APP下载

氮沉降对人工林生长的滞后性影响的研究进展

2023-01-26徐丹丹王浩斌濮毅涵

生态科学 2022年2期
关键词:林龄人工林树木

徐丹丹, 王浩斌, 濮毅涵

氮沉降对人工林生长的滞后性影响的研究进展

徐丹丹1,2, *, 王浩斌1, 濮毅涵1

1. 南京林业大学生物与环境学院, 江苏 210037 2. 南京林业大学南方现代林业协同创新中心, 江苏 210037

氮沉降对人工林生长的影响是目前的热点问题之一。但是, 现有的研究着重于氮沉降对人工林生长的即时性影响, 而对人工林生长的滞后性影响或效应研究却十分缺乏。氮沉降的滞后性效应是其逐渐改变人工林生态功能的体现, 而且滞后性影响机制与即时性影响完全不同。因此, 以氮沉降对人工林的滞后性影响为主线, 分别综述不同氮沉降浓度对人工林生长的影响, 氮沉降对不同林龄人工林的影响, 不同管理模式下氮沉降对人工林的影响, 氮沉降对人工林生长的滞后性影响和即时性影响的区别。

氮沉降; 人工林; 滞后性影响; 即时性影响; 林龄

0 前言

全球陆地生态系统氮沉降呈现日益增加的趋势, 严重影响了生态系统的健康[1–2]。我国氮沉降的程度日益严重, 尤其是亚热带地区[3]。仅从1980s到2000s, 我国氮沉降的量从13.2 kg·ha-1·a-1增加到21.1 kg·ha-1·a-1[4], 已成为继北美和欧洲之后氮沉降增长速度最快的地区, 而且气候变化的模型预测到我国大气氮沉降的程度还将继续加强[5]。大气氮沉降大幅度的增加危害生态系统的健康, 导致生物多样性的丧失[6–7]。氮沉降对生态系统的影响不仅仅表现在改变生态系统中的氮循环[8], 而且通过影响生态系统中凋落物的分解速度[3]、土壤微生物的丰富度和多样性[9–10], 以及土壤呼吸[11], 从而影响生态系统中碳循环和其他营养物质, 进而影响整个生态系统的生产力[12]。相对于天然生态系统而言, 氮沉降对于人工林生产的影响具有特殊性, 因为受到人工林不同管理模式(集约型管理模式和传统型管理模式)[13]的交互性影响[14]。而且, 具有经济产出和生态价值双重功能的人工林[15–16], 相较天然林更注重产量, 尤其是在我国人工林木材产量的年增长量远低于国际平均水平的情况下(以杨树人工林木材产量的年增长量为例, 我国为4.4 Mg·ha-1·a-1、全球平均为6.3 Mg·ha-1·a-1、美国为8.1 Mg·ha-1·a-1、欧洲为5.1 Mg·ha-1·a-1)[17]。因此, 研究氮沉降对于人工林生长的影响具有其特殊的意义。

1 不同氮沉降浓度对人工林产量的影响

氮沉降是通过影响氮、磷、钾等营养循环来影响人工林树木的生长的[18], 主要表现在对细根、树叶和树干生长的影响[19–20]。不同大气氮沉降水平对人工林生长的影响不同, 但是关于这方面的研究结论存在不一致性。中等水平的大气氮沉降(40 kg·ha-1·a-1)促进树木的生长[21], 而高水平的大气氮沉降(大于90 kg·ha-1·a-1)会抑制植物的生长[2]。然而Tu等用为期两年的模拟氮沉降实验证明高水平的氮沉降(300 kg·ha-1·a-1)才能显著增加苦竹人工林的生长[22]; Du等对落叶松林的研究也证明氮沉降的水平越高, 对落叶松生长的促进作用也越大[23]。引起这方面研究结论不一致的原因可能是因为不同气候区的影响人工林生长的限制因子不同, 人工林对氮的需求不同, 并且对大气氮沉降的敏感程度也不同。在亚热带地区, 土壤对大气氮沉降非常敏感, 大气氮沉降会促进土壤中N2O的排放量[24], 不一定会增加生态系统中的氮含量。更重要的是在亚热带地区, 树木生长的营养限制性因素为磷[25], 而在温带地区, 限制因子为氮[11]。因此不同水平的氮沉降对亚热带和温带人工林的生态过程和树木生长的影响大不相同。也有研究表明短期的氮沉降模拟实验(两年)对于树木生长的影响更多取决于人工林的树种, 而不是磷元素的添加, 但氮沉降对土壤中的氮磷循环是很大程度上受到磷添加的影响的[20]。

2 氮沉降对不同林龄人工林和不同树种人工林的影响

氮沉降对于人工林生长的影响与人工林的林龄有着密不可分的关系。氮沉降对毛竹人工林叶片中氮含量的增加程度在幼龄林中比在成熟林中强, 而且这种增加作用随着氮沉降含量超过60 kg·ha-1·a-1时减弱[26]。Mao等的研究也证实了氮沉降对促进种植初期亚洲东北部落叶松的生长效果显著[27], 这是由于氮沉降增加了落叶松针叶中的氮含量和其余大量元素(钾、镁和叶绿素)的含量。氮沉降对不同林龄的影响不一样可能是因为不同林龄的人工林对氮的吸收和需求不同, 例如杨树在生长的初期和间伐期, 氮对其生长的促进效果显著, 而生长的中后期, 氮对其并没有明显的作用[28]。氮沉降对不同树种的人工林的影响也不同。短期氮添加(两年)对樟子松的生长有促进作用, 但是对小叶杨树的生长没有影响[20]。研究证明氮沉降对营养循环的影响也和人工林树木的种类有关[29], 而氮沉降会通过影响人工林的营养循环进一步影响人工林的产量。

3 不同管理模式下氮沉降对人工林的影响

在不同的管理模式下, 氮沉降对人工林生长的影响也可能不一样。目前, 人工林的管理模式主要有集约型管理和传统管理模式。集约型管理模式有更多人为管理方式, 如: 施肥[30]、林下植物的抚育[31-34]、灌溉[16]和土壤耕作[14]等。氮沉降会增加树木和林下草本植物的碳储量, 但会减少凋落物中的碳储量[8]。在集约型管理模式下(移除林下草本植物), 氮沉降增加土壤中有机碳和氮的量, 而单纯的氮沉降或者是集约管理均会减少春季土壤中有机碳和氮的量[14]。在干旱区, 若灌溉量不够导致干旱胁迫也会影响氮添加对树木生长的影响程度[20]。

4 氮沉降对人工林生长的滞后性影响

氮沉降对于人工林的生长有即时的影响和滞后的影响(效应)。目前, 对于氮沉降对人工林生长的研究, 无论是不同氮沉降的程度、不同林龄还是在特定的人工林管理模式下, 除模型模拟实验[35]以外均为小于3年的即时性研究[2,22]。但是, 氮沉降对人工林生长不仅仅具有即时的影响, 还可能具有滞后的影响(效应), 而且导致即时效应和滞后效应的机制可能不一样。氮沉降对人工林生长的即时影响很大程度上取决于该人工林中氮含量是否丰富还是氮是限制因子[11]。而氮沉降对人工林生长的滞后性影响可能受到两方面因素的影响。一方面由于土壤对氮的缓冲性能(soil buffering capacity)[36], 某一年氮沉降对人工林生长的影响可能包含前几年氮沉降的叠加作用; 另一方面, 氮沉降会逐渐影响人工林的营养循环和土壤的理化性质, 而进一步影响人工林树木的生长。氮沉降影响人工林凋落物的分解速率[37], 改变生态系统的营养循环, 进而影响人工林树木的生长, 而且氮沉降对凋落物分解的影响由于人工林林龄的不同而有所区别[38]。即使在高水平的大气氮沉降影响下, 树木生长仍然吸收大量的由凋落物分解所释放到土壤中的氮[39]。大量的氮沉降会最终导致氮沉降过剩, 氮沉降过剩得越多, 氮的淋失就越多, 从而加速土壤酸化的过程[7,40]。然而, 氮沉降对人工林生长的滞后性影响规律在现有的研究中并未得到阐述, 而这些可能导致氮沉降对人工林生长的滞后性影响的机制也尚未经研究论证。

综上所述, 氮沉降对人工林生长的滞后性效应与机制, 比即时影响更为复杂, 是氮沉降对生态功能的改变在人工林生长上的体现。因此, 研究氮沉降对人工林生长的滞后性效应, 在全面揭示氮沉降对生态系统的影响规律上具有重要的理论和实践意义。并且在研究氮沉降对人工林生长的滞后性效应时, 控制氮沉降浓度、林龄和管理模式这三个因素, 能更全面地厘清滞后性效应与机制。

5 遥感技术用于研究氮沉降影响杨树人工林生长的重要性

一方面, 遥感提供长期一致且稳定的影像数据, 不仅可以对杨树人工林的生长进行非接触性监测, 而且可以利用长时间的影像资料拟合杨树的生长曲线[41], 反映氮沉降对杨树人工林生长的即时影响和滞后效应。另一方面, 相较与传统的测量树木生长的方法, 遥感技术具有监测人工林生长的差异性的优势, 更有利于比较氮沉降对不同林龄梯度的影响。树木活体蓄积量是遥感监测人工林生长的重要指标。计算树木活体蓄积量两个所必须的参数为树高和胸径[42]。自从地面激光扫描技术被应用于森林的研究中, 再也无须砍伐大量的树木就能测量活立木的树高和胸径[43]。并且激光扫描技术测量树高和胸径的准确度已经被大量的研究证实[44]。近几年来, 无人机载激光雷达也广泛应用于树高、胸径和活立木蓄积量的测量[45]。但是激光扫描技术的价格昂贵, 测量树高、胸径和树木蓄积量的精确度受结构复杂的树叶枝条和花蕾等噪音的影响很大[46], 因此近两年来利用无人机载光学传感器测量树高、胸径和蓄积量的方法的研究成为现阶段的研究热点[47]。

6 问题与展望

区分氮沉降对人工林生长的滞后性影响和即时性影响。导致氮沉降对人工林生长的即时性影响和滞后性影响的机制不一样, 因此不能以氮沉降对人工林生长的即时性影响规律推断滞后性影响。氮沉降对于人工林的滞后性影响主要取决于氮是否为该人工林生长的限制因子; 而滞后性影响机制更为复杂, 是氮沉降对人工林生态功能的逐渐改变在人工林生长上的体现。因此区分氮沉降的即时性和滞后性影响, 并分析其滞后性影响机制对完善氮沉降对人工林生态影响的综合理论有一定的贡献并且有不可替代的意义。

现有的研究结果表明氮沉降对人工林生长的即时性影响在不同氮沉降程度、不同林龄和不同管理模式下有区别: (1)在亚热带地区, 中等程度的大气氮沉降促进树木生长, 高程度的氮沉降则抑制树木生长; 而在温带地区, 氮沉降的程度越大对树木生长的促进作用越强。(2)相对于成熟林, 氮沉降对幼龄林影响作用更大, 而且这种影响作用随着氮沉降程度的改变也会发生变化。(3)在林下草本植物抚育(移除)的情况下, 氮沉降会增加土壤中有机碳和氮的量, 而在林下草本植物不抚育(保留)的情况下, 结果则完全不同。

氮沉降对人工林的滞后性影响比即时性影响更加复杂。在不同氮沉降程度下, 引起即时性影响规律的原因在于氮是否是该地区树木生长的限制性因子, 在氮缺失的情况下氮沉降促进树木生长, 但是当氮沉降造成氮过剩的情况下, 土壤中氮淋失增多, 加速土壤酸化, 反而抑制树木的生长, 现有研究结果也证实了氮沉降除影响人工林中的氮循环外, 还会影响凋落物分解、碳循环、土壤pH值等生态功能的变化, 而这种被改变的生态功能最终也会影响人工林树木的生长, 而且这种影响是具有滞后性的。在不同的管理模式下, 氮沉降对人工林生长的滞后性影响可能也有区别, 但是不同林龄人工林在不同程度氮沉降和不同管理模式情况下的滞后性影响在现有研究中并未得到详细的研究和论证, 氮沉降对人工林生长的滞后性影响是氮沉降改变人工林生态功能的体现, 对理解氮沉降对整个生态系统的影响规律有不可替代的理论贡献, 因此分别研究不同林龄人工林在不同程度氮沉降、不同管理模式的情况下生长的滞后性影响是有必要的, 也会成为将来的研究方向。

[1] Morse J, Durán J, Beall F, et al. Soil denitrification fluxes from three northeastern North American forests across a range of nitrogen deposition[J]. Oecologia, 2015, 177(1): 17–27.

[2] SONG Xinzhang, LI Quan, GU Honghao. Effect of nitrogen deposition and management practices on fine root decomposition in Moso bamboo plantations[J]. Plant and Soil, 2017, 410(1/2): 207–215.

[3] ZHANG Junbo, LV Jianhua, LI Quan, et al. Effects of nitrogen deposition and management practices on leaf litterfall and N and P return in a Moso bamboo forest[J]. Biogeochemistry, 2017, 134(1/2): 115–124.

[4] Liu Xuejun, Zhang Ying, Han Wenxuan, et al. Enhanced nitrogen deposition over China[J]. Nature: International weekly journal of science, 2013, 494(7438): 459–462.

[5] KANAKIDOU M, MYRIOKEFALITAKIS S, DASKALAKIS N, et al. Past, Present, and Future Atmospheric Nitrogen Deposition[J]. Journal of the Atmospheric Sciences, 2016, 73(5): 2039–2047.

[6] Crowley K and Lovett G. Effects of nitrogen deposition on nitrate leaching from forests of the northeastern United States will change with tree species composition[J]. Canadian Journal of Forest Research, 2017, 47(8): 997–1009.

[7] Ochoa R. Nonlinear disruption of ecological interactions in response to nitrogen deposition[J]. Ecology, 2016, 97(10): 2802–2814.

[8] Gentilesca T, Vieno M, Perks M, et al. Effects of Long-Term Nitrogen Addition and Atmospheric Nitrogen Deposition on Carbon Accumulation inPlantations[J]. Ecosystems, 2013, 16(7): 1310–1324.

[9] Li Quan, Song Xinzhang, Gu Honghao, et al. Nitrogen deposition and management practices increase soil microbial biomass carbon but decrease diversity in Moso bamboo plantations[J]. Scientific Reports, 2016, 6(1): 1–11.

[10] LIU Caixia, DONG Yuhong, SUN Qiwu, et al. Soil bacterial community response to short-term manipulation of the nitrogen deposition form and dose in a Chinese fir plantation in southern China[J]. Water Air and Soil Pollution, 2016, 227(12): 447.

[11] LIU Xiaofei, YANG Zhijie, LIN Chengfang, et al. Will nitrogen deposition mitigate warming-increased soil respiration in a young subtropical plantation[J]. Agricul­tural and Forest Meteorology, 2017, 246: 78–85.

[12] TU Lihua, HU Hongling, Chen Gang, et al. Nitrogen addition significantly affects forest litter decomposition under high levels of ambient nitrogen deposition[J]. Plos One, 2014, 9(2): 1–9.

[13] TRUAX B, GAGNON D, LAMBERT F, et al. Multiple-use zoning model for private forest owners in agricultural landscapes: A case study[J]. Forests, 2015, 6(10): 3614– 3664.

[14] LEI Zhaofeng, SUN Huangfa, LI Quan, et al. Effects of nitrogen deposition on soil dissolved organic carbon and nitrogen in moso bamboo plantations strongly depend on management practices[J]. Forests, 2017, 8(11): 452.

[15] VANCE E, LOEHLE C, WIGLEY T, et al. Scientific basis for sustainable management of eucalyptus and populus as short-rotation woody crops in the U.S.[J]. Forests, 2014, 5(5): 901–918.

[16] YAN Xiaoli, DAI Tengfei, ZHAO Dehai, et al. Combined surface drip irrigation and fertigation significantly increase biomass and carbon storage in a Populus x euramericana cv. Guariento plantation[J]. Journal of Forest Research, 2016, 21(6): 280–290.

[17] WANG Dan, FAN Jiazhi, JING Panpan, et al. Analyzing the impact of climate and management factors on the productivity and soil carbon sequestration of poplar plantations[J]. Environmental Research, 2016, 144: 88–95.

[18] CHEN Hao, CHEN Meiling, Li Dejun, et al. Responses of soil phosphorus availability to nitrogen addition in a legume and a non-legume plantation[J]. Geoderma, 2018, 322: 12–18.

[19] BIAN Haixue, GENG Qinghong, XIAO Hanran, et al. Fine Root Biomass Mediates Soil Fauna Community in Response to Nitrogen Addition in Poplar Plantations (Populus deltoids) on the East Coast of China[J]. Forests, 2019, 10(2): 122.

[20] ZHAO Qiong, ZENG Dehui. Nitrogen addition effects on tree growth and soil properties mediated by soil phosphorus availability and tree species identity[J]. Forest Ecology and Management, 2019, 449: 117478.

[21] SONG Lei, TIAN Peng, ZHANG Jinbo, et al. Effects of three years of simulated nitrogen deposition on soil nitrogen dynamics and greenhouse gas emissions in a Korean pine plantation of northeast China[J]. Science of the Total Environment, 2017, 609: 1303–1311.

[22] TU Lihua, HU Tingxing, ZHANG Jian, et al. Short-term simulated nitrogen deposition increases carbon seques­tration in aplantation[J]. Plant and Soil, 2011, 340(1-2): 383–396.

[23] DU Zhihong, WANG Wei, ZENG Wenjing, et al. Nitrogen deposition enhances carbon sequestration by plantations in northern China[J]. Plos One, 2014, 9(2): e87975.

[24] WANG Yongsheng, CHENG Shulan, FANG Huajun, et al. Simulated nitrogen deposition reduces CH4uptake and increases N2O emission from a subtropical plantation forest soil in southern China[J]. Plos One, 2014, 9(4): e93571.

[25] ZHENG Linlin, ZHAO Qiong, SUN Qingye, et al. Nitrogen addition elevated autumn phosphorus retranslocation of living needles but not resorption in a nutrient-poor Pinus sylvestris var. Mongolica plantation[J]. Forest Ecology and Management, 2020, 468: 118174.

[26] SONG Xinzhang, GU Honghao, WANG Meng, et al. Management practices regulate the response of Moso bamboo foliar stoichiometry to nitrogen deposition[J]. Scientific Reports, 2016, 6: 24107.

[27] MAO Qiaozhi, WATANABE M, MAKOTO K, et al. High nitrogen deposition may enhance growth of a new hybrid larch F-1 growing at two phosphorus levels[J]. Landscape and Ecological Engineering, 2014, 10(1): 1–8.

[28] Georgiadis P, Taeroe A, Stupak I, et al. Fertili­zation effects on biomass production, nutrient leaching and budgets in four stand development stages of short rotation forest poplar[J]. Forest Ecology and Management, 2017, 397: 18–26.

[29] BU Wensheng, CHEN Fusheng, WANG Fangchao, et al. The species-specific responses of nutrient resorption and carbohydrate accumulation in leaves and roots to nitrogen addition in a subtropical mixed plantation[J]. Canadian Journal of Forest Research, 2019, 49(7): 826–835.

[30] Pinno B, Thomas B and Belanger N. Predicting the productivity of a young hybrid poplar clone under intensive plantation management in northern Alberta, Canada using soil and site characteristics[J]. New Forests, 2010, 39(1): 89–103.

[31] Goehing J, Thomas B, Macdonald S, et al. Effects of alternative establishment systems on resource availability, understorey composition and tree performance in juvenile hybrid poplar plantations[J]. Forestry, 2017, 90(4): 515–529.

[32] San Martin C, Andujar D, Fernandez- Quintanilla C, et al. Spatio-temporal dynamics ofin poplar short-rotation coppice under several vegetation management systems[J]. Forest Ecology and Management, 2016, 379: 37–49.

[33] Henkel-Johnson D, Macdonald S, Bork E, et al. Influence of weed composition, abundance, and spatial proximity on growth in young hybrid poplar plantations[J]. Forest Ecology and Management, 2016, 362: 55–68.

[34] Ault K, Viswanath V, Jayawickrama J, et al. Improved growth and weed control of glyphosate-tolerant poplars[J]. New Forests, 2016, 47(5): 653–667.

[35] ZHAO Meifeng, XIANG Wenhua, TIAN Dalun, et al. Effects of increased nitrogen deposition and rotation length on long-term productivity ofplantation in southern China[J]. Plos One, 2013, 8(2): e55376.

[36] LU Xiankai, MAO Qinggong, MO Jiangming, et al. Divergent responses of soil buffering capacity to long-term N deposition in three typical tropical forests with different land-use history[J]. Environmental Science & Technology, 2015, 49(7): 4072–4080.

[37] YUAN Yinghong. Effects of nitrogen deposition on soil microbial biomass, microbial functional diversity and enzyme activities in fir plantations of subtropical China[J]. Progress in Environmental Science and Engineering, 2013, 610/613: 323–330.

[38] MA Yuecun, ZHU Biao, SUN Zhenzhong, et al. The effects of simulated nitrogen deposition on extracellular enzyme activities of litter and soil among different-aged stands of larch[J]. Journal of Plant Ecology, 2014, 7(3): 240–249.

[39] Nair R, Perks M and Mencuccini M. Decomposition nitrogen is better retained than simulated deposition from mineral amendments in a temperate forest[J]. Global Change Biology, 2017, 23(4): 1711–1724.

[40] Blanco J, WeiXiaohua, Jiang Hong, et al. Impacts of enhanced nitrogen deposition and soil acidification on biomass production and nitrogen leaching in Chinese fir plantations[J]. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere, 2012, 42(3): 437– 450.

[41] KELES S. Optimum cutting ages in hybrid poplar plantations including carbon sequestration: A case study in Turkey[J]. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 2016, 22(3): 339–349.

[42] ZHANG Dong, ZHANG Liyan, Ye Qiaolin, et al. Robust learning-based prediction for timber-volume of living trees[J]. Computers and Electronics in Agriculture, 2017, 136: 97–110.

[43] EMERY M, WROBEL A, HANSEN M, et al. Using Traditional Ecological Knowledge as a Basis for Targeted Forest Inventories: Paper Birch () in the US Great Lakes Region[J]. Journal of Forestry, 2014, 112(2): 207–214.

[44] RIGGIO M, ANTHONY R, AUGELLI F, et al. In situ assessment of structural timber using non-destructive techniques[J]. Materials and Structures, 2014, 47(5): 749– 766.

[45] BREDE B, LAU A, BARTHOLOMEUS H, et al. Comparing RIEGL RiCOPTER UAV LiDAR Derived Canopy Height and DBH with Terrestrial LiDAR[J]. Sensors, 2017, 17(10): 2371.

[46] GREGOIRE T, NASSET E, MCROBERTS R, et al. Statistical rigor in LiDAR-assisted estimation of above­ground forest biomass[J]. Remote Sensing of Environ­ment, 2016, 173: 98–108.

[47] PATRICK A, LI C. High Throughput Phenotyping of Blueberry Bush Morphological Traits Using Unmanned Aerial Systems[J]. Remote Sensing, 2017, 9(12): 1250.

Review on the lag effects of nitrogen deposition on plantations

XU Dandan1, 2,*, WANG Haobin1, PU Yihan1

1. College of Biology and the Environment, Nanjing Forestry University, Jiangsu 210037, China 2. Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Jiangsu 210037, China

The influence of nitrogen deposition on the growth of plantation is one of the most important research focused currently. However, current research is focused on the immediate effects of nitrogen deposition on the growth of plantation, lacking study the lag effects of nitrogen deposition on tree growth. The lag effects of nitrogen deposition on the growth of plantation are the result of gradually altered ecological function by nitrogen deposition in the plantation ecosystem, and the mechanism of the lag effects of nitrogen deposition is completely different from the immediate effects. Therefore, this review mainly reviews the lag effects of nitrogen deposition on the growth of plantations, including the impact of nitrogen deposition with different concentration on plantations, the effects of nitrogen deposition on plantation of different stand age, the influences of nitrogen deposition on plantation under different managements, and the difference between the immediate and lag effects of nitrogen deposition on plantation.

nitrogen deposition; plantation; lag effects; immediate effects; stand age

10.14108/j.cnki.1008-8873.2022.02.030

Q148, S718.5

A

1008-8873(2022)02-259-10

2020-06-16;

2020-07-24

国家自然科学基金(41901361); 江苏省自然科学基金青年项目(BK20180769); 江苏省"六大人才高峰"创新人才团队项目(TD-XYDXX-006); 江苏省高校自然科学研究面上项目(18KJB180009)

徐丹丹(1987—)女, 博士, 副教授, 主要从事生态遥感研究, E-mail: dandan.xu@njfu.edu.cn

通信作者:徐丹丹

徐丹丹, 王浩斌, 濮毅涵, 等. 氮沉降对人工林生长的滞后性影响的研究进展[J]. 生态科学, 2022, 41(2): 259–264.

XU Dandan, WANG Haobin, PU Yihan, et al. Review on the lag effects of nitrogen deposition on plantations[J]. Ecological Science, 2022, 41(2): 259–264.

猜你喜欢

林龄人工林树木
杉木胸径性状遗传参数年龄变化趋势研究
桉树人工林生产经营存在的问题及对策
刺槐林不同林龄林分形态及植被特征分析
檫树优树半同胞子代测定林树高性状遗传变异研究
树木之最
川西亚高山不同林龄云杉人工林林地水源涵养能力比较研究
汤原县林业局有林地面积的特点与分析
邻体干扰模型在辽东油松人工林中的应用
辨认树木
高峰林场桉树人工林与其他树种人工林之间土壤差异分析及对策