APP下载

衰退记忆型无阻尼吊桥方程的时间依赖拉回吸引子

2023-04-29白京汪璇

吉林大学学报(理学版) 2023年2期

白京 汪璇

摘要: 基于时间依赖空间上的过程理论,考虑带有衰退记忆的无阻尼吊桥方程解的长时间动力学行为. 首先,利用Faedo-Galerkin逼近法得到解的适定性; 其次,利用能量估计得到该非自治动力系统在相应解空间中存在拉回吸收集; 最后,利用收缩函数方法和共圈技术证明时间依赖拉回吸引子的存在性.

关键词: 吊桥方程; 拉回吸收集; 时间依赖拉回吸引子; 衰退记忆

中图分类号: O175.29  文献标志码: A  文章编号: 1671-5489(2023)02-0189-14

Time-Dependent Pullback Attractors for  Non-damping Suspension Bridge Equation with Fading Memory

BAI Jing,WANG Xuan

(College of Mathematics and Statistics,Northwest Normal University,Lanzhou 730070,China)

Abstract: Based on the process theory in time-dependent space,we considered the long-time dynamic behavior of the solution for the non-damping suspension bridge equation with

fading memory. Firstly,we obtained well-posedness of solution by using Faedo-Galerkin approximation method. Secondly,the non-autonomous dynamical system

had pullback absorb set in the corresponding solution space was obtained by using energy estimation. Finally, we proved the existence of time-dependent pullback attractors

by using  the  contraction function method and cocyclic technique.

Keywords: suspension bridge equation; pullback absorb set; time-dependent pullback attractor; fading memory

收稿日期: 2022-06-27.

第一作者簡介: 白 京(1996—),女,汉族,硕士研究生,从事无穷维动力系统的研究,E-mail: 2151659216@qq.com.

通信作者简介: 汪 璇(1973—),女,汉族,博士,教授,从事非线性微分方程和无穷维动力系统的研究,E-mail: wangxuan@nwnu.edu.cn.

基金项目: 国家自然科学基金(批准号: 12061062; 11961059).

参考文献

[1] LAZER A C,McKENNA P J. Large-Amplitude Periodic Oscillations in Suspensi

on Bridges: Some New Connections with Nonlinear Analysis [J]. SIAM Rev,1990,32(4): 537-578.

[2] ZHONG C K,MA Q Z,SUN C Y. Existence of Strong Solu

tions and Global Attractors for the Suspension Bridge Equations [J]. Nonlinear Anal: Theory,Methods Appl,2007,67(2): 442-454.

[3] TEMAM R. Infinite-Dimensional Dynamical Systems in

Mechanics and Physics [M]//Applied Mathematical Sciences. New York: Springer-Verlag,1998: 41-79.

[4] MA Q Z,ZHONG C K. Existence of Strong Solutions and

Global Attractors for the Coupled Suspension Bridge Equations [J]. J Differential Equations,2009,246(10): 3755-3775.

[5] MA Q Z,WANG S P,CHEN X B. Uniform Compact Attracto

rs for the Coupled Suspension Bridge Equations [J]. Appl Math  Comput,2011,217(14): 6604-6615.

[6] PARK J Y,KANG J R. Pullback D-Attractors for Non-autonomous Suspension Br

idge Equations [J]. Nonlinear Anal: Theory,Methods Appl,2009,71(10): 4618-4623.

[7] MA Q Z,WANG B L. Existence of Pullback Attractors f

or the Coupled Suspension Bridge Equations [J]. Electron J Differential Equations,2011,2011(16): 1-10.

[8] PARK J Y,KANG J R. Global Attractors for the Suspen

sion Bridge Equations with Nonlinear Damping [J]. Quart Appl Math,2011,69(3): 465-475.

[9] KANG J R. Long-Time Behavior of a Suspension Bridge Equations with Past History [J]. App Math Comput,2015,265: 509-519.

[10] 刘世芳,马巧珍. 具有历史记忆的阻尼吊桥方程强全局吸引子的存在性 [J]. 数学物理学报,2017,37A(4): 684-697. (LIU S F,MA Q Z. Existe

nce of Strong Global Attractors for Damped Suspension Bridge Equation with Historical Memory [J]. Acta Mathematica Scientia,2017,37A(4): 684-697.)

[11] 刘亭亭,马巧珍. 非自治Plate方程时间依赖强拉回吸引子的存在性[J]. 数学年刊,2017,38A(2):  125-144. (LIU T T,MA Q Z. The Existence of

Time-Dependent Strong Pullback Attractors for Non-autonmous Plate Equations [J]. Chinese Annals of Mathematics,2017,38A(2): 125-144.)

[12] MENG F J,WU J,ZHAO C X. Time-Dependent Global At

tractor for Extensible Berger Equation [J]. J Math Anal Appl,2019,469(2): 1045-1069.

[13] MA H L,WANG J,XIE J. Pullback Attractors for Nona

utonomous Degenerate Kirchhoff Equations with Strong Damping [J/OL]. Adv Math Phys,(2021-12-20)[2022-06-17]. https://doi.org/10.1155/2021/7575078.

[14] LI Y N,YANG Z J. Continuity of the Attractors in Tim

e-Dependent Spaces and Applications [Z/OL]. (2022-01-10)[2022-06-17]. https://arxiv.org/pdf/2201.0324/v1.pdf.

[15] SUN C Y,CAO D M,DUAN J Q. Non-autonomous Dynamic

s of Wave Equations with Nonlinear Damping and Critical Nonlinearity [J]. Nonlinearity,2006,19(11): 2645-2655.

(責任编辑: 赵立芹)