任意空间维倾斜狄拉克费米子的带内纵向光电导的推导
2023-04-29侯鉴桐王鹏李志强张浩然
侯鉴桐 王鹏 李志强 张浩然
摘要:狄拉克费米子是当前凝聚态物理中的研究热点. 狄拉克费米子的纵向光电导,因其能够提取能带结构信息而被广泛关注. 本文基于低能有效模型与线性响应理论,利用生成函数方法,解析地处理零温下任意空间维、任意倾斜相的狄拉克费米子的带内纵向光电导. 特别地,我们讨论了二维和三维空间情况,并揭示了不同维度的倾斜类型对带内纵向光电导的影响. 文中发展的生成函数方法有望用于其他相关问题的研究.
关键词:带内纵向光电导;倾斜狄拉克费米子;任意空间维
收稿日期: 2023-05-11
基金项目: 国家自然科学基金(11547200);四川省科技创新(苗子工程)培育项目(2022-YCG057)
作者簡介: 侯鉴桐 (1996-), 男, 四川成都人, 硕士研究生, 主要研究方向为理论凝聚态物理.
通讯作者: 张浩然. E-mail: hrchang@mail.ustc.edu.cn
Intraband longitudinal optical conductivity of tilted
Dirac fermions in arbitrary spatial dimensionality
HOU Jian-Tong1, WANG Peng1, LI Zhi-Qiang1, ZHANG Hao-Ran2
(1. College of Physics, Sichuan University, Chengdu 610064, China;
2. College of Physics and Electronic Engineering, Sichuan Normal University, Chengdu 610066, China)
Dirac fermion is one of the current research topics in condensed matter physics. The longitudinal optical conductivity(LOC)of Dirac fermion has attracted much attention because of its ability to extract band structure information. Based on the low-energy effective model and linear response theory, this paper uses the generating function method to analytically process the intraband LOCs of Dirac fermions in arbitrary spatial dimension and of tilted phase at zero temperature. In particular, we discuss the two-dimensional and three-dimensional spatial situations and reveal the influence of the tilted types from different dimensions on the intraband LOCs. The generating function method developed in this paper is expected to be applied to other related problems.
Intraband longitudinal optical conductivity; Tilted Dirac fermions; Arbitrary spatial dimensionality
1 引 言
自发现石墨烯以来,狄拉克费米子一直是凝聚态物理中的热点问题[1-9]. 按照倾斜参数的不同,狄拉克费米子可划分为四种相:正立相(t=0), type-Ⅰ相(0
物理系统的空间维度和载流子能量色散在很大程度上决定了大多数物理性质[33,34]. 采取统一的方式解析地计算任意空间维中的物理量,不仅能够发展一劳永逸的计算方法,而且可以提供深刻的视角用以审查空间维度对相同的动力学模型中同一个物理量的影响. 例如,在任意空间维中的RKKY相互作用[35,36]能够自动给出一维[37,38]、二维[39-42]和三维[42-46]电子气体中RKKY相互作用的解析表达形式,而且揭示RKKY相互作用在不同空间维中的相似性与差异性.
最近,有研究者对一维、二维和三维空间中倾斜狄拉克费米子的带内和带间纵向光电导进行了系统的理论分析,发现空间维度和倾斜参数对纵向光电导的物理行为有十分显著的影响[47]. 此外,研究者还进一步将空间维度从一维、二维和三维推广到任意空间维,发现带间纵向光电导与联合态密度之间的深刻联系[48]. 然而,该工作并没有研究纵向光电导的带内部分. 因此,本文的主要目标是计算并分析任意空间维中倾斜狄拉克费米子的带内纵向光电导.
本文将在长波极限与零温条件下,基于低能有效模型与线性响应理论,利用生成函数方法,计算任意空间维和任意倾斜相的狄拉克费米子的带内纵向光电导的解析表达式. 特别地,在取空间维数d=2,3的情况下,这些解析形式可以自动给出之前工作的结果[18-32, 47].
2 理论模型和计算框架
在任意空间维(d维)中,一对倾斜狄拉克费米子可以由如下低能有效哈密顿量描述[46].
其中, k是d维矢量;τ3和τ0分别为第三个泡利矩阵及相应的单位矩阵;而d维矢量α和I分别为定义在d维空间的d个狄拉克矩阵和相应的单位矩阵(它们的表示空间维度记为偶数NR/2,其中NR为每个狄拉克点的简并度). 相应的倾斜狄拉克能带为
其中, 不同的能谷由κ=±表示,而狄拉克能带在第一个空间方向上倾斜的参数由t=vt/vF表征.此后的计算不妨选取适当的单位,使得=vF=1.
带内纵向光电导能够反映系统电流对电场的同方向响应,也就是欧姆定律的微观形式. 在上述低能有效模型中,带内纵向光电导可以从直观上理解为n型或p型掺杂的倾斜狄拉克材料中的直流电导率,即德鲁德(Drude)电导,而且倾斜参数t通过改变能带的倾斜程度来影响光电导. 根据线性响应理论,在d维空间中,倾斜狄拉克费米子沿jj方向的带内纵向光电导( j = 1,2,..d )具有如下表达式.
这些结果与三维倾斜狄拉克材料的带内纵向光电导的解析表达式[24,28,32,47]相吻合.
综上,上述解析结果对掺杂和不掺杂的(μ=0和μ≠0), 各种倾斜相(t=0, 0
4 结 论
基于低能有效模型与线性响应理论,本文利用生成函数方法,解析地计算了零温下任意空间维中倾斜狄拉克费米子的带内纵向光电导. 采取统一的方式得到的解析表达式,能够自动给出在二维和三维空间中正立相、type-Ⅰ相、type-Ⅱ相和type-Ⅲ相的狄拉克费米子的带内纵向光电导. 本文不仅指出了倾斜狄拉克费米子的带内纵向光电导在不同空间维中的相似性与差异性,而且揭示了倾斜类型对带内纵向光电导的影响. 本文发展的生成函数方法有望用于其他相关问题的研究.
参考文献:
[1]Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306: 666.
[2]Castro Neto A H, Guinea F, Peres N M R, et al. The electronic properties of graphene [J]. Rev Mod Phys, 2009, 81: 109.
[3]Armitage N P, Mele E J, Vishwanath A. Weyl and Dirac semimetals in three-dimensional solids [J].Rev Mod Phys, 2018, 90: 015001.
[4]Sato T, Wang Z, Nakayama K, et al. Observation of band crossings protected by nonsymmorphic symmetry in the layered ternary telluride Ta3SiTe6[J]. Phys Rev, 2018, 98: 121111(R).
[5]Yang T Y, Wan Q, Yan D Y, et al. Directional massless Dirac fermions in a layered van der Waals material with one-dimensional long-range order [J]. Nat Mater, 2020, 19: 27.
[6]Zhu Z, Li S, Yang M, et al. Directional massless Dirac fermions in a layered van der Waals material with one-dimensional long-range order [J]. NPJ Quantum Mater, 2020, 5: 35.
[7]Wang B, Xia W, Li S, et al. One-dimensional metal embedded in two-dimensional semiconductor in Nb2Six-1Te4[J]. ACS Nano, 2021, 15: 7149.
[8]Zhang J, Lv Y, Feng X, et al. Observation of dimension-crossover of a tunable 1D Dirac fermion in topological semimetal NbSixTe2[J]. NPJ Quantum Mater, 2022, 7: 54.
[9]Yue S, Zhou H, Feng Y, et al. Observation of one-dimensional Dirac fermions in silicon nanoribbons [J]. Nano Lett, 2022, 22: 695.
[10]Katayama S, Kobayashi A, Suzumura Y. Pressure-induced zero-gap semiconducting state in organic conductor α-(BEDT-TTF)2I3salt [J]. J Phys Soc Jpn, 2006, 75: 054705.
[11]Zhou X F, Dong X, Oganov A R, et al. Semimetallic two-dimensional boron allotrope with massless Dirac fermions [J]. Phys Rev Lett, 2014, 112: 085502.
[12]Andrew J, Mannix X F, Zhou B, et al. Synthesis of borophenes: anisotropic, two-dimensional boron polymorphs [J]. Science, 2015, 350: 1513.
[13]Soluyanov A A, Gresch D, Wang Z, et al. Bernevig. Type-Ⅱ weyl semimetals [J]. Nature, 2015, 527: 495.
[14]Volovik G E, Zhang K. Lifshitz transitions, type-Ⅱ Dirac and Weyl fermions, event horizon and all that [J]. J Low Temp Phys, 2017, 189: 276.
[15]Volovik G E. Exotic Lifshitz transitions in topological materials [J]. Phys Usp, 2018, 61: 89.
[16]Pietro N, Iacopo T, Frank H L, et al. Optical and plasmonic properties of twisted bilayer graphene: impact of interlayer tunneling asymmetry and ground-state charge inhomogeneity [J]. Phys Rev B, 2020, 102: 125403.
[17]Li Z, Henriksen E, Jiang Z, et al. Dirac charge dynamics in graphene by infrared spectroscopy [J]. Nat Phys, 2008, 4: 532.
[18]Gusynin V P, Sharapov S G, Carbotte J P. Unusual microwave response of Dirac quasiparticles in graphene [J]. Phys Rev Lett, 2006, 96: 256802.
[19]Gusynin V P, Sharapov S G, Carbotte J P. Sum rules for the optical and Hall conductivity in graphene [J]. Phys Rev B, 2007, 75: 165407.
[20]Mikhailov S A, Ziegler K. New electromagnetic mode in graphene [J]. Phys Rev Lett, 2007, 99: 016803.
[21]Kuzmenko A B, van Heumen E, Carbone F, et al. Universal optical conductance of graphite [J]. Phys Rev Lett, 2008, 100: 117401.
[22]Mak K F, Sfeir M Y, Wu Y, et al. Universal optical conductance of graphite [J]. Phys Rev Lett, 2008, 101: 196405.
[23]Stauber T, Peres N M R, Geim A K. Optical conductivity of graphene in the visible region of the spectrum [J]. Phys Rev B, 2008, 78: 085432.
[24]Phillip E, Ashby C, Carbotte J P. Chiral anomaly and optical absorption in Weyl semimetals [J]. Phys Rev B, 2014, 89: 245121.
[25]Nishine T, Kobayashi A, Suzumura Y. Tilted-cone induced cusps and nonmonotonic structures in dynamical polarization function of massless Dirac fermions [J]. J Phys Soc Jpn, 2010, 79: 114715.
[26]Verma S, Mawrie A, Ghosh T K. Effect of electron-hole asymmetry on optical conductivity in borophene [J]. Phys Rev B, 2017, 96: 155418.
[27]Herrera S A, Naumis G G. Kubo conductivity for anisotropic tilted Dirac semimetals and its application to 8-Pmmn borophene: role of frequency, temperature, and scattering limits [J]. Phys Rev B, 2019, 100: 195420.
[28]Rostamzadeh S, Adagideli I, Goerbig M O. Large enhancement of conductivity in Weyl semimetals with tilted cones: pseudorelativity and linear response [J]. Phys Rev B, 2019, 100: 075438.
[29]Tan C Y, Yan C X, Zhao Y H, et al. Anisotropic longitudinal optical conductivities of tilted Dirac bands in 1T′-MoS2[J]. Phys Rev B, 2021, 103: 125425.
[30]Tan C Y, Hou J T, Yan C X, et al. Signatures of Lifshitz transition in the optical conductivity of two-dimensional tilted Dirac materials [J]. Phys Rev B, 2022, 106: 165404.
[31]Wild A, Mariani E, Portnoi M E. Optical absorption in two-dimensional materials with tilted Dirac cones [J]. Phys Rev B, 2022, 105: 205306.
[32]Carbotte J P. Dirac cone tilt on interband optical background of type-I and type-II Weyl semimetals [J]. Phys Rev B, 2016, 94: 165111.
[33]Mukherjee S P, Carbotte J P. Absorption of circular polarized light in tilted type-I and type-II Weyl semimetals [J]. Phys Rev B, 2017, 96: 085114.
[34]Giuliani G, Vignale G. Quantum theory of the electron liquid Cambridge [M]. UK: Cambridge University Press, 2005.
[35]Mahan G D. Many-particle physics [M]. New York: Springer, 2007.
[36]Larsen U. Damping of the RKKY interaction in metals of arbitrary dimensions [J]. J Phys F: Met Phys, 1985, 15: 101.
[37]Aristov D N. Indirect RKKY interaction in any dimensionality [J]. Phys Rev B, 1997, 55: 8064.
[38]Litvinov V I, Dugaev V K. RKKY interaction in one- and two-dimensional electron gases [J]. Phys Rev B, 1998, 58: 3584.
[39]Giuliani G F, Vignale G, Datta T. RKKY range function of a one-dimensional noninteracting electron gas [J]. Phys Rev B, 2005, 72: 033411.
[40]Korenblit I Y, Shender E F. Dilute ferromagnetic alloys with long-range exchange interaction [J]. Sov Phys JETP, 1975, 42: 566.
[41]Fischer B, Klein M W. Magnetic and nonmagnetic impurities in two-dimensional metals [J]. Phys Rev B, 1975, 11: 2025.
[42]Beal-Monod M T. Ruderman-Kittel-Kasuya-Yosida indirect interaction in two dimensions [J]. Phys Rev B, 1987, 36: 8835.
[43]Simion G, Giuliani G F. Friedel oscillations in a Fermi liquid [J]. Phys Rev B, 2005, 72: 045127.
[44]Ruderman M A, Kittel C. Indirect exchange coupling of nuclear magnetic moments by conduction electrons [J]. Phys Rev, 1954, 96: 99.
[45]Kasuya T. Electrical resistance of ferromagnetic metals [J]. Prog Theor Phys, 1956, 16: 45.
[46]Yosida K. Magnetic properties of Cu-Mn alloys [J]. Phys Rev, 1957, 106: 893.
[47]Hou J T, Yan C X, Tan C Y, et al. Effects of spatial dimensionality and band tilting on the longitudinal optical conductivities in Dirac bands [J]. Phys Rev B, 2023, 108: 035407.
[48]Hou J T, Chang H R. Longitudinal optical conductivities for tilted Weyl fermions in arbitrary dimensionality [EB/OL]. [2023-05-20]. https://arxiv.org/pdf/2211.15357.pdf.
引用本文格式:
中 文: 侯鉴桐, 王鹏, 李志强, 等. 任意空间维倾斜狄拉克费米子的带内纵向光电导的推导[J]. 四川大学学报: 自然科学版, 2023, 60: 064001.
英 文: Hou J T, Wang P, Li Z Q, et al. Intraband longitudinal optical conductivity of tilted Dirac fermions in arbitrary spatial dimensionality [J]. J Sichuan Univ: Nat Sci Ed, 2023, 60: 064001.