APP下载

二维超高效液相色谱-四极杆/飞行时间质谱法解析替考拉宁杂质

2023-02-04邵伍军陈延安袁红露金美春周雪飞覃玉梅杨荷友和燕玲浙江海正药业股份有限公司浙江台州318000

色谱 2023年2期
关键词:拉宁分子离子分子式

邵伍军,陈延安,袁红露,金美春,周雪飞,覃玉梅,杨荷友,和燕玲(浙江海正药业股份有限公司,浙江 台州 318000)

替考拉宁是由放线菌发酵产生的一系列结构相似的糖肽类抗生素,主要用于治疗严重的革兰氏阳性菌感染[1]。替考拉宁结构由七肽苷元母核、N-乙酰葡萄糖、甘露糖、R-氨基葡萄糖组成[2,3]。《中国药典》2020版及《欧洲药典》10.0收录的替考拉宁活性组分有TA2-1、TA2-2、TA2-3、TA2-4、TA2-5、TA2-6,其中TA2-2为主要组分,占各组分相对含量的40%以上,其主成分结构如图1[4,5]。

替考拉宁母核是由7个氨基酸残基之间氧化交联产生的七肽苷元结构,氨基酸上的羟基会进一步糖基化连接N-乙酰葡萄糖、甘露糖、葡萄糖胺,葡萄糖胺会继续发生脂肪酰基化,连接的脂肪链的长短、取代基及碳链的不饱和度造成了替考拉宁各组分之间的差异性。目前,对替考拉宁主成分及杂质的研究方法主要有超高效液相色谱-质谱联用、核磁、高效液相色谱-核磁共振联用、气相色谱-质谱联用等技术。Barna等[6]通过水解纯化、核磁共振、高分辨质谱等技术对替考拉宁5个组分进行了结构鉴定,为以后替考拉宁其他组分及杂质结构鉴定奠定了基础。Tengattin等[7]基于高效液相色谱-质谱方法发现TA3-1由TA2-2水解脱去R-氨基葡萄糖而产生。Cometti等[8]通过二维液相色谱-核磁、气相色谱-质谱技术证明TA2-6a及TA2-6b侧链为十二烷基酰基和10-甲基十一烷基酰基。Borghi等[9]通过纯化制备、核磁共振、高分辨质谱等技术证明TA2-1a和TA2-1b侧链为6-甲基辛酰基和壬酰基。Marrubini等[10]建立了液相色谱-质谱方法对替考拉宁主成分及杂质的结构推断,替考拉宁结构由于含有2个Cl,采用低分辨质谱很难显示同位素峰,对某些特征离子碎片的推测也存在偏差。García-Gómez等[11]使用不同填料的色谱柱分离替考拉宁组分,通过高分辨质谱推断了14个其他组分的结构。张含智等[12]基于高效液相色谱-飞行时间质谱推导了11个具有替考拉宁母核组分的结构和4个R-氨基葡萄糖化合物。

TeicoplaninRR′FormulaTA2-1aTA2-1bTA2-1TA2-2TA2-3TA2-4TA2-5TA2-6aTA2-6bC87H95Cl2N9O33C87H95Cl2N9O33C88H95Cl2N9O33C88H97Cl2N9O33C88H97Cl2N9O33C89H99Cl2N9O33C89H99Cl2N9O33C90H101Cl2N9O33C90H101Cl2N9O33TA3-1H/C72H68Cl2N8O28图1 《欧洲药典》中替考拉宁的结构Fig.1 StructureofteicoplanininEuropeanpharmacopoeia

近年来,多维或二维液相色谱-质谱联用技术对复杂体系的分离分析是分析化学的重要研究方向。与一维液相色谱-质谱联用相比,多维或二维液相色谱-质谱联用技术既能实现多维或二维液相色谱对复杂体系的分离分析,又能体现质谱高灵敏度及对未知杂质进行定性定量研究的特点,已成为复杂样品分离分析中的一种非常有效的工具。迄今为止,已有很多关于多维或二维液相色谱-质谱联用技术的应用报道,如陈璇等[13]使用在线二维集束毛细管柱-高气压光电离-飞行时间质谱测定单萜类化合物;王智聪等[14]对金银花中绿原酸和木犀草苷含量的测定;柴爽爽等[15]对水稻叶片蛋白质组的研究;徐明明等[16]使用在线脱盐质谱法识别了氨基葡萄糖液相色谱的可疑色谱峰等。替考拉宁为发酵药物,成分复杂,杂质较多,《欧洲药典》10.0中替考拉宁分析方法中流动相含有磷酸二氢钠不挥发性盐,与质谱检测的要求不匹配,重新建立适合质谱检测的系统,虽然对检出杂质的结构可以推导,但无法实现与药典色谱条件下各杂质峰的准确定位。因此本实验建立二维超高效液相色谱-四极杆/飞行时间质谱法(2D-UPLC-Q/TOF-MS),对替考拉宁的杂质进行分析,一维液相色谱采用药典方法对各色谱峰进行分离,对《欧洲药典》10.0收录的10个成分根据相对保留时间进行了准确定位,二维液相色谱与质谱联用使用适合质谱检测的流动相体系进行脱盐,对替考拉宁的10个成分进行结构确认,同时对其他未知杂质进行一级、二级质谱分析,确认了张含智等[12]推导的11个具有替考拉宁母核组分的结构和4个R-氨基葡萄糖化合物,还发现了2个替考拉宁母核特征碎片离子及3个未知杂质,为替考拉宁质量控制和工艺改进提供了参考。

1 实验部分

1.1 仪器与试药

Waters Acquity UPLC 2D/Xevo G2-XS Q/TOF二维超高效液相色谱-质谱联用仪(美国Waters公司)。Milli-Q Advantage A10超纯水仪(德国Merck公司)。

乙腈为色谱纯(德国Merck公司);甲酸铵、甲酸均为质谱纯(德国Sigma公司);其余试剂均为分析纯;欧洲药典委员会替考拉宁对照品(批号:2.0)。

1.2 色谱与质谱条件

1.2.1一维液相色谱方法

色谱柱:Octadecyl silica (ODS) hypersil色谱柱(250 mm×4.6 mm,5 μm);波长:254 nm;流速:2.0 mL/min;柱温:30 ℃;进样量:20.0 μL;流动相A:3.0 g/L磷酸二氢钠溶液(pH 6.0)/乙腈=9/1(v/v),流动相B:3.0 g/L磷酸二氢钠溶液(pH 6.0)/乙腈=3/7(v/v)。梯度洗脱程序:0~34.50 min,0B~50%B;34.50~35.60 min,50%B~90%B,35.60~40.25 min,90%B;40.25~47.15 min,90%B~0B;47.15~51.00 min,0B。

1.2.2二维液相色谱方法

色谱柱:Waters ACQUITY UPLC BEH C18色谱柱(50 mm×2.1 mm,1.7 μm);柱温:45 ℃;流动相A:0.01 mol/L甲酸铵水溶液(pH 6.0),流动相B:乙腈;流速:0.5 mL/min。梯度洗脱程序:0~2.0 min,2%B;2.0~30.0 min,2%B~80%B;30.0~35.0 min,80%B;35.0~35.1 min,80%B~2%B;35.1~38.0 min,2%B。

1.2.3质谱条件

电喷雾电离(ESI)源;正离子模式;全扫描范围:m/z100~2 500;锥孔气流速:50 L/h;锥孔电压:60 V;离子源温度:120 ℃;雾化气流速:900 L/h;雾化气温度:500 ℃;毛细管电压:2 500 V;采集模式:全信息串联质谱(MSE)模式;碰撞能量:20~50 eV。

1.3 溶液配制

称取替考拉宁20 mg,置于10 mL容量瓶中,用水溶解并稀释至刻度,混匀,配制成质量浓度为2 mg/mL的替考拉宁溶液。

2 结果与讨论

2.1 一维液相色谱分析

替考拉宁一维液相色谱图中有26个峰(如图2所示),根据《欧洲药典》10.0中的相对保留时间及一级质谱结果,替考拉宁10个主要组分TA3-1、TA2-1a、TA2-1b、TA2-1、TA2-2、TA2-3、TA2-4、TA2-5、TA2-6a、TA2-6b的色谱保留时间分别为8.92、17.77、18.42、19.55、20.95、21.50、23.59、24.07、27.12、27.63 min,其他色谱峰均为杂质峰。

2.2 替考拉宁TA2-2裂解途径推导

图2 替考拉宁的一维液相色谱图Fig.2 One-dimensional liquid chromatogram of teicoplanin 1.TA3-1;5.TA2-1a;6.TA2-1b;7.TA2-1;11.TA2-2;13.TA2-3;18.TA2-4;20.TA2-5;24.TA2-6a;25.TA2-6b;2,3,4,8,9,10,12,14,15,16,17,19,21,22,23,26.impurities.

图3 TA2-2的二级质谱图Fig.3 Secondary mass spectra of TA2-2

替考拉宁组分复杂,但其结构相似,在质谱中的裂解途径基本一致,TA2-2是替考拉宁含量最多的组分,其结构已知,可以通过其二级质谱信息(如图3所示)来推测替考拉宁其他组分及杂质的裂解方式,TA2-2可能的裂解方式见图4。TA2-2组分(图2中峰11,下文中峰号均与图2中峰号相对应)的准分子离子峰m/z为1 878.5 643([M+H]+);TA2-2组分失去C5H6N2O4基团、R-氨基葡萄糖、甘露糖、N-乙酰葡萄糖后得到m/z为1 720.4 591、1 563.3 643、1 401.3 124、1 360.2 847的替考拉宁母核离子;m/z1 401.3 124的离子失去氨、N-乙酰葡萄糖后得到m/z为1 384.2 740、1 198.2 306的离子;m/z1 198.2 306的离子失去氨得到m/z为1 181.1 993的离子。R-氨基葡萄糖特征离子(m/z316.213 1)失水后得到m/z298.203 3的离子,再失去1分子水得到m/z280.193 9的离子,该烯醇式离子可以转化成相应的酮式结构m/z为250.180 9。N-乙酰葡萄糖特征离子(m/z204.286 3)也会经历相同的失水过程得到m/z为186.075 4和168.068 0的离子。m/z186.075 4的离子失去N-乙酰基和水得到m/z144.065 8的离子,再失去1分子水得到m/z126.057 0的离子。

2.3 替考拉宁杂质解析

替考拉宁各组分主要区别在于R-氨基葡萄糖与糖苷不同,但其裂解规律与主成分TA2-2的裂解规律一致,其次结合一维液相色谱的相对保留时间对主成分也可以准确定位。本实验结合相对保留时间及二级质谱信息(主成分及杂质MS数据见表1)确认了《欧洲药典》中的10个组分,并对其他22个杂质进行了裂解分析。

图4 TA2-2的质谱裂解规律Fig.4 MS fragmentation pathway of TA2-2

峰2的准分子离子m/z为1 563.3 555 ([M+H]+),相对保留时间为0.51,推测分子式为C72H68Cl2N8O28,二级质谱信息与TA3-1基本一致,确认为TA3-1的同分异构体。

峰3的准分子离子m/z为1 360.2 870 ([M+H]+),相对保留时间为0.53,推测分子式为C64H55Cl2N7O23,二级质谱中未发现N-乙酰葡萄糖和R-氨基葡萄糖的相关离子,其他质谱信息与TA3-1基本一致,确认为TA3-1脱去N-乙酰葡萄糖的降解产物。

峰4的准分子离子m/z为1 874.5 238 ([M+H]+),相对保留时间为0.81,推测分子式为C88H93Cl2N9O33,其准分子离子m/z1 874.5 238比TA2-1准分子离子m/z1 876.5 498少2,m/z为312.181 3、294.169 1、276.161 5、246.146 7的离子均比TA2-1R-氨基葡萄糖的相关离子少2;m/z为204.086 3、186.075 4、168.068 0、144.065 8、126.057 0的离子与TA2-1中N-乙酰葡萄糖基团的相关离子基本一致,推测其R′分子式为C10H15O,确认为TA2-1在R′端脱去2H。

峰8有两个组分,准分子离子m/z为1 673.4 567 ([M+H]+)和1 876.5 613 ([M+H]+),相对保留时间为0.96,其中m/z1 876.5 613的色谱峰二级质谱信息与TA2-1基本相同,确认为TA2-1同分异构体;准分子离子m/z为1 673.4 567的色谱峰二级质谱中未发现N-乙酰葡萄糖基团的相关离子,推测分子式为C80H82Cl2N8O28,其他二级质谱信息与TA2-1基本相同,确认为TA2-1脱去N-乙酰基葡萄糖的降解产物。

峰9准分子离子m/z为1 878.5 585 ([M+H]+),相对保留时间为0.97,其二级质谱信息与TA2-2基本一致,根据相对保留时间确认为TA2-2同分异构体。

峰10的准分子离子m/z为2 040.6 152 ([M+H]+),相对保留时间为0.99,推测分子式C94H107Cl2N9O38,与TA2-2分子式相比多C6H10O5(甘露糖),其中m/z为1 883.5 231、1 725.4 077、1 563.3 669、1 546.3 328、1 522.3 447的离子与TA2-2二级质谱信息m/z为1 720.4 591、1 563.3 654、1 401.3 124、1 384.2 740、1 360.2 847的离子相比均多162(C6H10O5),其他二级质谱信息与TA2-2基本一致,结合相对保留时间确认为TA2-2加甘露糖。

表1 替考拉宁样品中主成分及杂质的MS数据Table 1 MS data of principal components and impurities in teicoplanin

表1 (续)Table 1 (Continued)

峰12有两个组分,准分子离子m/z为2 040.6 152 ([M+H]+)和1 675.4 928 ([M+H]+),相对保留时间为1.01,其中m/z为2 040.6 152的色谱峰二级质谱信息与TA2-2加一分子甘露糖基本一致,根据相对保留时间确认为TA2-3加甘露糖;m/z为1 675.4 928的色谱峰二级质谱中未发现N-乙酰葡萄糖基团的相关离子,其他二级质谱信息与TA2-3基本相同,结合相对保留时间确认为TA2-3脱去N-乙酰葡萄糖的降解产物。

峰14有两个组分,准分子离子m/z为1 878.5 706 ([M+H]+)和1 716.5 077 ([M+H]+),相对保留时间为1.04,m/z1 878.5 706的色谱峰二级质谱信息与TA2-2基本一致,根据相对保留时间确认为TA2-3同分异构体;m/z1 716.5 077的色谱峰推测分子式为C82H87Cl2N9O28,与TA2-2分子式相比少C6H10O5(甘露糖),其他二级质谱信息与TA2-2基本一致,结合相对保留时间确认为TA2-2脱去甘露糖的降解产物。

峰15有两个组分,准分子离子m/z为1 716.5 150 ([M+H]+)和1 912.5 557 ([M+H]+),相对保留时间为1.07,其中m/z1 716.5 150的色谱峰二级质谱信息与TA2-2脱去甘露糖基本一致,根据相对保留时间确认为TA2-3脱去甘露糖的降解产物;m/z1 912.5 557的色谱峰推测分子式为C88H96Cl3N9O33,与TA2-2分子式相比多1个Cl,准分子离子m/z比TA2-2多34,m/z为1 435.2 800、1 418.2 363、1 394.2 437、1 232.1 987、1 215.1 553的离子均比TA2-2中相关离子多34,结合相对保留时间确认为TA2-2母环上的某个H被Cl取代,但取代位置还有待核磁技术去证明。

峰16有两个组分,准分子离子m/z为1 844.6 136 ([M+H]+)和1 890.5 781 ([M+H]+),相对保留时间为1.10,其中m/z1 890.5 781的色谱峰推测分子式为C89H97Cl2N9O33,与TA2-4分子式相比少2H,m/z为328.211 2、310.203 8、292.193 8、262.182 5的离子均比TA2-4中R-氨基葡萄糖相关离子m/z少2,其他质谱信息与TA2-4基本一致,根据相对保留时间及二级质谱信息确认为TA2-4在R′端脱去2H;m/z1 844.6 136的色谱峰推测分子式为C88H98ClN9O33,与TA2-2分子式相比少1个Cl,m/z为1 367.3 529、1 326.3 231、1 164.2 623、1 147.2 397、1 129.2 288的离子均比TA2-2中相关离子m/z少34,结合相对保留时间确认为TA2-2母环上的某个Cl被H取代,但取代位置无法用质谱来证明。

峰17有两个组分,准分子离子m/z为1 890.5 781 ([M+H]+)和2 054.6 470 ([M+H]+),相对保留时间为1.11,其中m/z1 890.5 781的色谱峰二级质谱与峰16(TA2-4在R′端脱2H)基本一致,根据相对保留时间确认为TA2-5在R′端脱2H;m/z2 054.6 470的色谱峰推测分子式为C95H109Cl2N9O38,与TA2-4分子式相比多C6H10O5(甘露糖),其中m/z为1 890.5 248、1 725.4 247、1 563.3 669、1 546.3 328、1 522.3 447的离子与TA2-4中相关离子相比m/z均多162(C6H10O5),其他二级质谱信息与TA2-4基本一致,结合相对保留时间确认为TA2-4加甘露糖。

峰19准分子离子m/z为2 054.6 284 ([M+H]+),相对保留时间为1.14,二级质谱信息与峰17(TA2-4加甘露糖)基本一致,结合相对保留时间确认为TA2-5加甘露糖。

峰21准分子离子m/z为1 892.5 801 ([M+H]+),相对保留时间为1.17,二级质谱信息与TA2-5基本一致,结合相对保留时间确认为TA2-5同分异构体。

峰22准分子离子m/z为1 730.5 262 ([M+H]+),相对保留时间为1.19,推测分子式为C83H89Cl2N9O28,与TA2-5分子式相比少C6H10O5(甘露糖),其他质谱信息与TA2-5基本一致,结合相对保留时间确认为TA2-5脱去甘露糖的降解产物。

峰23准分子离子m/z为1 976.6 354 ([M+H]+),相对保留时间为1.27,推测分子式为C94H107Cl2N9O34,与TA2-2分子式相比多C6H10O,m/z为126.053 2、144.066 7、168.063 8、186.076 6、204.087 6的离子与TA2-2中N-乙酰葡萄糖基团的相关离子基本一致,m/z为250.176 0、280.188 8、298.198 1、316.207 8的离子与TA2-2中R-氨基葡萄糖的相关离子基本一致,m/z1 918.5 934的离子比m/z1 976.6 354少58(C3H6O),m/z1 661.4 230的离子与TA2-2中m/z1 563.3 643的离子相比多98(C6H10O),m/z1 603.3 770的离子与TA2-2中m/z1 563.3 643的离子相比多40 (C3H4),结合相对保留时间及二级质谱信息确认为TA2-2/3母环上的2个H被丙醇和环丙烷取代,但取代位置还需制备纯化杂质通过核磁精确鉴定。

峰26准分子离子m/z为1 918.5 992 ([M+H]+),相对保留时间为1.42,推测分子式为C91H101Cl2N9O33,与TA2-2分子式相比多C3H4,m/z为126.057 0、144.065 8、168.062 7、186.075 4、204.086 3的离子与TA2-2中N-乙酰葡萄糖基团的相关离子基本一致,m/z为250.180 9、280.187 1、298.203 3、316.213 1的离子与TA2-2中R-氨基葡萄糖的相关离子基本一致,m/z1 760.4 945的离子比TA2-2中m/z1 720.4 591的离子多40(C3H4),m/z1 441.3 494的离子比TA2-2中m/z1 401.3 124的离子多40(C3H4),结合相对保留时间及二级质谱信息确认为TA2-2/3母环上的1个H被环丙烷取代,但取代位置无法通过质谱确定。

3 结论

本研究建立了二维超高效液相色谱-四极杆/飞行时间质谱对替考拉宁杂质的研究方法,对替考拉宁主成分及22个杂质进行了二级质谱分析,方法简便、灵敏,有效地解决了流动相中含不挥发性盐的色谱系统不适用于质谱快速鉴定杂质的难题。本研究新发现了3个杂质TA2-2加氯、TA2-2/3母环上的2个H被丙醇和环丙烷取代与TA2-2/3母环上的1个H被环丙烷取代;m/z为1 720.4 591、1 601.3 199的2个母核特征离子。研究结果为严格控制替考拉宁质量及替考拉宁工艺纯化提供了一种新解决思路。

致谢:感谢沃特世科技(上海)有限公司杨青老师在实验和解谱上的帮助与指导!

猜你喜欢

拉宁分子离子分子式
替考拉宁的药动学和药效学特点及给药方案研究进展
全自动二维液相色谱测定替考拉宁血药浓度
基于HPLC-HESI-HRMS 的水冬瓜根皮化学成分分析
PF+分子离子激发态的理论研究
有机物分子式确定方法探秘
92种工业染料在四极杆/静电场轨道阱高分辨质谱中的离子化规律
高效液相色谱法测定替考拉宁血药浓度
有机物分子式、结构式的确定
替考拉宁的药动学影响因素及治疗药物监测研究进展Δ
2015年《中国防痨杂志》第五期重要更正启事