APP下载

YTHDC1 m6A修饰调控与疾病发病机制的研究进展*

2023-03-10韩韦钰陈远兴李超中刘围围赵永超赵然尊

中国病理生理杂志 2023年2期
关键词:细胞核调控调节

韩韦钰, 陈远兴, 李超中, 刘围围, 赵永超, 赵然尊

·综述·

YTHDC1 m6A修饰调控与疾病发病机制的研究进展*

韩韦钰, 陈远兴, 李超中, 刘围围, 赵永超, 赵然尊△

(遵义医科大学附属医院心血管内科,贵州 遵义 563000)

6-甲基腺苷;甲基结合蛋白;表观遗传学

表观遗传学是指DNA序列不变的情况下,基于非基因序列改变所致的基因表达水平的变化[1],如DNA甲基化[2]、RNA甲基化[3]、组蛋白修饰[4]、染色质构象变化[5]等。表观遗传学在真核生物中的变化主要是调控细胞增殖[6-7]、分化[8]、代谢[3, 9]、周期循环[10]以及免疫调控[11]等生物学过程,这一过程中通过某些调控分子量的变化或发生结构修饰变化等,进而靶向调节下游靶基因的生物学效应。

6-甲基腺苷(6-methyladenosine, m6A)是几乎所有真核生物mRNA中最丰富的细胞内修饰之一,由甲基转移酶和去甲基化酶动态调节-腺苷甲硫氨酸的转移修饰,进而被甲基结合蛋白识别并调控生命活动过程。YT521-B同源结构域(YT521-B homology domain, YTH domain)家族的分子,含有识别m6A的复合体结构[12],包括常见且重要的结合蛋白YTHDC1/2和YTHDF1/2/3[3],其中YTHDC1是m6A修饰中唯一一个定位于细胞核内的YTH家族甲基结合蛋白[13],它通过影响RNA的核定位[14]、稳定性[15]、衰减[16]和剪接[17]等过程调控多种代谢反应,进而影响疾病的发生发展。近年研究表明,YTHDC1的许多修饰功能在调控疾病的发生发展中发挥着关键作用。本文重点阐述了YTHDC1通过剪接、出核、稳定性和降解等作用方式对疾病发生发展的调控作用及机制。

1 YTHDC1 m6A修饰调控与疾病发病机制的研究

1.1YTHDC1通过剪接机制调控疾病在人类基因组中,剪接贯穿生命活动的始终,剪接变异常与人类疾病的发生发展密切相关[18]。YTHDC1是一个广泛表达的核蛋白,参与定位于YT体的剪接位点[19],与包括富含丝氨酸/精氨酸剪切因子2(serine/arginine-rich splicing factor 2, SRSF2)在内的多种已知的剪接体蛋白共定位[20]。通常DNA转录产生不成熟的前体RNA,需经过一系列的酶切修饰最终成为成熟的mRNA,进而翻译为蛋白以参与人体一切生物学过程和生理功能。m6A修饰的YTHDC1通过募集和调节前体mRNA剪接因子进入靶向mRNA的结合区域而调节mRNA剪接[17],在参与前体mRNA走向成熟的过程中发挥不可替代的作用。研究表明,YTHDC1以浓度依赖的方式调节转录本剪接位点的选择[19]。异常的RNA剪接产生的替代基因亚型可调控疾病的发生发展[21],但这一过程是如何被激活、识别和发挥调控信号通路作用尚未可知。

m6A修饰直接干扰RNA与RNA结合蛋白之间的相互作用。一般mRNA分子的二级结构由于受m6A修饰作用而影响剪接因子与靶基因序列的结合[22],具有YTH结构域的蛋白质可结合m6A修饰的RNA并调控下游分子的表达。Li等[23]发现,肺癌中Aurora激酶A(Aurora kinase A, AURKA)的核移位是RNA异常剪接的先决条件[24],特异性触发剪接因子RNA结合基序4(RNA-binding motif 4, RBM4)可产生从全亚型(RBM4 full isoform, RBM4-FL)到短亚型(RBM4 short isoform, RBM4-S)的剪接,RBM4-FL通过抑制某些信号通路活性而发挥抗肿瘤作用,而RBM4-S作用正相反,拮抗RBM4-FL作用而具有致癌性。在肺癌的发生发展过程中,细胞核AURKA的非经典激活促进m6A甲基结合蛋白YTHDC1介导的肿瘤抑制基因RBM4的剪切,破坏SRSF3与YTHDC1的结合,抑制RBM4-FL诱导的m6A-YTHDC1-SRSF3信号通路激活,促进RBM4-S的致癌作用。同样地,作为致癌基因的异黏蛋白(metadherin,)亦是诱发肿瘤发生的重要分子[25]。研究表明,MTDH表达和胞质定位与疾病的低存活率相关;MTDH特异性定位于核斑点上[26],与同定位于核内的YTHDC1相互作用,在不同的剪接位点上进行剪接调控,调控位点包括乳腺癌易感性基因1(breast cancer susceptibility gene 1, BRCA1)、小鼠双微体基因2(mouse double minute 2, MDM2)和血管内皮生长因子(vascular endothelial growth factor, VEGF)[27]等肿瘤相关蛋白转录本,进而影响肿瘤的发展、术后疗效与疾病预后[28]。先前研究发现,人乳头瘤病毒16型(human papillomavirus type 16, HPV16)E6/E7 mRNA是双结构,具有多个5'端和3'端剪接位点[29-30],其剪接受多个作用于HPV16 mRNA的顺式调控元件和同源的细胞反式作用剪接因子调控[31];近期研究表明,HPV16还可被剪接为m6A甲基化的环状E6/E7 RNA。Cui等[32]发现,细胞核中的YTHDC1与HPV16 mRNA结合,过表达YTHDC1可抑制HPV16 E6/E7 mRNA的剪接,以牺牲E7 mRNA为代价保留E6编码内含子,促进HPV16的剪接成为成熟的mRNA。其他研究也发现在某些心脏疾病中YTHDC1通过剪接调节发挥重要作用。Gao等[33]发现,心脏特异性条件性敲减可导致小鼠左心室显著扩大和严重收缩功能障碍,并伴随心肌细胞收缩力下降和肌节排列紊乱,即发生扩张型心肌病;高通量测序发现YTHDC1通过对m6A修饰的肌凝蛋白(titin)mRNA的异常剪接,诱导心肌细胞收缩障碍。见表1。

表1 YTHDC1在调控疾病进展过程中发挥m6A修饰功能作用

RBM4: RNA-binding motif 4; HPV: human papillomavirus; DCM: dilated cardiomyopathy; HBV: hepatitis B virus; PML: promyelocytic leukemia; SRSF: serine/arginine-rich splicing factor; MALAT1: metastasis-associated lung adenocarcinoma transcript 1; PDPK1: 3-phosphoinositide dependent protein kinase 1; PDAC: pancreatic ductal adenocarcinoma; SLC7A5: solute carrier family 7 member 5; AML: acute myeloid leukemia; MCM4: minichromosome maintenance 4; ESC: embryonic stem cell.

总之,YTHDC1通过介导mRNA发生可变剪接,参与靶分子结构变化、剪接因子突变、前体RNA成熟以及剪接后出核翻译等多种生物学过程,这种通过转录后修饰调控来影响相应的功能蛋白的表达变化,对疾病的发生发展发挥巨大的影响。

1.2YTHDC1通过出核机制调控疾病大多数mRNA输出是由多种蛋白质因子和前体mRNA修饰特异性控制的,如TAP-p15异二聚体[44]、核输出蛋白1(exportin 1, XPO1)[45]、适配器蛋白转录输出1(transcription-export-1, TREX-1)[46]、TREX-2[47]以及富含丝氨酸/精氨酸蛋白等。研究表明,m6A甲基结合蛋白YTHDC1介导甲基化mRNA从细胞核输出到细胞质[14],促进成熟RNA进入翻译场所中,从而保证细胞生物过程的正常运行。缺失可导致细胞核内m6A mRNA的停留时间延长,使细胞核内转录物的聚集增多而细胞质内的转录物减少,进而转录本翻译为功能性蛋白质亦相应减少,导致生物体功能代谢紊乱。近期众多研究也发现参与m6A修饰的YTHDC1也涉及RNA的出核过程[48],但这一过程的具体作用机制尚未完全清楚。

新近研究发现,YTHDC1可能通过与富含丝氨酸/精氨酸蛋白(serine/arginine-rich protein, SR)相互作用调控mRNA的核输出过程[14, 49]。Roundtree等[14]发现,HeLa细胞中YTHDC1介导m6A修饰的mRNA从细胞核转移到细胞质中,其机制是YTHDC1与出核适配器蛋白SRSF3相互作用,促进核内mRNA与SRSF3和RNA出核受体1(nuclear RNA export factor 1, NXF1)结合,从而介导其出核过程,YTHDC1的这一作用进一步拓展了转录本的化学修饰作用。尽管多项研究显示m6A修饰会对RNA稳定性和转录本翻译产生负面影响,但Kim等[34]发现m6A修饰对乙型肝炎病毒(hepatitis B virus, HBV)转录产生一个作为反转录模板的前基因组RNA(pregenomic RNA, pgRNA),在细胞质包装中产生积极的影响;该反转录模板可产生松弛的环状DNA,并转化为共价闭合环状DNA(covalently closed circular DNA, cccDNA);在这一过程中,YTHDC1通过识别m6A甲基化的HBV转录本,促进其由胞核转运至胞质中;敲减时细胞中病毒转录本则聚集在细胞核,且细胞核相关DNA及其转录产生的cccDNA合成减少,从而减少HBV核心颗粒的逆转录,影响HBV的生命周期,进而达到阻止肝脏疾病的发病与进展的治疗效果。Chen等[35]在血液恶性疾病相关研究中也发现,减少YTHDC1可导致不同的致癌基因mRNA滞留于细胞核中,核斑点特异性长链非编码RNA肺腺癌转移相关转录本1(metastasis-associated lung adenocarcinoma transcript 1, MALAT1)在调控调控维甲酸受体α(retinoic acid receptor α, RARα)mRNA从细胞质到细胞核的输出过程依赖YTHDC1与SRSF3的相互作用,需要YTHDC1识别m6A修饰进而调控恶性造血中的髓系祖细胞分化。

综上所述,YTHDC1可与核出口适配器蛋白结合调控嵌合mRNA的出核过程,缺失将导致部分mRNA在胞核内过度蓄积而胞质转录物的不足,进而调控基因表达和细胞生物功能,参与多种疾病的发生发展。

1.3YTHDC1通过稳定性机制调控疾病多种致病因素可导致的一系列影响机体和组织细胞内环境稳态的功能蛋白的产生,这些蛋白可能发挥不良调节作用参与疾病的发生发展。m6A修饰可靶向RNA使其稳定性降低,诱导RNA降解,进而实现对靶基因表达的调控,调节细胞对外界环境的适应性[50-51]。

近期研究发现,YTHDC1可通过m6A依赖方式识别不同的靶标并介导不同的RNA命运,例如靶向调节miRNA、lncRNA和mRNA,影响其内在结构的稳定性,调控其降解过程而发挥诱导或治疗疾病的目的。Cao等[36]在抗骨肉瘤治疗的研究中发现,miR-451a通过YTHDC1介导m6A修饰增强了3-磷酸肌醇依赖性蛋白激酶1(3-phosphoinositide dependent protein kinase 1, PDPK1)mRNA的稳定性,抑制蛋白激酶B(protein kinase B, PKB)/哺乳动物类雷帕霉素靶蛋白(mammalian target of rapamycin, mTOR)的磷酸化修饰信号通路,抑制骨肉瘤细胞增殖和迁移,促进骨肉瘤细胞凋亡,从而抑制骨肉瘤的进展。此外,Hou等[15]在胰腺导管腺癌(pancreatic ductal adenocarcinoma, PDAC)中也发现,YTHDC1通过调节mRNA的稳定性而影响疾病预后,miR-30d在胰腺导管腺癌组织中的表达显著降低,并且抑制肿瘤的生长与转移,与疾病预后良好显著相关;YTHDC1通过降低前体miR-30d稳定性促进产生成熟的miR-30d,miR-30d再直接靶向作用于基因启动子结合的转录因子Runt相关转录因子1(Runt-related transcription factor 1, RUNX1)来调节溶质载体家族2成员1(solute carrier family 2 member 1, SLC2A1)和己糖激酶1(hexokinase 1, HK1)的表达,进而抑制肿瘤的生长,减少PDAC的不良预后。

YTHDC1亦可调节LncRNA稳定性使其与非编码RNA的相互作用进而发挥不同的生物学功能,并调控疾病的发生与发展。Tang等[37]研究发现,在直肠癌中长链非编码RNA 857(LINC00857)具有明确的致癌性,进一步研究发现LINC00857与YTHDC1相互作用,进而调节溶质载体家族7成员5(solute carrier family 7 member 5, SLC7A5),增加SLC7A5 mRNA稳定性,从而促进结直肠癌细胞的增殖和迁移。YTHDC1作为核结合蛋白在调节RNA代谢方面也具有重要的作用。Sheng等[38]发现,YTHDC1是人类急性白血病细胞增殖所必须的,其在急性髓系白血病(acute myeloid leukemia, AML)患者的白血病细胞中表达明显增高;还有研究发现,阻断YTHDC1可降低小鼠DNA复制的关键调节因子微小染色体维持蛋白4(minichromosome maintenance 4, MCM4)的稳定性,降低其表达水平,从而显著抑制白血病细胞的增殖以及疾病的进展;进一步研究显示,单倍体的敲减可抑制白血病细胞的增殖与存活,但不会抑制体内造血干细胞与祖细胞的生长。然而,在不同疾病中YTHDC1的表达作用却截然不同结果。Zhou等[39]从罹患葡萄膜炎小鼠视网膜细胞的单细胞RNA测序数据中发现,YTHDC1在视网膜小胶质细胞中显著表达下调;YTHDC1通过维持sirtuin 1 mRNA的稳定性,减少信号传导及转录激活因子3(signal transducer and activator of transcription 3, STAT3)磷酸化,从而抑制小胶质细胞向M1型极化,表明YTHDC1通过调控靶标mRNA稳定性对小胶质细胞的炎症反应调节至关重要。总之,YTHDC1在骨肉瘤、PDAC和白血病等多种恶性肿瘤中通过靶向调节RNA稳定性等而调控疾病的发生发展。

1.4YTHDC1通过降解机制调控疾病2020年首次报道YTHDC1可通过促进染色体相关调控RNA(chromosome-associated regulatory RNAs, carRNAs)的衰减来增加染色质的可及性并激活转录[40],在小鼠胚胎干细胞(embryonic stem cell, ESC)中敲除可增加染色质的可及性并激活依赖m6A的转录方式,YTHDC1通过外泌体靶向介导核因子的降解,促进包括启动子相关RNAs、增强子RNAs和重复RNAsCarRNAs在内的carRNAs的一个子集的衰变,促进染色质的开放和下游的转录。正常细胞中,YTHDC1的低表达维持细胞增殖的平稳以及细胞内环境的稳态;而在肿瘤细胞中,YTHDC1的高表达介导相关RNA的衰减来激活转录过程,导致肿瘤细胞的恶性增殖。在此研究基础上,Liang等[41]在糖尿病患者的表皮、短期高糖处理的人角质细胞株以及长期高血糖小鼠模型中发现选择性自噬接头蛋白1(sequestome 1, SQSTM1)显著表达下调,伴随着细胞自噬作用减弱;同时与SQSTM1相互作用的YTHDC1也同步表达下调,YTHDC1的减少促使细胞核中SQSTM1 mRNA降解,并与ELAV样RNA结合蛋白1(ELAV-like RNA binding protein 1, ELAVL1/HuR)相互作用共同调节SQSTM1表达,并调控高糖条件下诱导的角质细胞自噬、凋亡以及伤口愈合的功能作用,而内源性过表达YTHDC1则可挽救高糖诱导的自噬流量的阻断,促进高糖自噬导致的表皮伤口的愈合。Li等[42]通过胶质瘤的甲基化免疫共沉淀分析显示YTHDC1与SRSF3起始密码子区结合,并以m6A依赖的方式介导SRSF转录本的无意义衰减,降低SRSF蛋白的表达进而导致可变剪接异构体开关发生显著变化,这揭示了YTHDC1在胶质母细胞瘤生长和肿瘤进展的机制。YTHDC1也参与缺血性疾病的病理生理过程。Zhang等[43]研究了YTHDC1与神经细胞活性和缺血性卒中的关系时发现YTHDC1是一种新的神经元活性的调节因子,敲减表达将加重缺血性脑细胞损伤,而过表达YTHDC1将促进磷酸酶及张力蛋白同源物(phosphatase and tensin homolog, PTEN)mRNA降解,增加PKB磷酸化,促进脑缺血后神经元的存活。

综上所述,YTHDC1在多种恶性疾病中通过对自噬受体、凋亡蛋白等进行修饰降解,或者与起始密码子区结合,介导无意义降解,参与多种病理过程的调控,进而达到调节疾病发生发展的过程。

2 总结与展望

大量研究已证实,YTHDC1作为m6A甲基结合蛋白,在基于识别m6A修饰的基础上通过调节靶分子的剪接、出核、稳定性和降解等作用于下游分子,调控疾病的发生发展,在肿瘤[52-53]以及非肿瘤性疾病[54-55]的研究进展中发挥着不可或缺的作用(图1),从甲基结合蛋白的研究角度进一步丰富m6A RNA修饰领域的研究,促进表观遗传学的发展。

Figure 1. The role of YTHDC1 in disease regulation.

尽管已有较多关于m6A甲基结合蛋白YTHDC1修饰功能作用的报道,但仍有许多问题有待阐明。YTHDC1作为定位于细胞核内的甲基结合蛋白,大多仅是单独研究YTHDC1对下游靶分子的作用,未深入研究其作用识别的-腺苷甲硫氨酸具体是由哪些甲基转移酶或者去甲基化酶参与修饰的。近期Liu等[56]研究发现YTHDC1以m6A依赖的方式对发育早期小鼠胚胎干细胞的维持,但未阐明调节m6A差异变化具体机制。YTHDC1具有多种不同的作用方式发挥生物学效应,包括调控剪接、出核、稳定性、降解和翻译等。但目前的相关研究中,在RNA翻译水平的研究少见[49],因此亟需从翻译等多方面深入研究YTHDC1功能。此外,YTHDC1通过结合不同的RNA,包括miRNA[15]、LncRNA[37]、circRNA[57]和mRNA[41]等发挥各自不同的生物学效应,其结合的方式及效应是否与不同种类RNA的结构不同相关,尚未进行有效探究。随着对YTHDC1深入研究和认识,阐明YTHDC1的调控机制与分子效应,不仅将丰富表观遗传学在人类疾病发生发展中的作用,而且可能成为多种人类疾病潜在的诊断生物标志物和治疗靶标。

[1] Mi S, Shi Y, Dari G, et al. Function of m6A and its regulation of domesticated animals' complex traits[J]. J Anim Sci, 2022, 100(3):skac034.

[2] Nie WF. DNA methylation: from model plants to vegetable crops[J]. Biochem Soc Trans, 2021, 49(3):1479-1487.

[3] An Y, Duan H. The role of m6A RNA methylation in cancer metabolism[J]. Mol Cancer, 2022, 21(1):14.

[4] Shvedunova M, Akhtar A. Modulation of cellular processes by histone and non-histone protein acetylation[J]. Nat Rev Mol Cell Biol, 2022, 23(5):329-349.

[5] Pacheco MB, Camilo V, Henrique R, et al. Epigenetic editing in prostate cancer: challenges and opportunities[J]. Epigenetics, 2022, 17(5):564-588.

[6] Pan J, Liu F, Xiao X, et al. METTL3 promotes colorectal carcinoma progression by regulating the m6A-CRB3-Hippo axis[J]. J Exp Clin Cancer Res, 2022, 41(1):19.

[7]严沁宇, 刘桐, 任艺艺, 等. m6A修饰在鳞状细胞癌中的作用研究进展[J]. 中国病理生理杂志, 2022, 38(3):543-552.

Yan QY, Liu T, Ren YY, et al. Progress in investigating the role of m6A modification in squamous cell carcinoma [J]. Chin J Pathophysiol, 2022, 38(3):543-552.

[8] Li J, Zhang X, Wang X, et al. The m6A methylation regulates gonadal sex differentiation in chicken embryo[J]. J Anim Sci Biotechnol, 2022, 13(1):52.

[9]张哲明, 吴艳, 卞涛. RNA m6A修饰在肺部疾病中的研究进展[J]. 中国病理生理杂志, 2021, 37(9):1719-1723.

Zhang ZM, Wu Y, Bian T. Advances in RNA m6A modification in lung diseases[J]. Chin J Pathophysiol, 2021, 37(9):1719-1723.

[10] Li H, Zhong Y, Cao G, et al. METTL3 promotes cell cycle progression via m6A/YTHDF1-dependent regulation oftranslation[J]. Int J Biol Sci, 2022, 18(8):3223-3236.

[11] Zhao H, Xu Y, Xie Y, et al. m6A regulators is differently expressed and correlated with immune response of esophageal cancer[J]. Front Cell Dev Biol, 2021, 9:650023.

[12] Xu C, Wang X, Liu K, et al. Structural basis for selective binding of m6A RNA by the YTHDC1 YTH domain[J]. Nat Chem Biol, 2014, 10(11):927-929.

[13] Woodcock CB, Horton JR, Zhou J, et al. Biochemical and structural basis for YTH domain of human YTHDC1 binding to methylated adenine in DNA[J]. Nucleic Acids Res, 2020, 48(18):10329-10341.

[14] Roundtree IA, Luo GZ, Zhang Z, et al. YTHDC1 mediates nuclear export of6-methyladenosine methylated mRNAs[J]. Elife, 2017, 6:e31311.

[15] Hou Y, Zhang Q, Pang W, et al. YTHDC1-mediated augmentation of miR-30d in repressing pancreatic tumorigenesis via attenuation of RUNX1-induced transcriptional activation of Warburg effect[J]. Cell Death Differ, 2021, 28(11):3105-3124.

[16] Yang L, Chen Y, Liu N, et al. CircMET promotes tumor proliferation by enhancing CDKN2A mRNA decay and upregulating SMAD3[J]. Mol Cancer, 2022, 21(1):23.

[17] Xiao W, Adhikari S, Dahal U, et al. Nuclear m6A reader YTHDC1 regulates mRNA splicing[J]. Mol Cell, 2016, 61(4):507-519.

[18] van Asperen JV, Robe P, Hol EM. GFAP alternative splicing and the relevance for disease: a focus on diffuse gliomas[J]. ASN Neuro, 2022, 14:17590914221102065.

[19] Rafalska I, Zhang Z, Benderska N, et al. The intranuclear localization and function of YT521-B is regulated by tyrosine phosphorylation[J]. Hum Mol Genet, 2004, 13(15):1535-1549.

[20] Zhang B, zur Hausen A, Orlowska-Volk M, et al. Alternative splicing-related factor YT521: an independent prognostic factor in endometrial cancer[J]. Int J Gynecol Cancer, 2010, 20(4):492-499.

[21] Yin H, Wang J, Li H, et al. Extracellular matrix protein-1 secretory isoform promotes ovarian cancer through increasing alternative mRNA splicing and stemness[J]. Nat Commun, 2021, 12(1):4230.

[22] Roost C, Lynch SR, Batista PJ, et al. Structure and thermodynamics of N6-methyladenosine in RNA: a spring-loaded base modification[J]. J Am Chem Soc, 2015, 137(5):2107-2115.

[23] Li S, Qi Y, Yu J, et al. Nuclear Aurora kinase A switches m6A reader YTHDC1 to enhance an oncogenic RNA splicing of tumor suppressor RBM4[J]. Signal Transduct Target Ther, 2022, 7(1):97.

[24] Lai CH, Chen RY, Hsieh HP, et al. A selective Aurora-A 5'-UTR siRNA inhibits tumor growth and metastasis[J]. Cancer Lett, 2020, 472:97-107.

[25] Shen M, Xie S, Rowicki M, et al. Therapeutic targeting of metadherin suppresses colorectal and lung cancer progression and metastasis[J]. Cancer Res, 2021, 81(4):1014-1025.

[26] Abdel Ghafar MT, Soliman NA. Metadherin (AEG-1/MTDH/LYRIC) expression: significance in malignancy and crucial role in colorectal cancer[J]. Adv Clin Chem, 2022, 106:235-280.

[27] Zhang B, Shao X, Zhou J, et al. YT521 promotes metastases of endometrial cancer by differential splicing of vascular endothelial growth factor A[J]. Tumor Biol, 2016, 37(12):15543-15549.

[28] Luxton HJ, Simpson BS, Mills IG, et al. The oncogene metadherin interacts with the known splicing proteins YTHDC1, Sam68 and T-STAR and plays a novel role in alternative mRNA Splicing[J]. Cancers (Basel), 2019, 11(9):1233.

[29] Zheng ZM, Tao M, Yamanegi K, et al. Splicing of a cap-proximal human Papillomavirus 16 E6E7 intron promotes E7 expression, but can be restrained by distance of the intron from its RNA 5' cap[J]. J Mol Biol, 2004, 337(5):1091-1108.

[30] Zheng Y, Jönsson J, Hao C, et al. Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) and hnRNP A2 inhibit splicing to human papillomavirus 16 splice site SA409 through a UAG-containing sequence in the E7 coding region[J]. J Virol, 2020, 94(20):e01509-20.

[31] Kajitani N, Schwartz S. Role of viral ribonucleoproteins in human papillomavirus type 16 gene expression[J]. Viruses, 2020, 12(10):1110.

[32] Cui X, Nilsson K, Kajitani N, et al. Overexpression of m6A-factors METTL3, ALKBH5, and YTHDC1 alters HPV16 mRNA splicing[J]. Virus Genes, 2022, 58(2):98-112.

[33] Gao S, Sun H, Chen K, et al. Depletion of m6A reader protein YTHDC1 induces dilated cardiomyopathy by abnormal splicing of Titin[J]. J Cell Mol Med, 2021, 25(23):10879-10891.

[34] Kim GW, Imam H, Siddiqui A. The RNA binding proteins ythdc1 and fmrp regulate the nuclear export of6-methyladenosine-modified hepatitis B virus transcripts and affect the viral life cycle[J]. J Virol, 2021, 95(13):e0009721.

[35] Chen ZH, Chen TQ, Zeng ZC, et al. Nuclear export of chimeric mRNAs depends on an lncRNA-triggered autoregulatory loop in blood malignancies[J]. Cell Death Dis, 2020, 11(7):566.

[36] Cao D, Ge S, Li M. MiR-451a promotes cell growth, migration and EMT in osteosarcoma by regulating YTHDC1-mediated m6A methylation to activate the AKT/mTOR signaling pathway[J]. J Bone Oncol, 2022, 33:100412.

[37] Tang S, Liu Q, Xu M. LINC00857 promotes cell proliferation and migration in colorectal cancer by interacting with YTHDC1 and stabilizing SLC7A5[J]. Oncol Lett, 2021, 22(2):578.

[38] Sheng Y, Wei J, Yu F, et al. A critical role of nuclear m6A reader YTHDC1 in leukemogenesis by regulating MCM complex-mediated DNA replication[J]. Blood, 2021, 138(26):2838-2852.

[39] Zhou H, Xu Z, Liao X, et al. Low expression of YTH domain-containing 1 promotes microglial m1 polarization by reducing the stability of sirtuin 1 mRNA[J]. Front Cell Neurosci, 2021, 15:774305.

[40] Liu J, Dou X, Chen C, et al.6-methyladenosine of chromosome-associated regulatory RNA regulates chromatin state and transcription[J]. Science, 2020, 367(6477):580-586.

[41] Liang D, Lin WJ, Ren M, et al. m6A reader YTHDC1 modulates autophagy by targeting SQSTM1 in diabetic skin[J]. Autophagy, 2022, 18(6):1318-1337.

[42] Li F, Yi Y, Miao Y, et al.6-methyladenosine modulates nonsense-mediated mRNA decay in human glioblastoma[J]. Cancer Res, 2019, 79(22):5785-5798.

[43] Zhang Z, Wang Q, Zhao X, et al. YTHDC1 mitigates ischemic stroke by promoting Akt phosphorylation through destabilizing PTEN mRNA[J]. Cell Death Dis, 2020, 11(11):977.

[44] Katahira J, Strässer K, Podtelejnikov A,et al. The Mex67p-mediated nuclear mRNA export pathway is conserved from yeast to human[J]. EMBO J, 1999, 18(9):2593-2609.

[45] Kim E, Mordovkina DA, Sorokin A. Targeting XPO1-dependent nuclear export in cancer[J]. Biochemistry (Mosc), 2022, 87(Suppl 1):S178-S191.

[46] Gales JP, Kubina J, Geldreich A, et al. Strength in diversity: nuclear export of viral RNAs[J]. Viruses, 2020, 12(9):1014.

[47] Glukhova AA, Kurshakova MM, Nabirochkina EN, et al. PCID2, a subunit of the Drosophila TREX-2 nuclear export complex, is essential for both mRNA nuclear export and its subsequent cytoplasmic trafficking[J]. RNA Biol, 2021, 18(11):1969-1980.

[48] Edupuganti RR, Geiger S, Lindeboom R, et al.6-methyladenosine (m6A) recruits and repels proteins to regulate mRNA homeostasis[J]. Nat Struct Mol Biol, 2017, 24(10):870-878.

[49] Widagdo J, Anggono V, Wong JJ. The multifaceted effects of YTHDC1-mediated nuclear m6A recognition[J]. Trends Genet, 2022, 38(4):325-332.

[50] Yu F, Wei J, Cui X, et al. Post-translational modification of RNA m6A demethylase ALKBH5 regulates ROS-induced DNA damage response[J]. Nucleic Acids Res, 2021, 49(10):5779-5797.

[51] Xia C, Wang J, Wu Z, et al. METTL3-mediated M6A methylation modification is involved in colistin-induced nephrotoxicity through apoptosis mediated by Keap1/Nrf2 signaling pathway[J]. Toxicology, 2021, 462:152961.

[52] Liao J, Wei Y, Liang J, et al. Insight into the structure, physiological function, and role in cancer of m6A readers: YTH domain-containing proteins[J]. Cell Death Discov, 2022, 8(1):137.

[53] Song N, Cui K, Zhang K, et al. The role of m6A RNA methylation in cancer: implication for nature products anti-cancer research[J]. Front Pharmacol, 2022, 13:933332.

[54] Zhang B, Jiang H, Dong Z, et al. The critical roles of m6A modification in metabolic abnormality and cardiovascular diseases[J]. Genes Dis, 2021, 8(6):746-758.

[55] Rønningen T, Dahl MB, Valderhaug TG, et al. m6A regulators in human adipose tissue: depot-specificity and correlation with obesity[J]. Front Endocrinol (Lausanne), 2021, 12:778875.

[56] Liu J, Gao M, He J, et al. The RNA m6A reader YTHDC1 silences retrotransposons and guards ES cell identity[J]. Nature, 2021, 591(7849):322-326.

[57] Rong D, Wu F, Lu C, et al. m6A modification of circHPS5 and hepatocellular carcinoma progression through HMGA2 expression[J]. Mol Ther Nucleic Acids, 2021, 26:637-648.

Recent progress in study of YTHDC1 m6A modification and regulation and pathological mechanism of diseases

HAN Weiyu, CHEN Yuanxing, LI Chaozhong, LIU Weiwei,ZHAO Yongchao, ZHAO Ranzun△

(,,563000,)

6-methyladenosine (m6A) RNA modification is a key field in epigenetics, which is considered as a key regulator of gene expression and protein translation. In recent years, with the deep development of studies on methyltransferase and demethylase, more and more studies have found that methyl-binding protein plays an important role in the methylation modification of m6A RNA. The YT521-B homology (YTH) domain-containing protein 1 (YTHDC1), as the only intranuclear RNA m6A methylated binding protein in the m6A modified YTH domain family of methyl-binding proteins, has a relatively unique role in selective splicing and nuclear export, as well as regulating RNA stability and degradation. Furthermore, it plays a very extensive and important role in regulating the occurrence and development of many diseases. This paper reviews the effects of YTHDC1 on the pathogenesis of diseases and the specific mechanisms, so as to further understand the importance of YTHDC1 in regulating the occurrence and development of the diseases.

6-methyladenosine; methyl-binding protein; epigenetics

R394; R363

A

10.3969/j.issn.1000-4718.2023.02.018

1000-4718(2023)02-0352-07

2022-07-25

2022-10-31

[基金项目]国家自然科学基金(地区科学基金)资助项目(No. 81960066);贵州省卫生健康委科学技术基金资助项目(No. gzwkj2021-103);贵州省科技厅自然科学基金资助项目(黔科合基础-ZK[2022]一般671号)

Tel: 0851-28608096; E-mail: kouke80@126.com

(责任编辑:余小慧,罗森)

猜你喜欢

细胞核调控调节
方便调节的课桌
2016年奔驰E260L主驾驶座椅不能调节
如何调控困意
经济稳中有进 调控托而不举
野生鹿科动物染色体研究进展报告
植物增殖细胞核抗原的结构与功能
顺势而导 灵活调控
中药提取物对钙调磷酸酶-活化T细胞核因子通路的抑制作用
可调节、可替换的takumi钢笔
细胞生物学