APP下载

单边振荡积分的多线性交换子在加权Morrey空间上的有界性

2023-04-29程鑫张婉婧张婧

吉林大学学报(理学版) 2023年2期

程鑫 张婉婧 张婧

摘要: 先利用单边权的外推法建立奇异积分和分数次积分与BMO函数生成的多线性交换子在加权Lebesgue空间上的有界性,再在此基础上,进一步研究单边振荡型积分这类交换子在单边Morrey空间上的加权有界性.

关键词: 单边振荡积分; 多线性交换子; 单边Morrey空间; 单边权

中图分类号: O174.2  文献标志码: A  文章编号: 1671-5489(2023)02-0251-08

Boundedness of Multilinear Commutators for One-SidedOscillatory Integral on Weighted Morrey Space

CHENG Xin1,ZHANG Wanjing1,ZHANG Jing1,2

(1. College of Mathematics and Statistics,Yili Normal University,Yining 835000,Xinjiang Uygur Autonomous Region,China;

2. Institute of Applied Mathematics,Yili Normal University,Yining 835000,Xinjiang Uygur Autonomous Region,China)

Abstract: Firstly,using extrapolation method of one-sided weights,we established the boundedness of multilinear commutators generated by singular integral

and fractional integral  with function in BMO on weighted Lebesgue spaces. Secondly, on this basis,we further studied the weighted boundedness of this kind of

commutators of one-sided oscillatory integrals on one-sided  Morrey spaces.

Keywords: one-sided oscillatory integral; multilinear commutator; one-sided Morrey space; one-sided weight

收稿日期: 2022-05-05. 網络首发日期: 2023-02-13.

第一作者简介: 程 鑫(1996—),女,汉族,硕士研究生,从事调和分析与应用的研究,E-mail: cx2901257097@163.com.

通信作者简介: 张 婧(1980—),女,汉族,博士,教授,从事调和分析与应用的研究,E-mail: zjmath66@126.com.

基金项目: 国家自然科学基金(批准号: 12261083)、 新疆维吾尔自治区自然科学基金(批准号: 2021D01C463)

和伊犁师范大学“学实高层次人才岗位”项目(批准号: YSXSJS22001).

网络首发地址:  https://kns.cnki.net/kcms/detail/22.1340.O.20230210.1616.001.html.

1 引言与预备知识

自Sawyer[1]引入单边权并讨论了单边Hardy-Littlewood极大算子的加权有界性以来,单边理论不仅在遍历理论中得到进一步应用,而且对调和分析中关于双边算子的研究也进行了一定推广. 研究表明,对于像更小的算子(单边算子)和更大的一类权(单边权),调和分析中许多经典的结论仍然成立[1-6]. 本文主要讨论单边情形下振荡积分多线性交换子的有界性质.

振荡积分的有界性是调和分析研究的重要内容之一,它与很多重要的调和分析算子和偏微分方程都有紧密联系. 如Fourier变换、 Bochner-Riesz平均、 应用于CT技术中的Radon变换等都是特殊的振荡积分. Fu等[7]建立了单边Ricci-Stein型振荡积分在Lebesgue空间上的加权有界性; 郑庆玉等[8]得到了该积分与BMO函数生成的一阶交换子在加权Lebesgue空间上的有界性. 受文献[7-8]研究结果的启发,本文进一步研究单边振荡奇异积分和分数次振荡积分与 BMO函数生成的多线性交换子在单边加权Morrey空间上的有界性质.

2.3 定理4的证明

定理4的证明方法与定理3类似. 可先用定理2和文献[8]的证明方法建立S+,b的加权Lebesgue有界性,再用定理3的推导方法即可得到证明.

参考文献

[1] SAWYER E. Weighted Inequalities for the One-Sided Hardy-Littlewood Maximal

Functions [J]. Trans Amer Math Soc,1986,297(1): 53-61.

[2] MARTN-REYES F J,DE LA TORRE A. Two Weight Norm Ine

qualities for Fractional One-Sided Maximal Operators [J]. Proc Amer Math Soc,1993,117(2): 483-489.

[3] LORENTE M,RIVEROS M S. Two Weight Norm Inequalities

for Communtators of One-Sided Singular Integrals and the One-Sided Discrete Square Function [J]. J Aust Math Soc,2005,79(1): 77-94.

[4] 傅尊伟,林燕. 单边算子交换子的加权有界性 [J]. 数学学报(中文版),2011,54(5): 705-714. (FU Z W,LIN Y. Weighted Boundedness for Comm

utators of One-Sided Operators [J]. Acta Mathematica Sinica (Chinese Series),2011,54(5): 705-714.)

[5] LORENTE M,RIVEROS M S. Weighted Inequalities for Commut

ators of One-Sided Singular Integrals [J]. Comment Math Univ Carolin,2002,43(1): 83-101.

[6] SHI S G,FU Z W. Estimates of Some Operators on One

-Sided Weighted Morrey Spaces [J/OL]. Abstr Appl Anal,(2013-11-24)[2022-02-28]. https://doi.org/10.1155/2013/829218.

[7] FU Z W,LU S Z,PAN Y B,et al. Boundedness of One-Sided Oscillatory Integral Op

erators on Weighted Lebesgue Spaces [J/OL]. Abstr Appl Anal,(2014-02-03)[2022-02-28]. https://doi.org/10.1155/2014/291397.

[8] 郑庆玉,张蕾,石少广. 单边振荡积分算子交换子的加权有界性质 [J]. 数学进展,2016,45(5): 738-746. (ZHENG Q Y,ZHANG L,SHI S G. Weigh

ted Boundedness for Commutators of One-Sided Oscillatory Integral Operators [J]. Advances in Mathematics (China),2016,45(5): 738-746.)

[9] AIMAR H,FORZANI L,MARTN-REYES F J. On Weighted Ine

qualities for Singular Integrals [J]. Proc Amer Math Soc,1997,125(7): 2057-2064.

[10] ANDERSEN K F,SAWYER E T. Weighted Norm Inequalities fo

r the Riemann-Liouville and Weyl Fractional Integral Operators [J]. Trans Amer Math Soc,1988,308(2): 547-558.

[11] MORREY C B. On the Solutions of Quasi-linear E

lliptic Partial Differential Equations [J]. Trans Amer Math Soc,1938,43(1): 126-166.

[12] 朱敏,陶雙平. 加权Morrey空间上多线性奇异积分的振荡及变分算子的有界性 [J]. 吉林大学学报(理学版),2021,59(4): 719-724. (ZHU M,TA

O S P. Boundedness of Oscillation and Vartiation Operators for Multilinear Singular Integrals on Weighted Morrey Spaces

[J]. Journal of Jilin University (Science Edition),2021,59(4): 719-724.)

[13] 李瑞,陶双平. 内蕴平方函数在分数次Morrey空间上的加权有界性  [J]. 吉林大学学报(理学版),2020,58(4): 782-790. (LI R,TAO S P. We

ighted Boundedness of Intrinsic Square Functions on Fractions Morrey Spaces [J]. Journal of Jilin University (Science Edition),2020,58(4): 782-790.)

[14] 徐博,陶双平. 变指标Morrey空间上分数次极大算子及交换子的弱型估计 [J]. 东北师大学报(自然科学版),2022,54(3): 8-13.

(XU B,TAO S P. Weak Type Estimates of Fractional Maximal Operator and Commutator on Morrey Spaces with Variable Exponents [J].

Journal of Northeast Normal University (Natural Science Edition),2022,54(3): 8-13.)

[15] LORENTE M,RIVEROS M S. Weights for Commutators of

the One-Sided Discrete Square Function,the Weyl Fractional Integral and Other One-Sided Operators [J]. Proc Roy Soc Edinburgh Sect A,2005,135(4): 845-862.

[16] 傅尊伟,陆善镇. 单边Triebel-Lizorkin空间及其应用 [J]. 中国科学: 数学,2011,41(1): 43-52. (FU Z W,LU S Z. One-Sided Triebel-

Lizorkin Space and Its Applications [J]. Scientia Sinica: Mathematica,2011,41(1): 43-52.)

(责任编辑: 赵立芹)