连续型向上敲出巴黎期权定价隐式差分格式及其稳定性和收敛性分析
2023-04-29丰月姣刘宝亮张秀珍
丰月姣 刘宝亮 张秀珍
摘要: 考虑连续型向上敲出巴黎期权定价问题. 首先,针对该类型巴黎期权,给出一个时间1阶、 空间2 阶精度的隐式差分格式; 其次,采用不等式放大方法和Fourier展开方法分别讨论差分格式的稳定性、 可解性和收敛性; 最后,利用差分格式分析连续型向上敲出巴黎期权的数值定价结果.
关键词: 连续型向上敲出巴黎期权; 数值模拟; 稳定性; 收敛性; 可解性
中图分类号: O211.64 文献标志码: A 文章编号: 1671-5489(2023)02-0265-10
Implicit Difference Scheme and Its Stability and ConvergenceAnalysis for Continuous Up-and-Out Paris Option Pricing
FENG Yuejiao1,LIU Baoliang1,ZHANG Xiuzhen1,2
(1. School of Mathematics and Statistics,Shanxi Datong University,Datong 037009,Shanxi Province,China;
2. School of Statistics,East China Normal University,Shanghai 200241,China)
Abstract: We considered the continuous up-and-out Paris option pricing problem. Firstly,an implicit difference schem
e with the first order in time and the second order in space was given for this type of Paris option. Secondly,the inequality
amplification method and Fourier expansion method were used to discuss the stability,solvability and convergence of the difference scheme,respectively.
Finally,the numerical pricing results of continuous up-and-out Paris options were analyzed by using the difference scheme.
Keywords: continuous up-and-out Paris option; numerical simulation; stability; convergence; solvability
收稿日期: 2022-06-27.
第一作者簡介: 丰月姣(1981—),女,汉族,硕士,讲师,从事可靠性理论及其应用的研究,E-mail: fengsheng269@163.com. 通信作者简介:
张秀珍(1984—),女,汉族,硕士,讲师,从事非参数统计的研究,E-mail: zhangxiuzhen132@163.com.
基金项目: 山西省高等学校科技创新计划项目(批准号: 2019L0738; 2020L0463).
传统的敲出障碍期权设置了障碍值,一旦期权挂钩的风险资产触及障碍值,敲出障碍期权即刻作废,期权投资人也会损失全部期权金[1]. 此外,当风险资产接近障碍值时,虽然期权没有作废,但会使投资人频繁地对投资策略进行调整,导致大量的重复劳动,为解决该问题,证券投资机构衍生出了连续型巴黎期权[2-3].
连续型巴黎期权在设定了障碍值SB的同时,又设置了计时器τ,当风险资产价格在SB上方的累积时间τ超过D后期权作废. 计时器τ的引入可降低期权作废的风险[4].
目前,关于巴黎期权的研究已有很多结果[5-14]. 文献[5]利用巴黎期权研究了植物品种权证券化定价问题,用具有巴黎期权性质的证券化产品定价模型刻画植物品种权证券化的独特性,并通过数值仿真和灵敏度分析验证了定价模型的合理性和有效性; 在巴黎期权的概率模拟方面,文献[6]构造了一种多层Monte-Carlo方法,相比于传统的Monte-Carlo方法,模拟结果表明,多层Monte-Carlo方法提高了巴黎期权定价的概率精度,拓宽了巴黎期权数值算法的选择范围;文献[7]用前向打靶网格方法和最小二乘Monte-Carlo两种数值方法,研究了附带提前实施条款的巴黎期权定价问题; 在巴黎期权的差分格式方面,文献[8]针对巴黎期权适合的抛物方程,在进行Laplace变换后,采用显式Euler格式研究了巴黎期权定价问题; 文献[9]用二叉树方法研究了文献[8]的问题. 但由于巴黎期权结构复杂,因此文献[8-9]并未进行相应的稳定性和收敛性分析.
基于此,本文考察连续型巴黎期权定价问题. 由于巴黎期权路径复杂、 解析定价结果很难获得,因此与上述文献的巴黎期权模拟结果不同,本文采用数值差分方法给出连续型巴黎期权的隐式差分格式,并分析差分格式的稳定性和收敛性.
下面分析连续型巴黎期权的性质. 由图3可见,在参数保持不变的条件下,巴黎期权的价值随挂钩风险资产价格的增大呈倒V型趋势. 这是因为当风险资产价值低于障碍水平SB时,连续型巴黎期权没有计时,期权不存在作废的可能; 当风险资产价值高于障碍水平SB时,巴黎期权开始计时,计时时间越长期权作废的可能性越大,其价值越低. 图4模拟了ST=99.5时连续型巴黎期权随时间的变动特征,由于ST非常接近障碍值SB,此时风险资产的随机波动随时可能触发障碍产生计时,因此期权价格存在下降趋势. 当时间t>1时,连续计时的时长不可能超过D,期权不再可能被作废,于是期权开始呈上升趋势.
参考文献
[1] 韩笑,张敏行. 随机利率下的期权定价 [J]. 吉林大学学报(理学版),2021,59
(6): 1405-1410. (HAN X,ZHANG M X. Option Pricing under Stochastic Interest Rate [J]. Journal of Jilin University (Science Edition),2021,59(6): 1405-1410.)
[2] 姚宇航,钟雨洁,辜浩诚,等. 基于障碍期权组合PPP项目第三方担保的效用研究 [J]. 项目管理技术,2019,17(11): 31-35.
(YAO Y H,ZHONG Y J,GU H C,et al. Effectiveness of Third Party Guarante
e in PPP Project Based on Barrier Option Portfolio [J]. Project Management Technology,2019,17(11): 31-35.)
[3] 薛广明,林福宁. 带跳随机波动率模型的美式期权及美式障碍期权定价 [J]. 吉林大学学报(理学版),2020,58(5): 1119-1129.
(XUE G M,LIN F N. Pricing of American Options and American Barrier Options wit
h Jump Stochastic Volatility Model [J]. Journal of Jilin University (Science Edition),2020,58(5): 1119-1129.)
[4] 宋海明,侯頔. Black-Scholes模型下美式期权定价的神经网络算法 [J]. 吉林大学学报(理学版),2021,59(5): 1089-1092.
(SONG H M,HOU D. Neural Network Algorithm for American Option Pricing under Bla
ck-Scholes Model [J]. Journal of Jilin University (Science Edition),2021,59(5): 1089-1092.)
[5] 张璐,陈会英. 基于巴黎期权的植物品种权证券化定价研究 [J]. 统计与信息论坛,2018,33(5): 73-79. (ZHANG L,CHEN H Y. Research on the
Pricing of Plant Species Right Securitization Based on Paris Option [J]. Journal of Statistics and Information,2018,33(5): 73-79.)
[6] 宋斌,林则夫,张冰洁. 基于多层次蒙特卡罗方法的巴黎期权定价 [J]. 中国管理科学,2016,24(2): 11-18.
(SONG B,LIN Z F,ZHANG B J. Pricing Parisian Option by Multi-level Monte Carlo Method [J]. Chinese Journal of Management Science,2016,24(2): 11-18.)
[7] 宋斌,井帅. 美式巴黎期权的定价模型与数值方法 [J]. 系统工程,2015,33(2): 1-8. (SONG B,JING S. The Pricing Model
of American Parisian Option and Numerical Methods [J]. Systems Engineering,2015,33(2): 1-8.)
[8] 宋斌,梁恩奇,唐逞. 基于拉普拉斯变换的巴黎期权的定价 [J]. 系统工程,2017,35(1): 1-4. (SONG B,LIANG E Q,TANG C. The Parisian Op
tions Pricing Theory Based on Laplace Transform Methods [J]. Systems Engineering,2017,35(1): 1-4.)
[9] GAUDENZI M,ZANETTE A. Fast Binomial Procedures for
Pricing Parisian/ParAsian Options [J]. Computational Management Science,2017,14(3): 313-331.
[10] 张璐,陈会英. 基于巴黎期权的植物品种权证券化定价研究 [J]. 统计与信息论坛,2018,33(5): 73-79.
(ZHANG L,CHEN H Y. Research on the Pricing of Plant Species Right Securitization Based on the Paris Options [J]. Journal of Statistics and Information,2018,33(5): 73-79.)
[11] 宋斌,梁恩奇,唐逞. 基于拉普拉斯變换的巴黎期权的定价 [J]. 系统工程,2017,35(1): 1-4. (SONG B,LIANG E Q,TANG C.
The Parisian Options Pricing Theory Based on Laplace transform Methods [J]. Systems Engineering,2017,35(1): 1-4.)
[12] 宋斌,林则夫,张冰洁. 基于多层次蒙特卡罗方法的巴黎期权定价 [J]. 中国管理科学,2016,24(2): 11-18. (SONG B,LIN Z F,ZHANG B J.
Pricing Parisian Option by Multi-level Monte Carlo Method [J]. Chinese Journal of Management Science,2016,24(2): 11-18.)
[13] 宋斌,井帅. 美式巴黎期权的定价模型与数值方法 [J]. 系统工程,2015,33(2): 1-8. (SONG B,JING S. The Pricing
Model of American Parisian Option and Numerical Methods [J]. Systems Engineering,2015,33(2): 1-8.)
[14] 袁国军,肖庆宪. 跳-扩散结构下内含巴黎期权特征的可转债定价研究 [J]. 数学的实践与认识,2014,44(16): 13-21. (YUAN G J,XIAO Q X.
Study on the Pricing Convertible Bond with Paris Option Feature under Jump-Diffusion Structure [J]. Mathematics in Practice and Theory,2014,44(16): 13-21.)
[15] 宋斌,周湛满,魏琳,等. 巴黎期权的PDE定价及隐性差分方法研究 [J]. 系统工程学报,2013,28(6): 764-774. (SONG B,ZHOU Z M,WEI L,et al.
Parisian Options PDE Pricing and Its Implicit Difference Method [J]. Journal of Systems Engineering,2013,28(6): 764-774.)
[16] 董艳. 非线性Black-Scholes模型下Bala期权定价 [J].
高校应用数学学报A辑,2016,31(1): 9-20. (DONG Y. The Pricing of Bala Options under the Nonlinear
Black-Scholes Model [J]. Applied Mathematics A Journal of Chinese (Ser A),2016,31(1): 9-20.)
[17] 朱顺泉. 基于R语言的金融工程计算 [M]. 北京: 清华大学出版社,2016: 109-110. (ZHU S Q.
Financial Engineering Calculation Based on R Language [M]. Beijing: Tsinghua University Press,2016: 109-110.)
[18] CEN Z D,HUANG J,XU A M,et al. Numerical Approximation of
a Time-Fractional Black-Scholes Equation [J]. Computers and Mathematics with Applications,2018,75(8): 2874-2887.
[19] DE STAELEN R H,HENDY A S. Numerically Pricing Double
Barrier Options in a Time-Fractional Black-Scholes Model [J]. Computers and Mathematics with Applications,2017,74(6): 1166-1175.
[20] ZHANG H,LIU F,CHEN S,et al. Fast Numerical Simulatio
n of a New Time-Space Fractional Option Pricing Model Governing European Call o
ption [J]. Applied Mathematics and Computation,2018,339: 186-198.
(責任编辑: 李 琦)