地膜覆盖可以显著增加土壤贮水量[24],保证氮肥在土壤中的转移、吸收和植物体内的代谢,充分发挥肥效[25-27]。同时地膜覆盖的增温保墒作用也促进了作物根系生长发育,有利于根系对水分和养分的吸收利用[28],进而提高作物干物质累积和吸氮量,为籽粒高产奠定物质基础。FN和FSN的高产主要来源于其高干物质累积和高氮素吸收,这一结果与前人研究一致[29-31]。但高产玉米普遍在吐丝后具有更高的干物质累积[30-31],而2020年,FSN处理吐丝后干物质累积(12.1 t·hm-2)略低于吐丝前干物质累积(13.2 t·hm-2),这可能是由于2020年生育前期降雨较多,冠层结构较差,冠层内透光率低[32];生育后期降雨较少,温度较低,不利于光合速率、SPAD和LAI等有利于改善干物质累积和氮素吸收的因素[33]维持在较高水平,导致吐丝后干物质累积较低。生育后期养分的持续供应是春玉米高产的重要因素[34]。有机肥中的氮素缓速释放,使土壤具有更加持久的供氮能力,在作物生育后期能够获得更充足的氮素供应。同时有机肥能够提高土壤中微生物的活性和数量,使更多无机氮被微生物快速固定,提高氮素利用效率。施用有机肥通过增加农田土壤团聚体稳定性进而提高土壤固碳速率,有利于土壤中有机碳的累积,提高土壤肥力[35],弥补了覆膜可能导致的土壤质量下降问题[36],因此获得了更高的产量。

图4 2020、2021年各处理春玉米籽粒粗蛋白、粗脂肪、粗淀粉含量

3.2 长期覆膜和施用有机肥对旱作春玉米籽粒品质的影响

FN和FSN处理两年平均籽粒粗蛋白含量分别达到9.16%和9.23%,显著高于F(6.48%)和N(8.80%)处理,并且高于1991—2011年全球玉米蛋白质含量的统计平均值(7.5%)[3],说明适量施氮条件下覆膜会在提高产量的同时提高籽粒粗蛋白含量,不会引起产量提高导致的“稀释效应”[37],这与前人研究结果一致[38-40]。籽粒粗蛋白的含量取决于植物体的吸氮量,覆膜条件下土壤水分良好,有利于玉米生育后期根系发育和保持活力,促进根系对氮素的吸收[41]。有机肥施用保证了吐丝后较高的氮吸收,改善了玉米在灌浆阶段碳和氮代谢之间的不协调,也满足了籽粒中蛋白质合成的氮素需求,最终提高了玉米籽粒粗蛋白含量[42]。其次,覆膜有效促进了花前吸收的氮素向籽粒转移[18],使得最终籽粒粗蛋白含量增加。

有研究结果表明,玉米籽粒含油量随着施氮量的降低而降低[43],更多研究结果表明,玉米籽粒含油量的高低与氮肥施用并没有显著相关关系,而是由催化油合成的最后一步的酶二酰基甘油酰基转移酶决定[44-45]。在本研究中,除对照外,地膜覆盖和有机肥施用并没有影响籽粒粗脂肪和粗淀粉的含量。

4 结论

在黄土高原旱作区,覆膜可以提高春玉米氮素吸收和干物质累积,在增加籽粒产量的同时也显著提高籽粒粗蛋白含量。覆膜条件下配施有机肥更有利于提高春玉米产量,避免因产量提高而导致籽粒品质的“稀释效应”,实现春玉米的高产优质。

[1] 国家统计局. 中国统计年鉴2021. 北京: 中国统计出版社, 2021.

National Bureau of Statistics. China Statistical Yearbook 2021. Beijing: China Statistics Press, 2021. (in Chinese)

[2] CHEN X P, CUI Z L, FAN M S, VITOUSEK P, ZHAO M, MA W Q, WANG Z L, ZHANG W J, YAN X Y, YANG J C, DENG X P, GAO Q, ZHANG Q, GUO S W, REN J, LI S Q, YE Y L, WANG Z H, HUANG J L, TANG Q Y, SUN Y X, PENG X L, ZHANG J W, HE M R, ZHU Y J, XUE J Q, WANG G L, WU L, AN N, WU L Q, MA L, ZHANG W F, ZHANG F S. Producing more grain with lower environmental costs. Nature, 2014, 514(7523): 486-489.

[3] CIAMPITTI I A, VYN T J. Physiological perspectives of changes over time in maize yield dependency on nitrogen uptake and associated nitrogen efficiencies: A review. Field Crops Research, 2012, 133: 48-67.

[4] LIU B H, CHEN X P, MENG Q F, YANG H S, VAN WART J. Estimating maize yield potential and yield gap with agro-climatic zones in China-distinguish irrigated and rainfed conditions. Agricultural and Forest Meteorology, 2017, 239: 108-117.

[5] TILMAN D, BALZER C, HILL J, BEFORT B L. Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(50): 20260-20264.

[5] TILMAN D, BALZER C, HILL J, BEFORT B L. Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(50): 20260-20264.

[6] TROYER A F. Adaptedness and heterosis in corn and mule hybrids. Crop Science, 2006, 46(2): 528-543.

[7] THOMPSON L M. Climatic change, weather variability, and corn Production1. Agronomy Journal, 1986, 78(4): 649-653.

[8] GRAYBILL J S, COX W J, OTIS D J. Yield and quality of forage maize as influenced by hybrid, planting date, and plant density. Agronomy Journal, 1991, 83(3): 559-564.

[9] WEBER V S, ARAUS J L, CAIRNS J E, SANCHEZ C, MELCHINGER A E, ORSINI E. Prediction of grain yield using reflectance spectra of canopy and leaves in maize plants grown under different water regimes. Field Crops Research, 2012, 128: 82-90.

[10] 陈先敏, 梁效贵, 赵雪, 高震, 吴巩, 申思, 林珊, 周丽丽, 周顺利. 历年国审玉米品种产量和品质性状变化趋势分析. 中国农业科学, 2018, 51(21): 4020-4029. doi: 10.3864/j.issn.0578-1752.2018.21.002.

CHEN X M, LIANG X G, ZHAO X, GAO Z, WU G, SHEN S, LIN S, ZHOU L L, ZHOU S L. Analysis on the trends of yield and quality related traits for maize hybrids released in China over the past years. Scientia Agricultura Sinica, 2018, 51(21): 4020-4029. doi: 10.3864/j.issn.0578-1752.2018.21.002. (in Chinese)

[11] 张世煌, 田清震, 李新海, 李明顺, 谢传晓. 玉米种质改良与相关理论研究进展. 玉米科学, 2006, 14(1): 1-6.

ZHANG S H, TIAN Q Z, LI X H, LI M S, XIE C X. Advancement of maize germplasm improvement and relevant research. Journal of Maize Sciences, 2006, 14(1): 1-6. (in Chinese)

[12] 李少昆, 赵久然, 董树亭, 赵明, 李潮海, 崔彦宏, 刘永红, 高聚林, 薛吉全, 王立春, 王璞, 陆卫平, 王俊河, 杨祁峰, 王子明. 中国玉米栽培研究进展与展望. 中国农业科学, 2017, 50(11): 1941-1959. doi: 10.3864/j.issn.0578-1752.2017.11.001.

LI S K, ZHAO J R, DONG S T, ZHAO M, LI C H, CUI Y H, LIU Y H, GAO J L, XUE J Q, WANG L C, WANG P, LU W P, WANG J H, YANG Q F, WANG Z M. Advances and prospects of maize cultivation in China. Scientia Agricultura Sinica, 2017, 50(11): 1941-1959. doi: 10.3864/j.issn.0578-1752.2017.11.001. (in Chinese)

[13] MIAO Y X, MULLA D J, ROBERT P C, HERNANDEZ J A. Within-field variation in corn yield and grain quality responses to nitrogen fertilization and hybrid selection. Agronomy Journal, 2006, 98(1): 129-140.

[14] RIZZO G, MONZON J P, TENORIO F A, HOWARD R, CASSMAN K G, GRASSINI P. Climate and agronomy, not genetics, underpin recent maize yield gains in favorable environments. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(4): e2113629119.

[15] 郑伟. 小麦品质性状及其调优技术研究进展. 耕作与栽培, 2001(1): 10-12.

ZHENG W. Research progress on wheat quality traits and their optimization techniques. Tillage and Cultivation, 2001(1): 10-12. (in Chinese)

[16] SUN D B, LI H G, WANG E L, HE W Q, HAO W P, YAN C R, LI Y Z, MEI X R, ZHANG Y Q, SUN Z X, JIA Z K, ZHOU H P, FAN T L, ZHANG X C, LIU Q, WANG F J, ZHANG C C, SHEN J B, WANG Q S, ZHANG F S. An overview of the use of plastic-film mulching in China to increase crop yield and water-use efficiency. National Science Review, 2020, 7(10): 1523-1526.

[17] 朱兆良, 金继运. 保障我国粮食安全的肥料问题. 植物营养与肥料学报, 2013, 19(2): 259-273.

ZHU Z L, JIN J Y. Fertilizer use and food security in China. Plant Nutrition and Fertilizer Science, 2013, 19(2): 259-273. (in Chinese)

[18] 王泽林, 白炬, 李阳, 岳善超, 李世清. 氮肥施用和地膜覆盖对旱作春玉米氮素吸收及分配的影响. 植物营养与肥料学报, 2019, 25(1): 74-84.

WANG Z L, BAI J, LI Y, YUE S C, LI S Q. Effects of nitrogen application and plastic film mulching on nitrogen uptake and allocation in dry-land spring maize. Journal of Plant Nutrition and Fertilizers, 2019, 25(1): 74-84. (in Chinese)

[19] LIU J L, BU L D, ZHU L, LUO S S, CHEN X P, LI S Q. Optimizing plant density and plastic film mulch to increase maize productivity and water-use efficiency in semiarid areas. Agronomy Journal, 2014, 106(4): 1138-1146.

[20] 张建军, 党翼, 赵刚, 王磊, 樊廷录, 李尚中. 覆膜时期和施氮量对陇东旱塬玉米产量和水氮利用效率的影响. 中国农业科学, 2022, 55(3): 479-490. doi: 10.3864/j.issn.0578-1752.2022.03.005.

ZHANG J J, DANG Y, ZHAO G, WANG L, FAN T L, LI S Z. Influences of mulching periods and nitrogen application rates on maize yield as well as water and nitrogen use efficiencies in Loess Plateau of eastern Gansu Province. Scientia Agricultura Sinica, 2022, 55(3): 479-490. doi: 10.3864/j.issn.0578-1752.2022.03.005. (in Chinese)

[21] LI H, FENG W T, HE X H, ZHU P, GAO H J, SUN N, XU M G. Chemical fertilizers could be completely replaced by manure to maintain high maize yield and soil organic carbon (SOC) when SOC reaches a threshold in the Northeast China Plain. Journal of Integrative Agriculture, 2017, 16(4): 937-946.

[22] HARRIS J. Soil microbial communities and restoration ecology: Facilitators or followers? Science, 2009, 325(5940): 573-574.

[23] GRASSINI P, ESKRIDGE K M, CASSMAN K G. Distinguishing between yield advances and yield plateaus in historical crop production trends. Nature Communications, 2013, 4(1): 1-11.

[24] 刘建亮. 旱地高产高效玉米栽培体系水氮管理及调控[D]. 杨凌: 西北农林科技大学, 2014.

LIU J L. Management and regulation of water and nitrogen for high-yield and high-efficiency dryland maize system[D]. Yangling: Northwest A & F University, 2014. (in Chinese)

[25] 吕丽华, 董志强, 张经廷, 张丽华, 梁双波, 贾秀领, 姚海坡. 水氮对冬小麦-夏玉米产量及氮利用效应研究. 中国农业科学, 2014, 47(19): 3839-3849. doi: 10.3864/j.issn.0578-1752.2014.19.012.

LÜ L H, DONG Z Q, ZHANG J T, ZHANG L H, LIANG S B, JIA X L, YAO H P. Effect of water and nitrogen on yield and nitrogen utilization of winter wheat and summer maize. Scientia Agricultura Sinica, 2014, 47(19): 3839-3849. doi: 10.3864/j.issn.0578-1752.2014. 19.012. (in Chinese)

[26] 徐洪敏, 朱琳, 刘毅, 陈新平, 李世清. 黄土旱塬几种农田水分管理模式下春玉米氮素吸收及分配的差异. 中国农业科学, 2010, 43(14): 2905-2912. doi: 10.3864/j.issn.0578-1752.2010.14.009.

XU H M, ZHU L, LIU Y, CHEN X P, LI S Q. Nitrogen absorption and allocation of spring maize on dryland of Loess Plateau in different farmland water management patterns. Scientia Agricultura Sinica, 2010, 43(14): 2905-2912. doi: 10.3864/j.issn.0578-1752.2010.14.009. (in Chinese)

[27] KIM K I, CLAY D E, CARLSON C G, CLAY S A, TROOIEN T. Do synergistic relationships between nitrogen and water influence the ability of corn to use nitrogen derived from fertilizer and soil? Agronomy Journal, 2008, 100(3): 551-556.

[28] PANG B, MA X X, HONG J T, XU X, ZHANG X K, WANG X D. Acquisition pattern of nitrogen by microorganisms and plants affected by gravel mulch in a semiarid Tibetan grassland. Science of the Total Environment, 2022, 830: 154635.

[29] MA B L, DWYER L M. Nitrogen uptake and use of two contrasting maize hybrids differing in leaf senescence. Plant and Soil, 1998, 199(2): 283-291.

[30] ECHARTE L, ROTHSTEIN S, TOLLENAAR M. The response of leaf photosynthesis and dry matter accumulation to nitrogen supply in an older and a newer maize hybrid. Crop Science, 2008, 48(2): 656-665.

[31] MENG Q F, CUI Z L, YANG H S, ZHANG F S, CHEN X P. Establishing high-yielding maize system for sustainable intensification in China. Advances in Agronomy, 2018, 148: 85-109.

[32] 吕丽华, 赵明, 赵久然, 陶洪斌, 王璞. 不同施氮量下夏玉米冠层结构及光合特性的变化. 中国农业科学, 2008, 41(9): 2624-2632. doi: 10.3864/j.issn.0578-1752.2008.09.008.

LÜ L H, ZHAO M, ZHAO J R, TAO H B, WANG P. Canopy structure and photosynthesis of summer maize under different nitrogen fertilizer application rates. Scientia Agricultura Sinica, 2008, 41(9): 2624-2632. doi: 10.3864/j.issn.0578-1752.2008.09.008. (in Chinese)

[33] LI J T, ZHANG B. Paddy soil stability and mechanical properties as affected by long-term application of chemical fertilizer and animal manure in subtropical China. Pedosphere, 2007, 17(5): 568-579.

[34] 王宜伦, 李潮海, 何萍, 金继运, 韩燕来, 张许, 谭金芳. 超高产夏玉米养分限制因子及养分吸收积累规律研究. 植物营养与肥料学报, 2010, 16(3): 559-566.

WANG Y L, LI C H, HE P, JIN J Y, HAN Y L, ZHANG X, TAN J F. Nutrient restrictive factors and accumulation of super-high-yield summer maize. Plant Nutrition and Fertilizer Science, 2010, 16(3): 559-566. (in Chinese)

[35] YE S J, ZHENG C M, ZHANG Y, LIU X. Effects of reduced chemical nitrogen input combined with organic fertilizer application on the productivity of winter wheat and summer maize rotation and soil properties in central Henan Province. Chinese Journal of Eco-Agriculture, 2022, 30(6): 900-912.

[36] 丁凡, 严昌荣, 汪景宽. 黑土地保护中不容忽视的一个问题:地膜残留及其污染. 土壤通报, 2022, 53(1): 234-240.

DING F, YAN C R, WANG J K. An overlooked issue in black soil protection: Plastic film accumulation and pollution. Chinese Journal of Soil Science, 2022, 53(1): 234-240. (in Chinese)

[37] 邰书静. 品种、氮肥和种植密度对玉米产量与品质的影响[D]. 杨凌: 西北农林科技大学, 2010.

TAI S J. Effects of variety, nitrogen fertilizer and plant density on maize yield and quality[D]. Yangling: Northwest A & F University, 2010. (in Chinese)

[38] 赵晖, 李尚中, 樊廷录, 赵刚, 党翼, 王磊, 张建军, 王淑英, 程万莉, 唐小明. 种植密度与施氮量对旱地地膜玉米产量、水分利用效率和品质的影响. 干旱地区农业研究, 2021, 39(5): 169-177.

ZHAO H, LI S Z, FAN T L, ZHAO G, DANG Y, WANG L, ZHANG J J, WANG S Y, CHENG W L, TANG X M. Effects of planting density and nitrogen fertilizer rate on yield, water use efficiency and quality of dryland maize with film mulching. Agricultural Research in the Arid Areas, 2021, 39(5): 169-177. (in Chinese)

[39] CORRENDO ADRIAN A, FERNANDEZ JAVIER A, VARA PRASAD P V, CIAMPITTI IGNACIO A. Do water and nitrogen management practices impact grain quality in maize? Agronomy, 2021, 11(9): 1851.

[40] 于宁宁, 赵子航, 任佰朝, 赵斌, 刘鹏, 张吉旺. 综合农艺管理促进夏玉米氮素吸收、籽粒灌浆和品质提高. 植物营养与肥料学报, 2020, 26(5): 797-805.

YU N N, ZHAO Z H, REN B Z, ZHAO B, LIU P, ZHANG J W. Integrated agronomic management practices improve nitrogen absorption, grain filling and nutritional qualities of summer maize. Journal of Plant Nutrition and Fertilizers, 2020, 26(5): 797-805. (in Chinese)

[41] 司雷勇, 夏镇卿, 金岩, 陈广周, 王广福, 路海东, 薛吉全. 覆盖方式对旱地春玉米根冠生长及水分利用效率的影响. 作物杂志, 2020(1): 146-153.

SI L Y, XIA Z Q, JIN Y, CHEN G Z, WANG G F, LU H D, XUE J Q. Impacts of different mulching patterns on root-shoot growth of spring maize and water use efficiency in dry land. Crops, 2020(1): 146-153. (in Chinese)

[42] ZHANG L, LIANG Z Y, HE X M, MENG Q F, HU Y C, SCHMIDHALTER U, ZHANG W, ZOU C Q, CHEN X P. Improving grain yield and protein concentration of maize (L.) simultaneously by appropriate hybrid selection and nitrogen management. Field Crops Research, 2020, 249: 107754.

[43] LANG A L, PENDLETON J W, DUNGAN G H. Influence of population and nitrogen levels on yield and protein and oil contents of nine corn hybrids. Agronomy Journal, 1956, 48(7): 284-289.

[44] GENTER C F, EHEART J F, LINKOUS W N. Effects of location, hybrid, fertilizer, and rate of planting on the oil and protein contents of corn Graing. Agronomy Journal, 1956, 48(2): 63-67.

[45] ZHENG P Z, ALLEN W B, ROESLER K, WILLIAMS M E, ZHANG S R, LI J M, GLASSMAN K, RANCH J, NUBEL D, SOLAWETZ W, BHATTRAMAKKI D, LLACA V, DESCHAMPS S, ZHONG G Y, TARCZYNSKI M C, SHEN B. A phenylalanine in DGAT is a key determinant of oil content and composition in maize. Nature Genetics, 2008, 40(3): 367-372.

Effects of Long-Term Film Mulching and Application of Organic Fertilizer on Yield and Quality of Spring Maize on the Loess Plateau

1College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi;2State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, Shaanxi;3College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi

【Objective】The aim of this study was to investigate the effects of long-term film mulching and application of organic fertilizer on yield, quality, dry matter accumulation and nitrogen uptake of spring maize through long-term localized field experiments. 【Method】The long-term experiment began in 2009 at the Changwu Agri-Ecological Station, and the samples were collected in 2020 and 2021. The field experiments were conducted with four treatments: mulching, no N (F), no mulching, N 225 kg·hm-2(N), mulching, N 225 kg·hm-2(FN), and mulching, N 225 kg·hm-2and apply organic fertilizer (FSN). Plant samples for measuring total biomass were collected at silking stage (R1) and harvest stage (R6). The samples were divided into different parts as required, and the total N content was determined. Crude protein, crude fat and crude amylum concentrations of maize grain were determined at harvest. 【Result】(1) Mulching under nitrogen application significantly increased the yield of spring maize, while additional application of organic fertilizer under mulching further increased the yield. Compared with the control, the N treatment increased the yield by 106%-176%. The FN treatment increased the yield by 21%-75% on this basis, and the FSN treatment was further increased by 5.6%-8.4%. (2) Mulching under nitrogen application significantly increased the dry matter accumulation and N uptake of spring maize, and the two indicators were further improved after the application of organic fertilizer. (3) The crude protein content under N treatment was 8.67%-8.94%, while the crude protein content under FN treatment increased to 8.99%-9.34%. The crude protein content of the FSN treatment was not further improved. There were no significant differences in crude fat and crude amylum content between the treatments. 【Conclusion】FN treatment significantly increased the yield and crude protein content of spring maize. The application of organic fertilizer under FSN further increased the yield on the basis of maintaining the crude protein content of the grain, and realized the high yield and high quality of spring maize.

spring maize; plastic mulching; organic fertilizer; yield; crude protein; crude fat; crude amylum

2022-03-31;

2022-06-24

国家重点研发计划(2021YFD1900700)

尉亚囡,E-mail:1500624759@qq.com。通信作者李世清,E-mail:sqli@ms.iswc.ac.cn。通信作者岳善超,E-mail:yueshanchao@ms.iswc.ac.cn

10.3864/j.issn.0578-1752.2023.09.008

(责任编辑 李云霞)

猜你喜欢

吐丝施氮氮素
不同施氮水平对春玉米光合参数及产量的影响
高速线材厂吐丝管固定方式的改进
吐丝的蜘蛛与吐丝的蚕
小蚕儿吐丝
施氮水平对冬小麦冠层氨挥发的影响
均匀施氮利于玉米根系生长及产量形成
楸树无性系苗期氮素分配和氮素效率差异
基于光谱分析的玉米氮素营养诊断
施氮对不同土壤肥力玉米氮素吸收和利用的影响
氮素运筹对玉米干物质积累、氮素吸收分配及产量的影响