水心病菠萝果肉组织石蜡切片显微观察与分析
2023-03-18姚艳丽吴严李明伟付琼刘胜辉朱祝英张秀梅
姚艳丽 吴严 李明伟 付琼 刘胜辉 朱祝英 张秀梅
摘 要:水心病是一種菠萝果实生理性病害,导致菠萝果肉组织的细胞间隙充满细胞液而呈现出水渍状,严重影响果实的食用价值和商品价值。水心病已困扰菠萝产业发展多年,但其发生机制尚不清楚。为了探讨菠萝水心病的发病机理,本研究以菠萝主栽品种巴厘为材料,采用石蜡切片的方法对菠萝果实水心病发生过程及正常果和水心病果不同组织部位(花托、心皮、果序轴)进行显微观察。结果显示:菠萝果肉细胞结构与水心病密切相关:正常果实果肉细胞结构完整,细胞间隙明显,维管束形态结构完整,韧皮部细胞排列紧密整齐,木质部导管排列规则;而水心病果实果肉细胞受挤压变形,细胞壁破裂导致细胞结构不完整,维管束形态结构破坏,韧皮部挤压变形,木质部导管破坏形成一个空腔,随着水心病的发病进程加深,木质部空腔越大。通过对正常果实和水心病果实不同组织部位的形态观察,发现不同组织部位水心病导致的细胞结构变化基本一致,不同组织部位维管束形态结构存在明显差异,果序轴和花托部位的维管束符合单子叶植物维管束的典型特征,在每个维管束的外围,有厚壁机械组织组成的维管束鞘所包围。而在维管束两端,厚壁细胞更多。维管束鞘的里面为初生韧皮部和初生木质部,无束中形成层。而心皮部位的维管束结构则为非典型结构,大多数维管束外围无维管束鞘包围。不同组织部位以果序轴的维管组织最发达,其次是花托,心皮的维管束组织最不发达。此结果揭示了菠萝水心病发生过程中的组织形态变化,可为水心病发生机理的深入研究提供参考。
关键词:菠萝;水心病;细胞结构;石蜡切片;维管束中图分类号:S667.9 文献标识码:A
Analysis and Microscopic Observation of Paraffin Sections of Pineapple Pulp in Watercore
YAO Yanli1,2,3,4, WU Yan1,2,3, LI Mingwei1,2,3, FU Qiong1,2,3, LIU Shenghui1,2,3, ZHU Zhuying1,2,3, ZHANG Xiumei1,2,3*
1. South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524013, China; 2. Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, Zhanjiang, Guangdong 524013, China; 3. Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Zhanjiang, Guangdong 524013, China; 4. Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524013, China
Abstract: Watercore is a kind of physiological disease of pineapple fruit, which causes the intercellular space of pineapple pulp tissue to be filled with cell fluid and appear as water-soaked, which seriously affects the edible value and commercial value of the fruit. Watercore has troubled the development of pineapple industry for many years, but its mechanism is not clear. In order to explore the pathogenesis of watercore in pineapple, this study took the main pineapple cultivar Comte de paris as the material, the paraffin section method was used to observe the process of watercore in pineapple fruit and the different tissue parts of normal and watercore fruit (flower stock, carpel, fruit sequence axis). The results showed that the cell structure of pineapple pulp was closely related to watercore: the cell structure of normal fruit pulp was complete, the cell space was obvious, the vascular bundle was intact, the phloem cells were arranged tightly and neatly, and the xylem ducts were arranged regularly. However, fruit flesh cells in watercore are squeezed and deformed, and the cell wall rupture results in incomplete cell structure, destruction of vascular bundle morphology, extrusion and deformation of phloem, and destruction of xylem ducts to form a cavity. With the deepening of the onset process of watercore, the xylem cavity becomes larger. Through the morphological observation of different tissue parts of normal fruits and fruit with watercore, it was found that the changes of cell structure caused by watercore in different tissue parts were basically the same. There were obvious differences in vascular bundle morphology and structure in different tissue parts. The vascular bundles in the fruit sequence axis and receptacle were in accordance with the typical characteristics of vascular bundles in monocotyledons. The vascular bundles were surrounded by a sheath composed of thick-walled mechanical tissue at the periphery of each vascular bundle. On the other hand, there were more sachmatous cells at both ends of the vascular bundle. The inner part of the vascular bundle sheath contains primary phloem and primary xylem without the middle bundle cambium. The vascular bundle structure of the carpel was atypical, and most of the vascular bundles were not surrounded by vascular sheath. Vascular tissues in the fruit sequence axis were the most developed, followed by receptacle, and vascular tissues in the carpel were the least developed. These results revealed the morphological changes of pineapple watercore during its occurrence and provided reference for further research on the mechanism of watercore.
Keywords: pineapple; watercore; cell structure; paraffin section; vascular bundle
DOI: 10.3969/j.issn.1000-2561.2023.12.017
菠萝(Ananas comosus)是热带和亚热带地区最重要的经济作物之一。菠萝水心病是菠萝采前普遍发生的一种生理性病害,主要表现为果肉细胞间隙充满液体而呈现水浸状,严重时会散发出酒糟味和恶臭味,导致品质劣变,失去食用价值,严重地影响了果实的商品价值。水心病已成为决定菠萝果实品质的主要限制因子,也是影响我国菠萝产业健康发展的重要因素。目前,对菠萝水心病发生机制的研究主要集中在水心病的诱导因素及生理生化特征变化上,总的来说,导致水心病发生的主要因素有5个:(1)异常温度。菠萝采前2~4周高温或低温胁迫,水心病显著增加[1-2]。(2)植物激素。在菠萝生产中,赤霉素(GA3)被广泛用于增大果实大小。然而,外源施用GA3可使菠萝水心病的发生率增加。(3)矿物质营养缺乏。果实钙含量低被认为是造成水心病的重要原因。花后喷施钙、硅肥可降低水心病的发生[3]。(4)糖代谢。在菠萝果实发育后期,果肉中细胞壁蔗糖酶高活性增加卸载至果肉非原生质体中的蔗糖,从而导致非原生质体溶质浓度增加(溶质势降低),水渗透进非原生质体而导致水心病的发生[4]。(5)冠芽。菠萝采收前1~2个月去除冠芽,水心病发病率增加;冠芽越大,水心病越低[5]。但也有研究表明,去除冠芽对水心病的发生无显著影响[6]。现有研究表明,温度、钙、冠芽及糖积累与糖代谢酶活性与水心病的发生相关,类似的因素也已被证明与苹果和梨的水心病发生有关[7-9],但尚未得出统一认识,使得菠萝水心病仍未得到有效控制,在很大程度上降低了菠萝果实的商品价值。所以,探明菠萝水心病发生的机制对于预测和防止水心病的发生具有重要理论和实际意义。本文对菠萝水心病果实不同组织及其发病过程的细胞组织结构特征进行研究,以期明确水心病果实不同组织及发病过程中细胞结构的变化规律,为菠萝水心病发生机理研究及有效防治提供理论依据。
1 材料與方法
1.1 材料
以菠萝主栽品种巴厘为试验材料,于2022年3—5月在中国热带农业科学院南亚热带作物研究所菠萝种质资源鉴定圃采集。于谢花后60 d开始取样,每7 d取样1次,至果实成熟。挑选无机械损伤、大小基本一致、无病虫害的菠萝果实9个,立即带回实验室处理。
1.2 方法
沿果实纵径切开后观察水心病的发病情况,分别选取胎座、花托和果芯3个部位(图1),切成0.5 cm左右的小块,立即用70% FAA固定液固定(不少于组织10倍体积)。石蜡切片制作步骤如下:
(1)脱水。采用赵俊等[10]的方法并有所改进,将固定好的果实样品用梯度乙醇(50%、70%、80%、95%、100%)进行脱水,每个梯度30 min。
(2)透明。脱水后的样品采用二甲苯进行透明处理,乙醇与二甲苯(体积比分别为3∶1,1∶1,1∶3)各级时间均为1.5 h→二甲苯(2次),每次1 h。
(3)浸蜡。二甲苯与石蜡(体积比1∶1)42 ℃ 1~2 d→二甲苯与石蜡(体积比1∶1)48 ℃ 2 h→二甲苯与石蜡(体积比1∶3)50 ℃ 2 h→石蜡(2次),60 ℃,每次1 h。
(4)包埋。将浸蜡透明的果肉组织置于组织包埋机(Arcadia)中进行包埋,包埋后材料自然冷却。
(5)切片。将石蜡包埋好的果肉组织块用Kd1508冷冻石蜡二用切片机连续切片,切片厚度为10 μm。
(6)脱蜡。采用二甲苯和乙醇的梯度溶液对切片进行脱蜡处理。二甲苯2次(每次20 min)→乙醇和二甲苯(体积比1∶1)(2 min)→100%乙醇2次(每次2 min)→95%乙醇(1 min)→80%乙醇(1 min)→70%乙醇(1 min)→50%乙醇(1 min)→30%乙醇(1 min)→15%乙醇(1 min)→蒸馏水漂洗2次(每次1 min)。
(7)染色。脱蜡完成后,将载玻片放入0.5%甲苯胺蓝溶液中染色0.5~1 h,然后反顺序进行脱蜡步骤即可。
(8)封片。采用加拿大树胶封片,37~40 ℃恒温箱种过夜烘干。
(9)观察。采用蔡司NIKON 80i生物显微镜对切片进行观察拍照,分析细胞显微结构变化。其中,P表示薄壁细胞,S表示厚壁细胞,Xy表示木质部,Xd表示木质部导管,Xc表示原生木质部空腔,Ph表示韧皮部。
2 结果与分析
2.1 菠萝水心病发病过程显微观察
石蜡切片观察菠萝果实花托部位细胞显微结构,结果显示,花托组织中维管束排列稀疏,在每个维管束的外围,有厚壁机械组织组成的维管束鞘所包围。而在维管束两端,厚壁细胞更多。维管束鞘的里面为初生韧皮部和初生木质部,无束中形成层,菠萝果肉细胞的这种维管束特征属于有限维管束,并符合单子叶植物维管束的典型特征。
如图2所示,谢花后60 d果实发育正常,维管束形态结构完整,木质部导管排列整齐,导管壁清晰可见,其周围薄壁细胞细胞壁较平滑,细胞偏圆形,细胞间隙明显(图2A、图2B)。谢花后67 d果实水心病发生在中部小果的果腔壁上(主要由心皮发育而来),花托部位无水心病发生,维管束形态结构完整,周围薄壁细胞呈长圆形,细胞间隙不明显(图2C、图2D)。谢花后74 d果实水心病进一步加深,整个果实小果的果腔壁上均有水心病的发生,花托部位有轻度水心病发生,维管束中木质部导管遭到破坏,其四周的薄壁细胞互相分离,形成了一个气隙或称原生木质部空腔(图2E、图2F)。谢花后81 d果实水心病进一步加重,整个果肉均有水心病发生,维管束结构破坏严重,木质部腔隙增大,其周围薄壁细胞中大部分细胞的细胞壁降解,细胞结构不完整(图2G、图2H)。
2.2 水心病對菠萝花托组织的细胞显微结构影响
分别选取正常果和水心病果同一位置的花托组织进行切片观察,结果显示,正常果实花托组织细胞结构完整,细胞间隙明显,维管束形态结构完整,韧皮部细胞排列紧密整齐,仅在木质部外侧有分布,木质部导管排列规则(图3A、图3B)。水心病果实花托组织果肉细胞变形,细胞壁出现解体,细胞自溶形成空洞。维管束形态结构破坏,木质部形成一个空腔(图3C、图3D)。
2.3 水心病对菠萝心皮组织的细胞显微结构影响
石蜡切片观察菠萝正常果实和水心病果实同一位置心皮组织显微结构,结果表明,水心病果实心皮组织与正常果实心皮组织的薄壁细胞形态基本一致,但正常组织中的薄壁细胞细胞间隙明显,而水心病心皮组织中细胞间隙不明显,这是由于细胞壁降解物质在间隙暂时积累的缘故。正常果实中维管束形态结构完整,木质部导管排列整齐,韧皮部在木质部两侧均有分布,形成双韧维管束(图4A、图4B)。水心病果实中维管束类型同正常果实中的一样,也为双韧维管束,但其韧皮部断裂分散,木质部具有空腔(图4C、图4D)。
2.4 水心病对菠萝果序轴组织的细胞显微结构影响
石蜡切片观察菠萝正常果实和水心病果实果序轴组织显微结构,如图5显示,正常果实果序轴组织薄壁细胞结构完整,细胞壁平滑偏圆形,而水心病果实中薄壁细胞细胞壁几乎全部解体,细胞自溶形成大片空洞。与花托和心皮组织中维管束相比,果序轴中的维管束发达且数量多。正常果实中维管束形态结构完整,韧皮部细胞排列紧密整齐,仅在木质部外侧有分布,木质部导管排列规则,与花托组织中维管束形态基本一致(图5A、图5B)。水心病果实中韧皮部被挤压变形,木质部导管排列紊乱具有空腔,与花托和心皮中的结构特征相似(图5C、图5D)。
3 讨论
现有研究认为水心病是一种由不利环境条件引发的生理失调,而不是由病原菌引起,但发病机理尚不清楚[11]。INOMATA等[12]研究表明,水心病的发生与果实成熟和成熟过程有很大关系,并伴随糖积累和细胞壁成分的改变,例如果胶多糖,在许多水果的成熟和软化过程中,已经观察到果胶多糖的溶解和解聚作用[13-15]。CHUN等[16]研究发现,在日本梨水心病严重组织中CDTA-可溶性果胶和4% KOH可溶性半纤维素多糖的分子质量降解和细胞壁结构破坏。本研究发现,水心病菠萝果实果肉细胞细胞壁降解,导致细胞溶液漏入细胞间隙,细胞结构遭到破坏,而正常果实果肉细胞结构完整,与在日本梨上的研究结果基本一致。
果实内物质积累与其水分运输密切相关,水分循环带动着果实内碳水化合物、矿质元素等的积累。维管束是果实水分和营养物质运输的主要通道,其形态结构直接影响着物质的运输与积累,从而影响果实的发育和品质形成[17]。有研究表明,果实维管束中木质部结构和功能的丧失导致木质部运输速率下降[18]。对桃果实缝合线软化与维管束形态结构的关系研究表明,随着桃果炭的发育,腺腔(空腔)不断扩大,腺腔内含物含量也逐渐增多,且认为腺腔可能起着多糖积累点的作用[19]。本研究发现菠萝正常果实维管束形态结构保持完整,无原生木质部空腔,而水心病菠萝果实中维管束形态结构遭到破坏,木质部导管解体而形成一个空腔,且随着水心病发病程度的加深而增大,表明果实中输导组织的改变导致物质运输能力的改变,细胞代谢紊乱,从而导致水心病的发生。
4 结论
石蜡切片显微结构观察表明,菠萝水心病的发生与果肉细胞细胞壁破裂和维管束形态结构的破坏密切相关。
参考文献
[1] CHEN C C. Effects of fruit temperature, calcium, crown and sugar metabolizing enzymes on the occurrence of pineapple fruit translucency[D]. Manoa: University of Hawaii, 1999.
[2] PAULL R E, REYES M E Q. Preharvest weather conditions and pineapple fruit translucency[J]. Scientia Horticulturae, 1996, 66: 59-67.
[3] CANO-REINOSO D M, KHARISUN K, SOESANTO L, WIBOWO C. Effect of calcium and silicon fertilization after flowering on pineapple mineral status and flesh translucency[J]. Plant Physiology Reports, 2022, 27(1): 96-108.
[4] CHEN C C, PAULL R E. Sugar metabolism and pineapple flesh translucency[J]. Journal of the American Society for Horticultural Science, 2000, 125(5): 558-562.
[5] MURAI K, CHEN N J, PAULL R E. Pineapple crown and slip removal on fruit quality and translucency[J]. Scientia Horticulturae, 2021, 283: 110087.
[6] CHEN C C, PAULL R E. Fruit temperature and crown removal on the occurrence of pineapple fruit translucency[J]. Scientia Horticulturae, 2001, 88: 85-95.
[7] SUGIURA T, OGAWA H, FUKUD N, MORIGUCHI T. Changes in the taste and textural attributes of apples in response to climate change[J]. Scientific Reports, 2013, 3: 2418.
[8] FAUST M, SHEAR C B, WILLIAMS M W. Disorders of carbohydrate metabolism of apples (watercore, internal breakdown, low temperature and carbon dioxide injuries)[J]. Botanical Review, 1969, 35(2): 169-194.
[9] HAYAMA H, IWATANI A, NISHIMOTO T, OYA Y, NAKAMURA Y. Watercore disorder in Japanese pear ‘Niitaka is increased by high fruit temperatures during fruit maturation[J]. Scientia Horticulturae, 2014, 175: 27-32.
[10] 趙俊, 木万福, 张志星. 植物石蜡切片技术改进[J]. 安徽农学通报, 2009, 15(5): 69, 90.ZHAO J, MU W F, ZHANG Z X. Improvement of plant paraffin section technical[J]. Anhui Agricultural Science Bulletin, 2009, 15(5): 69, 90. (in Chinese)
[11] DART J A, NEWMAN S M. Watercore of apples[M]. State of New South Wales: Madison Extension Publishing, 2005: 1-2.
[12] INOMATA Y, MURASE S, NAGARA M, SHINOKAWA T, SUZUKI K. Relationship between watercore and membrane permeability in the Japanese pear (Pyrus pyrifolia Nakai CV. Hosui)[J]. Journal of the Japanese Society for Horticultural Science, 1993, 62(2): 267-275.
[13] CHUN J, TAMURA F, TANABE K, ITAI A. Physiological and chemical changes associated with watercore development induced by GA in Japanese pear‘Akibae and ‘Housui[J]. Journal of the Japanese Society for Horticultural Science, 2003, 72(5): 378-384.
[14] FISHER R L, BENNETT A B. Role of cell wall hydrolases in fruit ripening[J]. Annual Review of Plant physiology and Plant Molecular Biology, 1991, 42: 675-703.
[15] SAKURAI N, NEVINS D J. Relationship between fruit softening and wall polusaccharides in avocado (Persea amercana Mill) mesorcarp tissues[J]. Plant and Cell Physiology, 1997, 38: 603-610.
[16] CHUN J, TAMURA F, TANABE K, ITAI A, TABUCHI T. Cell wall degradation and structural changes of GA-induced watercored tissues in Janpanese pear ‘Akibae and ‘Housui[J]. Journal of the Japanese Society for Horticultural Science, 2003, 72(6): 488-496.
[17] 王娜, 李鳳海, 王志斌, 周宇飞, 史振声. 玉米维管束性状的研究进展[J]. 玉米科学, 2011, 19(3): 148-152.WANG N, LI F H, WANG Z B, ZHOU Y F, SHI Z S. Progress in study on vascular bundles characters of corn[J]. Journal of Maize Sciences, 2011, 19(3): 148-152. (in Chinese)
[18] BONDADA B R, MATTHEWS M A, SHACKEL K A. Functional xylem in the post-veraison grape berry[J]. Journal of Experimental Botany, 2005, 56(421): 2949-2957.
[19] 潘叶, 马焕普, 刘志民. 桃果实缝合线软化与维管束发育及其形态结构的关系[J]. 果树学报, 2009, 26(1): 32-36.PAN Y, MA H P, LIU Z M. Relationship between suture softening and morphological structure of vascular bundle of peach fruit[J]. Journal of Fruit Science, 2009, 26(1): 32-36. (in Chinese)