乘积度量空间上一类满足隐式压缩条件的映射对公共不动点的存在性和唯一性
2023-04-29玄东平胡晓会南华
玄东平 胡晓会 南华
摘要: 通過在[1,∞)4上引入一个实函数类Φ,给出在乘积度量空间上满足Φ-隐式条件的两个映射的唯一公共不动点存在性定理,并给出若干个(公共)不动点定理. 所得结论推广并改进了现有公共不动点定理 (特别是乘积度量空间上的Banach-Chateajia型公共不动点定理). 最后,用两个实例验证了所得结论的正确性.
关键词: 乘积度量空间; 函数类Φ; 隐式条件; 公共不动点
中图分类号: O177.3; O189.11 文献标志码: A 文章编号: 1671-5489(2023)02-0310-07
Existence and Uniqueness of Common Fixed Points for a Class ofMappings Satisfying Implicit Compression Conditionson Multiplicative Metric Spaces
XUAN Dongping,HU Xiaohui,NAN Hua
(College of Science,Yanbian University,Yanji 133002,Jilin Province,China)
Abstract: By introducing a real function class Φ on [1,∞)4,we gave the existence theorems of unique common fixed point for two mappings satisfying the Φ
-implicit condition on multiplicative metric spaces,and gave some (common) fixed point theorems. The conclusions generalized and improved the existing commo
n fixed point theorems (in particular,the Banach-Chateajia type common fixed point theorems on multiplicative metric spaces). Finally,two examples were
used to verify the correctness of the conclusions.
Keywords: multiplicative metric space; function class Φ; implicit condition; common fixed point
收稿日期: 2022-05-31.
第一作者简介: 玄东平(1997—),女,朝鲜族,硕士研究生,从事不动点理论和应用泛函分析的研究,E-mail: 1169621586@qq.com.
通信作者简介: 南 华(1972—),女,朝鲜族,博士,副教授,从事不动点理论和应用泛函分析的研究,E-mail: nanhua@ybu.edu.cn.
基金项目: 国家自然科学基金(批准号: 11961073)和吉林省教育厅科学研究项目(批准号: JJKH20180891KJ).
1 引言与预备知识
Banach压缩原理[1],即Banach不动点定理,是不动点理论中最基本、 最简单形式的定理,在数学及其他领域应用广泛,因此Banach不动点定理在各类不同的广义度量空间上得到了推广和改进. Bashirov等[2]引入了乘积度量空间的概念,并给出一些基本性质; Bashirov等[3]和Florack等[4]在乘积度量空间上进一步研究了其他相关性质.
参考文献
[1] BANACH S. Sur Les Opérations Dans Les
Ensembles Abstraist et Leur Application Aux quations Inégrales [J]. Fund Math,1922,3: 138-181.
[2] BASHIROV A E,KURPINAR E M,ZYAPICI A.
Multiplicative Calculus and Its Applications [J]. J Math Anal Appl,2008,337(1): 36-48.
[3] BASHIROV A E,MISIRLI E,TANDODU Y,et al.
On Modeling with Multiplicative Differential Equations [J]. Appl Math J Chinese Univ Ser B,2011,26(4): 425-438.
[4] FLORACK L,VAN ASSEN H. Multiplicative Calculus in Biomedical Image Analysis [J]. J Math Imaging Vision,2012,42(1): 64-75.
[5] ZAVSAR M,CEVIKEL A C. Fixed Points of Multiplicative Contraction Mappings on Multiplicative Metric
Spaces [EB/OL]. (2012-05-23)[2022-02-03]. https://arxiv.org/abs/1205.5131.
[6] HE X J,SONG M M,CHEN D P. Common Fixed Points for
Weak Commutative Mappings on a Multiplicative Metric Space [J/OL]. Fixed Point Theory Appl,(2014-02-21)[2022-01-20]. doi: 10.1186/1687-1812-2014-48.
[7] GU F,CHO Y J. Common Fixed Point Results for Four M
aps Satisfying -Contractive Condition in Multiplicative Metric Spaces [J/OL
]. Fixed Point Theory Appl,(2015-09-17)[2021-12-15]. doi: 10.1186/s13663-015-0412-4.
[8] 姜云,谷峰. 乘积度量空间中满足-型压缩条件的四个映象
的公共不动点定理 [J]. 纯粹数学与应用数学,2017,33(2): 185-196. (JIANG Y,GU
F. Common Fixed Points Theorems for Four Maps Satisfying -Type Contractive C
ondition in Multiplicative Metric Spaces [J]. Pure and Applied Mathematics,2017,33(2): 185-196.)
[9] PIAO Y J. Unique Common Fixed Points for Four Non-continuous Mappings Satisfying ψ-Implicit Contractive Condition on Non-compl
ete Multiplicative Metric Spaces [J]. Adv Fixed Point Theory,2019,9(2): 135-145.
[10] 朴勇杰. 乘积度量空间上满足σ(γ)-压缩条件的映射的唯一不动点 [J]. 吉林大学学报(理学版),2021,59(3): 469-474.
(PIAO Y J. Unique Fixed Points for Mappings with σ(γ)-Contractive Conditi
ons on Multiplicative Metric Spaces [J]. Journal of Jilin University (Science Edition),2021,59(3): 469-474.)
[11] 朴勇杰. 乘积度量空间上一类隐式压缩映射的唯一不动点 [J]. 吉林大学学报(理学版),2022,60(1): 59-63.
(PIAO Y J. Unique Fixed Point for a Class of Implicit Contractive Mappings on Mu
ltiplicative Metric Spaces [J]. Journal of Jilin University (Science Edition),2022,60(1): 59-63.)
(責任编辑: 李 琦)