具内部阻尼项的Kirchhoff板方程的长时行为
2023-04-29田佳鑫付晓玉
田佳鑫 付晓玉
摘要:本文研究了具有局部内部阻尼项的Kirchhoff板方程的长时间行为. 在该方程中, 边界条件包含0阶和2阶的齐次Dirichlet边界条件或1阶和3阶的Robin 边界条件. 在关于阻尼的一些基本假设下,本文证明了方程的解具有对数衰减性.
关键词:Kirchhoff板方程; Carleman估计; 预解式估计
收稿日期: 2023-03-04
基金项目: 国家自然科学基金(11971333)
作者简介: 田佳鑫(1995-),男,重庆市涪陵人,博士研究生,主要研究方向为分布参数系统的控制理论.
E-mail: tjx20102495@163.com
Longtime behavior of Kirchhoff plate equations with internal damping
TIAN Jia-Xin, FU Xiao-Yu
(School of Mathematics, Sichuan University, Chengdu 610064, China)
Longtime behavior of the Kirchhoff plate equations with locally distributed internal damping is studied. The equation is equipped with either homogeneous Dirichlet boundary conditions of zero order and second order, or Robin boundary conditions of first order and third order. Under some assumptions on the damping, it is shown that sufficiently smooth solutions of the equation decay logarithmically.
Kirchhoff plate equation; Carleman estimate; Resolvent estimate
(2010 MSC 93B05)
References:
[1]Ammari K, Khenissi M. Decay rates of the plate equations [J]. Mathematische Nachrichten, 2005, 278: 1647.
[2]Burq N, Hitrik M. Energy decay for damped wave equations on partially rectangular domains [J]. Math Res Lett, 2007, 14: 35.
[3]Fursikov A V, Imanuvilov O Y. Controllability of evolution equations [M]. Seoul: Seoul National University, 1994.
[4]Boutet de Monvel A, Marchenko V A. Algebraic and geometric methods in mathematical physics [M]. Dordrecht: Kluwer Academic Publishers, 1996.
[5]Lebeau G, Robbiano L. Stabilisation de l′équation des ondes par le bord [J]. Duke Math J, 1997, 86: 465.
[6]Gazzola F, Grunau H C, Sweers G. Poly-harmonic boundary value problems [M]. New York/Berlin: Springer, 2010.
[7]Pazy A. Semi-groups of linear operators and applications to partial differential equations [M]. New York: Springer, 1983.
[8]Batty C J K, Duyckaerts T. Non-uniform stability for bounded semi-groups on Banach spaces [J]. J Evol Equ, 2008, 8: 765.
[9]Burq N. Décroissance de l'énergie locale de l'équation des ondes pour le probléme extérieur et absence de résonance au voisinagage du reel [J]. Acta Math, 1998, 180: 1.
[10]Fu X Y, Lü Q, Zhang X. Carleman estimates for second order partial differential operators and applications: a unified approach [M]. New York/Berlin: Springer, 2019.
[11]Fu X Y. Logarithmic decay of hyperbolic equations with arbitrary small boundary damping [J]. Comm Part Diff Eq, 2009, 34: 957.
引用本文格式:
中 文: 田佳鑫, 付晓玉. 具内部阻尼项的Kirchhoff板方程的长时行为[J]. 四川大学学报: 自然科学版, 2023, 60: 061005.
英 文: Tian J X, Fu X Y.Longtime behavior of Kirchhoff plate equations with internal damping [J]. J Sichuan Univ: Nat Sci Ed, 2023, 60: 061005.