APP下载

基于协方差矩阵重构的方向图保形算法

2023-02-11徐延杰王春阳赵英健周长霖

兵器装备工程学报 2023年1期
关键词:旁瓣干扰信号协方差

徐延杰,王春阳,宫 健,赵英健,周长霖

(1.空军工程大学 防空反导学院,西安 710051;2.国防科技大学 电子科学学院,长沙 410000)

1 引言

自适应波束形成(adaptive beamforming,ADBF)技术在雷达信号处理过程中有着非常重要的作用[1]。在对抗旁瓣干扰时,ADBF可以通过调整发射信号权适量来达到角度维滤波的效果。然而,干扰信号可以与目标信号以相近的角度进入探测波束主瓣,对雷达主瓣探测区域进行干扰[2-3]。这时,传统的ADBF算法会产生主瓣严重畸变、峰值偏移和旁瓣升高的问题,难以对角度相近的干扰进行抑制。这个问题在多个干扰同时进入主瓣时会更加严重,进而导致雷达主瓣内多处区域的探测性能下降。此时,ADBF的主瓣保形能力就尤为重要,如果能够在不产生主瓣畸变的情况下抑制干扰,将会大大提升雷达抗主瓣干扰的能力[4]。

为了解决主瓣畸变问题,目前的方法主要可以分为以下几类:基于辅助阵列预处理的方法[5-6]、阻塞矩阵预处理(block matrix preprocessing,BMP)方法[7-8]和特征投影矩阵预处理(eigen-projection matrix processing,EMP)方法[9]。基于辅助阵列的方法往往需要较大规模的矩阵导致计算复杂,限制了该方法的实用性。BMP方法需要精确的主瓣干扰到达方向作为先验信息,而这在实际应用中是很难实现的,且会带来主瓣峰值偏移的问题。EMP算法相对BMP算法来说不需要精确的主瓣干扰导向矢量先验信息,所以具有更强的鲁棒性,但主瓣干扰和旁瓣干扰同时存在且功率相同时,EMP算法在主瓣上的自适应阵列图的零值会消失,引起性能的严重下降[10]。在文献[11]中,提出了一种EMP与协方差矩阵重构相结合的改进方法,可以解决主瓣峰值偏移的问题且降低了算法复杂度,但该方法只能抑制一个主瓣干扰。综上,目前波束保形的难点在于面对多个主瓣内干扰且仅知道目标信号位置的条件下,保持准确的主波束对准,输出波形鲁棒性强的雷达波束。本文提出了一种基于重构协方差矩阵的改进WCPO算法,可以在主瓣内多个干扰存在的情况下保持主瓣波形完整,且不需要精确的干扰信号波达方向作为先验信息。与传统WCPO算法相比,本文算法不仅可以保持主瓣完整,且拥有更低的旁瓣,在相同(signal to noise ratio,SNR)信噪比下可以输出更高的信干噪比,仿真验证了该算法的有效性。

2 阵列信号模型

考虑由N个阵元组成的线性阵列,阵元间距为d,存在P+1个远场窄带信号,每个信号的入射角度依次为θ0,θ1,…,θp,其中θ0为目标信号入射角。θi是干扰信号入射角,其中i=1,2,…,P-1。则在快拍数M下的观测信号矩阵X可以表示为

AS+N, i=1,2,…,P-1

(1)

式中:a(θ0)为目标信号的导向矢量,a(θi)为第i个干扰信号的导矢量;si[si(1),si(2),…,si(M)],i=1,2,…,P-1为第i个干扰信号的波形,s0[s0(1),s0(2),…,s0(M)],i=1,2,…,P-1为期望目标信号的波形。N代表N×M维度的高斯白噪声,其均值为零、方差为这里认为目标信号、干扰信号、噪声信号都互不相关。则观测矩阵X的协方差矩阵Rx可以表示为

(2)

其中:I表示单位阵,Rs为采样协方差矩阵。

标准的Capon波束形成器可以将波束峰值对准目标信号,在干扰信号处形成零陷,其权矢量wopt可以表示为

(3)

(4)

式中X(m)为第m个快照接收信号,通过替换协方差矩阵,我们可以得到(sample matrix inversion,SMI)SMI-Capon波束形成器,式(3)可以重新写为

(5)

3 协方差矩阵重构

Capon谱是一种没有旁瓣的高分辨率谱,其反应了发射-接收域的功率分布,在整个角度维度中,不同角度的功率可以用Capon功率谱表示,通过结合每个角度的功率和导向矢量,就可以重构干扰-噪声协方差矩阵。Capon谱的角度维发射-接收功率可以表示为

(6)

值得注意的是,对于传统Capon算法来说,在高信噪比条件下,由于期望信号的存在[12],SMI波束形成器的性能会严重恶化。此时期望信号可以视为高信噪比条件下的干扰信号,这也是传统波束形成算法产生畸变的根本原因。接下来,将介绍本文所提出的构造干扰-噪声协方差矩阵的方法,该方法可以通过减轻因期望信号功率较大时产生的协方差矩阵误差来实现波束保形,且能带来显著的信噪比改善。为了从采样协方差矩阵中去除需要的信号成分,需要基于Capon谱在空间角度维对协方差矩阵进行重构,通过在排除目标信号的区域采集干扰信息,并对其积分来实现这个过程。

假设期望信号位于不包含干扰信号的角度域Θ,如图1所示。Θ可以通过低分辨率的快速扫描来确定[],所以认为其是已知的。

图1 干扰和期望信号分布图

(7)

(8)

需要注意的是,为了避免选中的区域Θ中含有干扰信号,需要对Δθ的大小进行规定,即干扰与噪声之间的DOA差值需大于Δθ才能实现协方差矩阵重构的效果,而Δθ的大小与信号处理流程的精度有关,本文规定Δθ的大小为1°。此方法利用重构的干扰加噪声协方差矩阵,排除了期望信号分量对于波束形成性能的影响。接下来,将采用WCPO算法的思想对发射权矢量进行优化处理。

4 改进的WCPO算法

标准的Capon波束形成器要求对期望信号无失真接收,但是当真实导向矢量未知且在一个不确定的集合中时,并不能绝对保证这一点[14]。为了对真实导向矢量设置无失真响应约束,WCPO算法通过对不确定集合中所有可能的导向矢量进行无失真响应约束,来确保对期望信号进行无失真接收。具体可以表示为

minwHRi+nw

s.t.|wHas|≥1, ∀as∈R(ε)

(9)

(10)

因此,式(9)中的半无限非凸二次约束问题可以改写为

(11)

需要注意的是,式(11)中的约束条件在w进行任意角度的相位旋转时,不会改变结果,因此,可以不失一般性的添加约束条件,令wHa为一个实数,即

Re{wHa}≥0

Im{wHa}=0

(12)

因此,式(11)可以重新表示为

(13)

然而,重构后的协方差矩阵Ri+n不是半正定矩阵,并不能直接代替样本协方差矩阵应用于CVX工具箱。所以需要引入一个二次惩罚项使Ri+n转化为正定矩阵,可以重新写为

Ri+n=Ri+n+ξI

(14)

然后,通过Cholesky分解,可以将矩阵Ri+n分解为下三角矩阵和其共轭转置的乘积,可以表示为

Ri+n=GGH

(15)

最终,约束问题可以写为

(16)

至此,将一般的非凸二次约束二次规划问题等价的转换为了二阶锥规划问题,该问题可以用多项式时间算法求解,即WCPO算法的基本理论,并将原始的干扰噪声协方差矩阵替换为重构后的协方差矩阵,就完成了对WCPO算法的优化。此方法类似于其他凸问题一样,可以用CVX工具箱来求最优解。综上所述,本文的具体算法步骤如下:

改进的WCPO算法步骤:

输入:f0,θ0,X,ε,d,ξ

输出:w

Step1:阵元接收信号,求得采样协方差矩阵。

Step2:用低分辨率扫描的方法搜索到目标信号,并构造空间Θ。

Step4:通过模拟WCPO算法的框架构造一个新的二次约束二次规划问题

Step5:引入一个二次惩罚项,使重构后的协方差矩阵满足凸优化条件

Step6:利用CVX工具箱将二次约束二次规划问题转化为二阶锥规划问题,利用重构的协方差矩阵求解出优化的权矢量,得到新的权矢量。

5 仿真分析

为了验证所提算法的有效性,本节将给出仿真结果,本文所有仿真均在Matlab平台上进行。在实际应用中,根据性能要求和实现条件,大多数雷达工作在1~15 GHz频率范围内,为了保证通用性,设雷达中心频率为3 GHz,但所提算法对于其他频率同样适用。设有一个目标信号和2个干扰信号,信号的干扰噪声比为10 dB,假设传感器噪声在空间和时间上均为白噪声,均值和方差都为零。算法的仿真参数设置如表2所示。

表2 仿真参数

对比分析了传统WCPO算法、SMI算法、基于特征空间(eigen space based,ESB)算法与本文所提出的算法在主瓣干扰下的波束形成效果,如图2所示。

图2 主瓣旁瓣各一个干扰时各个算法波束方向图

图2中干扰分布情况是:存在一个角度维欺骗干扰在主瓣内,一个角度维欺骗干扰在旁瓣,信号、主瓣干扰、旁瓣干扰的坐标分别为80°,82°,110°。为了更好的体现算法性能,本文中各个干扰的功率都相同。可以看出,当主瓣存在单个干扰的条件下,各个算法都产生了主瓣凹陷的问题,同时波束主瓣对准产生了偏移,其中SMI和理想Capon算法都产生了较高的旁瓣;WCPO算法和EIG算法主瓣偏移较小且旁瓣没有升高,但仍然出现了主瓣凹陷的问题;本文提出的算法由于在干扰-噪声协方差矩阵中去除了目标信号,可以在主瓣内和主瓣外同时出现功率相同的干扰时保持波束完整,且主瓣不会偏移。接下来将检验存在多个主瓣干扰的情况下各个算法的性能,如图3所示。

图3 主瓣内2个干扰时各个算法波束方向图

如图3所示,在主瓣内同时引入2个干扰,目标坐标、干扰坐标1、干扰坐标2分别为:80°,78°,82°。可以看到,在引入了多个主瓣内干扰之后,各个算法性能都受到了明显的影响,在有多个干扰的情况下:WCPO算法也提高了旁瓣,主瓣凹陷问题仍然严重,且主瓣也产生了明显偏移;EIG算法的主瓣陷和旁瓣升高问题都非常严重,几乎已经不能产生探测效果;SMI算法在增加了多个干扰之后,主瓣凹陷问题更加严重,在干扰位置处产生了较宽的零陷导致了在目标位置处的波束增益下降太多,严重影响了探测性能;理想Capon波束形成器效果与SMI算法相似,零陷问题较为严重。本文的算法在面对主瓣多个欺骗干扰的情况下,仍然能保持输出主瓣对准准确且旁瓣规则且较低的完整波形,对主瓣内的干扰同样具有较强的鲁棒性。下面将比较各算法在不同SNR和不同快拍下的SINR情况,如图4、图5所示。

图4 输出信干噪比随输入信噪比变化

图5 输出SINR随快拍数变化

图4、图5中,本文提出的算法、WCPO算法、EIG算法、SMI算法均在干噪比为10 dB的条件下进行,理想Capon算法没有考虑噪声的影响,是理论上最优的SINR输出结果。由图4、图5可以明显的看到看到在上述条件下随着信噪比的增加,所提算法的稳定性和输出SINR都较WCPO算法有明显提升,且相对于SMI和EIG算法来说在高信噪比条件下性能表现更加优异。图5在同样条件下分析了各算法的输出SINR随快拍数的变化情况,可以看到,在小快拍情况下,所提算法相对于理想Capon算法输出SINR略有下降,对于快拍数变化也具有较好的鲁棒性。

6 结论

本文基于干扰-噪声协方差矩阵重构的方法,提出了一种改进的最差性能最优化算法。经过理论研究和仿真,得到如下结论:

1)所提算法在主瓣内存在多个干扰和主瓣内外各存在一个干扰的情况下都能够保持波形完整,且不会出现旁瓣升高、主瓣偏移等问题。

2)通过协方差矩阵重构,解决了传统算法随着输入SNR增高输出SINR降低的缺点,并在不同输入SNR和快拍数条件下输出SINR均比传统算法高。

猜你喜欢

旁瓣干扰信号协方差
基于圆柱阵通信系统的广义旁瓣对消算法
基于小波域滤波的电子通信信道恶意干扰信号分离方法
一种基于线性规划的频率编码旁瓣抑制方法
基于粒子群算法的光纤通信干扰信号定位方法
用于检验散斑协方差矩阵估计性能的白化度评价方法
基于加权积分旁瓣最小化的随机多相码设计
多元线性模型中回归系数矩阵的可估函数和协方差阵的同时Bayes估计及优良性
二维随机变量边缘分布函数的教学探索
浅析监控干扰信号的优化处置措施
不确定系统改进的鲁棒协方差交叉融合稳态Kalman预报器