APP下载

一阶半正常微分系统周期边值问题正解的存在性

2023-04-29薄志伟马如云

关键词:如云科学出版社四川大学

薄志伟 马如云

参考文献:

[1]   Wang H Y. Positive periodic solutions of functional differential equations [J]. J Diff Equat, 2004, 202: 354.

[2]  Peng S G. Positive solutions for first order periodic boundary value problem [J]. Appl Math Comput, 2004, 158: 345.

[3]  Hai D D, Qian C. On positive periodic solutions for nonlinear delayed differential equations [J]. Mediterr J Math, 2016, 13: 1641.

[4]  Sun Y, Han M, Debnath L. Existence of positive periodic solutions for a class of functional differential equations [J]. Appl Math Comput, 2007, 190: 699.

[5]  Sun J P. Positive solution for first-order discrete periodic boundary value problem [J]. Appl Math Lett, 2006, 19: 1244.

[6]  Ma R Y, Chen R P, Chen T L. Existence of positive periodic solutions of nonlinear first-order differential equations [J]. J Math Anal Appl, 2011, 384: 527.

[7]  Tisdell C C. Existence of solutions to first-order periodic boundary value problems [J]. J Math Anal Appl, 2006, 323: 1325.

[8]  Nastasi A, Vetro P. Existence and uniqueness for a first-order periodic differential problem via fixed point results [J]. Results Math, 2017, 71: 889.

[9]  Ma R Y, Zhang L. Construction of lower and upper solutions for first-order periodic problem [J]. Bound Value Probl, 2015, 190: 1.

[10]  ORegan D, Wang H Y. Positive periodic solutions of systems of first order ordinary differential equations [J]. Results Math, 2005, 48: 310.

[11] Chen R P, Ma R Y, He Z Q. Positive periodic solutions of first-order singular systems [J]. Appl Math Comput, 2012, 218: 11421.

[12] 何婷. 一類一阶常微分系统周期边值问题正解的存在唯一性[J]. 四川大学学报: 自然科学版, 2022, 59: 021004.

[13] 祝岩. 一类一阶泛函微分方程正周期解的存在性[J]. 四川大学学报:自然科学版, 2019, 56: 607.

[14] 徐登州, 马如云. 线性微分方程的非线性扰动[M]. 北京: 科学出版社, 2008.

猜你喜欢

如云科学出版社四川大学
四川大学西航港实验小学
喘息的红对联
未来,是一个没有预兆的故事
百年精诚 誉从信来——走进四川大学华西眼视光之一
爱的力量
Case Study on Importance of Translator’s Subjectivity in Translating Discourses Written in Non—mother—tongue
四川大学华西医院
《色谱》获2015 年度科学出版社“期刊出版质量优秀奖”
四川大学信息显示研究所
科学出版社物理类重点书推荐