自具微孔聚酰亚胺气体分离膜的研究进展
2023-01-13闻芯君贾宏葛
闻芯君,贾宏葛
自具微孔聚酰亚胺气体分离膜的研究进展
闻芯君1,贾宏葛2,3
(齐齐哈尔大学 1. 化学与化学工程学院,2. 材料科学与工程学院,3. 黑龙江省聚合物基复合材料重点实验室,黑龙江 齐齐哈尔 161006)
概述了近年来自具微孔聚酰亚胺不同致孔基元,通过比较不同致孔基元间表现的气体分离性能,选取制备自具微孔聚酰亚胺气体分离膜的最佳结构.主要有5类致孔基元:螺吲哚(SBI)单元、螺双芴(SBF)单元、三蝶烯(Trip)、亚乙基蒽(EA)和特勒格碱(TB).在综合比较中发现,Trip的高自由体积(IFV)的刚性Y形结构的致孔基元和EA的桥接双环结构均可以为聚合物提供高度形状持久性结构,确保微孔性.由于SBI中有一定程度的构象灵活性,会损害聚合物主链的刚性,导致整体的气体分离性能不高.SBF为致孔基元的聚酰亚胺,在5类致孔基元中的气体分离性能处于中等.所以Trip和EA结构在未来制备自具微孔聚酰亚胺气体分离膜方面更具发展潜力.
自具微孔聚酰亚胺;气体分离膜;致孔基元;气体分离性能
基于聚合物膜的气体分离技术具有占地面积小、操作简单、成本效益高等优点而受到越来越多的关注,在未来的碳中和目标中发挥重要作用[1].分离膜技术广泛应用于天然气脱硫、CO2捕获和储存、制氮和制氢领域[2-3].工业过程中最具挑战性的是具有高渗透性,还需兼顾选择性和稳定性的高效膜[4-5].气体分离性能是否突破Robeson上限是衡量气体分离膜性能优劣的重要依据[6].通过分子设计,目前已开发出多种类型的气体分离膜,如聚烯烃、聚酰亚胺、聚砜、纤维素、聚碳酸酯等[7].
聚酰亚胺具有优越的综合性能,相对于其它芳杂环高分子比较容易合成.大多数线性聚酰亚胺因其分子链具有一定的柔性,分子链相互紧密地缠结在一起,自由体积小,所以一般不具微孔结构.为了提高其分离性能,在线性聚酰亚胺的结构中引入刚性的扭曲结构,可以有效抑制亚胺键的旋转,阻碍分子链构象转变,破坏线性分子对称性,阻碍有效的链堆积和链间作用,增加其分子链的自由体积[8-9],从而制备出自具微孔聚酰亚胺材料(PIM-PI).
自具微孔聚酰亚胺(PIM)材料的核心概念是合理设计具有高刚性和扭曲结构的聚合物,从而产生梯状大分子形状并能够高效阻碍聚合物链堆积[10-11].微孔构成需要引入刚性、桥接和非平面脂环链段致孔基元[12]4147,主要有5类:螺吲哚(SBI)单元[13]、螺双芴(SBF)单元、三蝶烯(Trip)、亚乙基蒽(EA)和特勒格碱(TB)[14-15].因为致孔基元的扭曲结构中含有刚性和桥联节点,在PIM骨架中提供桥联作用和成孔位点,扭曲结构位点造成聚合物空间结构的无效堆积,并且在链间产生自由体积.这些致孔基元扭曲结构使聚合物分子链在聚集态时不能形成致密堆砌,导致大量微孔产生,为气体传输提供一定的选择性分离通道[16].
1 SBI为致孔基元的聚酰亚胺
2009年有文献报道了以螺双辛烷基二酐和一系列二胺反应制得PIM-PIs[17],在聚合物骨架中引入SBI的扭曲结构,通过固定酰亚胺环中的C-N旋转键,螺中心单元(即2个环共享的单个四面体碳原子)结构不能沿聚合物链旋转,或由于空间位阻对旋转的阻碍限制,以避免构象变化,从而帮助聚合物堆叠成孔.在提高透气性和选择性方面具有优势[18-19].
SBI致孔基元是刚性强的桥连双环,系统性提高对各种气体对的选择性[20].通过改变二胺,制备出PIM-PI系列自具微孔聚酰亚胺膜,其对O2/N2组分的分离中,O2具体透过量范围在23.8~98 Barrer,选择性在3.7~4.6,并且接近1991年上限,多数聚酰亚胺气体分离性能接近1991年Robeson曲线;CO2/CH4组分中,CO2具体透过量范围在119~2 180 Barrer,选择性在12.8~35,多数聚酰亚胺气体分离性能在1991年Robeson曲线上方.
对于使用SBI作为扭曲位点的基本PIM-PI系列,因为SBI中具有一定程度的构象灵活性,即会损害聚合物主链的刚性,导致整体的气体分离性能不高.为了提高其气体分离性能,对于引入了SBF或TB结构的SPDA-HSBF、SBI-HTB微孔膜的气体选择透过性都有较大的改善,在SBI基础上引入SBF或TB结构使气体分离膜的分离性能达到最佳状态.未来在气体分离方面,合成含有SBI致孔基元的自具微孔聚酰亚胺膜还具有很大的改进空间,引入更强刚性结构或者引入较大侧基,增大分子间作用力,提高气体分离性能是一个潜在的方向.
2 SBF为致孔基元的聚酰亚胺
在SBF中,2个芴环正交排列并通过四面体键合碳原子,即螺中心连接,聚合物链上形成以每个螺环为中心90°角周期性的锯齿形[21].这种结构特征可最大限度地减少链间的相互作用,并限制聚合物链的紧密堆积,聚合物主链的刚性将被保留[22].
含有SBF致孔结构的PI膜整体上的气体分离性能中等[23].在O2/N2组分中,O2透过量主要集中在35.1~243 Barrer,选择性在3.5~4.5的范围;CO2/CH4组分透过量主要集中在182~1 340 Barrer,选择性在13.1~28.4的范围(见表1).其中含有庞大结构的3,3-二甲基萘二胺(DMN)与含有SBF酸酐反应制备的SBFDA-DMN膜,气体分离性能达到2008年Robeson曲线的上限,由于其扭曲的刚性结构导致其比表面积、聚合物渗透性均显著提高.
表1 气体选择透过性
由于SBF中溴的引入,气体渗透量增加,因为溴阻碍键旋转而提高的刚度导致比表面积和气体选择性小幅降低.未来通过调整结构、引入大分子单元等方法提高气体分离性能,有望用于空气中的氧富集.
3 Trip为致孔基元的聚酰亚胺
Trip是高性能微孔聚合物的独特结构单元,因为其三角双锥(D3h)对称性,具有刚性Y形结构,内部自由体积(IFV)较高,其中包含[2,2,2]辛三烯桥头的芳烃单元.因为链间堆积不好导致自由体积进一步增加.2011年,Cho[44]等将三维刚性的内部具有高自由体积的Trip引入PI结构中,得到了高分子量、高自由体积的微孔PI.
含有Trip结构的自具微孔聚酰亚胺膜在CO2/CH4,O2/N2组分的分离性能非常出色,部分材料甚至突破2008年上限,总的来看,都在1991年上限和2008年上限之间.在一系列Trip聚合物中,9,10-桥头上取代的烷基可调整比表面积以增强气体吸附.通过调控Trip扭曲节点9,10-桥头上的烷基链长和几何构型,发现最短甲基链拥有最高的比表面积,而拥有最长的烷基链的聚合物的比表面积却最低.在CO2/CH4组分中,桥头甲基取代的TDA1-DMN(CO2透过量达到3 700 Barrer)比含有异丙基侧链的KAUST-PIs膜(膜的CO2透过量达到2 389 Barrer)具有更高的气体透过性和略低的选择性.将含异丙基的Trip扭曲中心引入酸二酐单体后,相对于无侧链PI膜的气体分离性能也得到了极大的提升.整体上看,9,10-桥头取代基对PI气体透过性影响规律为:甲基>异丙基>无侧链.
未来通过调整Trip内部IFV和链间自由体积的方法提升气体分离总体性能,也可以通过选择桥头取代基种类,影响Trip衍生聚合物的气体渗透性能.
4 TB为致孔基元的聚酰亚胺
在TB独特结构特征中的二氮杂辛桥会产生类似裂缝的形状,具有刚性V形桥接双环连接基团,使其在分子识别和超分子化学中的应用非常具有吸引力[45].提供高度刚性的扭曲位点来阻碍链间堆积,从而导致这种刚性框架在具有微孔的各种聚合物(PIM)中得到广泛应用[46].Lee[12]等以Tröger′s Base构型单体为扭曲节点,并在其扭曲节点上增加甲基数量来限制酰亚胺键的构象自由度,以此来提高气体分离能力.
含有TB结构的致孔基元在CO2/CH4组分中主要集中在1991年和2008年Robeson曲线之间.6FDA-HTB的高渗透选择性主要是由于其含有羟基质子和Troger碱叔胺中氮原子之间的氢键(O-H…N)所产生的强大尺寸筛分特性,从而产生了异常的分离选择性.Trip和EA结构在制备更高气体分离性能PIM-PI膜上更具有优势.
未来可以考虑通过引入功能性侧基或者形成氢键等改性方式,提高含有TB结构致孔基元的聚酰亚胺气体分离性能.
5 EA为致孔基元的聚酰亚胺
桥接双环EA是高度不灵活的,可以为聚合物提供高度形状持久性结构,确保微孔性,相对于其它致孔单元,EA结构在气体分离性方面最具优势.基于EA制备的具有微孔气体分离膜的O2/N2气体分离性能位于2008年Robeson上限之上.PIM-PI-EA的气体分离性能主要受EA的结构影响,与PIM中常用的SBI相比,EA二酐产生了比螺环二酐更好的选择性和渗透性.
庞大的3,3-二甲基萘二胺(DMN)单元与桥环酸酐制备的自具微孔聚酰亚胺中,含EA结构(PIM-PI-EA)气体分离性能最佳,有更高的透过性,其中CO2透过量从948 Barrer增长到7 340 Barrer,相应的O2透过量从320 Barrer增长到1 380 Barrer,相比其它结构,选择性变化不大.
未来可以通过优化选择性,提高整体性能.EA结构是目前报道的作为微孔膜材料研究的最佳致孔单元.
6 结语
用于工业气体分离装置的气体分离膜应具有足够好的机械性能和成膜性能,具有良好的化学和热稳定性,还应具有足够的抗塑化性和不老化性.在气体分离应用中,渗透率和选择性渗透率之间通常存在权衡,寻找超过Robeson上限的膜材料一直是重要目标.
自PIM-1发明以来,开发了数百种新的PIM-PI,它们具有不同类型的致孔基元,作为空间位阻扭曲位点.用于商业可用微孔膜材料PIM设计的5个最核心致孔基元中:Trip,EA,TB可以增大比表面积、增加微孔,具有相同的120扭结结构,在高气体分离性材料领域,拥有巨大的研究潜力.在这5种致孔结构中,SBI的气体分离性能没有其它几种优异.因为SBI中有一定程度的构象灵活性,即会损害聚合物主链的刚性,导致整体的气体分离性能不高.Trip和EA的气体分离性能较优异,突破2008年上限,未来在制备新型微孔结构上潜力巨大.微孔的发展在很大程度上取决于扭曲中心抵抗分子变形和维持破坏链堆积的分子内刚性的能力.刚性和超微孔的结合,通过使用桥联双环结构进行微调,合成高渗透性和低自由体积的聚合物,能够弥补商用材料的不足.
自具微孔聚酰亚胺材料在气体分离领域具有非常大的应用前景,在今后的研究中还需不断突破现有领域,扩大应用范围,主要从3个方面入手:(1)寻找新的致孔结构和连接方式,制备选择性和渗透性都好的气体分离膜;(2)设计并合成满足刚性结构、功能化和廉价性的构筑单体,丰富构筑单体的种类;(3)简化实验条件并探索新的有效合成途径,使实验制备从精细化和微量化发展到常规化和量产化.
[1] Siagian U W R,Raksajati A,Himma N F,et al.Membrane-based carbon capture technologies:Membrane gas separation vs. membrane contactor[J].Journal of Natural Gas Science and Engineering,2019,67:172-195.
[2] Galizia M,Chi W S,Smith Z P,et al.50th anniversary perspective:polymers and mixed matrix membranes for gas and vapor separation:a review and prospective opportunities[J].Macromolecules,2017,50(20):7809-7843.
[3] Wang Y,Ma X,Ghanem B S,et al.Polymers of intrinsic microporosity for energy-intensive membrane-based gas separations[J].Materials Today Nano,2018,3:69-95.
[4] Koros W J,Zhang C.Materials for next-generation molecularly selective synthetic membranes[J].Nature Materials,2017,16(3):289-297.
[5] Park H B,Kamcev J,Robeson L M,et al.Maximizing the right stuff:The trade-off between membrane permeability and selectivity[J].Science,2017,356(6343):1138-1148.
[6] Chuah C Y,Goh K,Yang Y,et al.Harnessing filler materials for enhancing biogas separation membranes[J].Chemical Reviews,2018,118(18):8655-8769.
[7] Park J H,Rutledge G C.50th anniversary perspective:advanced polymer fibers:high performance and ultrafine[J].
[8] Zhu Z,Zhu J,Li J,et al.Enhanced Gas Separation Properties of Troger′s Base Polymer Membranes Derived from Pure Triptycene Diamine Regioisomers[J].Macromolecules,2020,53(5):1573-1584.
[9] 孟凡宁,张新妙,郦和生,等.聚酰亚胺基气体分离膜的研究进展[J].化工新型材料,2020,48(5):7-11.
[10] McKeown N B,Budd P M,Msayib K J,et al.Polymers of intrinsic microporosity (PIMs):bridging the void between microporous and polymeric materials[J].Chemistry-A European Journal,2005,11(9):2610-2620.
[11] McKeown N B.Contorted separation[J].Nature Materials,2016,15(7):706-707.
[12] Lee M,Bezzu C G,Carta M,et al.Enhancing the gas permeability of Troger′s base derived polyimides of intrinsic microporosity[J].Macromolecules,2016,49(11):4147-4154.
[13] Hu X,Lee W H,Zhao J,et al.Tröger′s Base(TB)-containing polyimide membranes derived from bio-based dianhydrides for gas separations[J].Journal of Membrane Science,2020,610:118255.
[14] Zhuang Y,Orita R,Fujiwara E,et al.Colorless Partially Alicyclic Polyimides Based on Tröger′s Base Exhibiting Good Solubility and Dual Fluorescence/Phosphorescence Emission[J].Macromolecules,2019,52(10):3813-3824.
[15] Lee W H,Seong J G,Hu X,et al.Recent progress in microporous polymers from thermally rearranged polymers and polymers of intrinsic microporosity for membrane gas separation:Pushing performance limits and revisiting trade-off lines[J].Journal of Polymer Science,2020,58(18):2450-2466.
[16] Rose I,Bezzu C G,Carta M,et al.Polymer ultrapermeability from the inefficient packing of 2D chains[J].Nature Materials,2017,16(9):932-937.
[17] Ghanem B S,McKeown N B,Budd P M,et al.Synthesis,characterization,and gas permeation properties of a novel group of polymers with intrinsic microporosity:PIM-polyimides[J].Macromolecules,2009,42(20):7881-7888.
[18] Fonseca K B,Granja P L,Barrias C C.Engineering proteolytically-degradable artificial extracellular matrices[J].Progress in Polymer Science,2014,39(12):2010-2029.
[19] Dong G,Lee Y M.Microporous polymeric membranes inspired by adsorbent for gas separation[J].Journal of Materials Chemistry A,2017,5(26):13294-13319.
[20] Carta M,Malpass-Evans R,Croad M,et al.An efficient polymer molecular sieve for membrane gas separations[J].Science,2013,339(6117):303-307.
[21] Chou C H,Reddy D S,Shu C F.Synthesis and characterization of spirobifluorene-based polyimides[J].Journal of Polymer Science Part A:Polymer Chemistry,2002,40(21):3615-3621.
[22] Zhang S J,Li Y F,Ma T,et al.Organosolubility and optical transparency of novel polyimides derived from 2′,7′-bis (4-aminophenoxy)-spiro(fluorene-9,9′-xanthene)[J].Polymer Chemistry,2010,1(4):485-493.
[23] Ma X,Salinas O,Litwiller E,et al.Novel spirobifluorene-and dibromospirobifluorene-based polyimides of intrinsic microporosity for gas separation applications[J].Macromolecules,2013,46(24):9618-9624.
[24] Ghanem B S,McKeown N B,Budd P M,et al.High-performance membranes from polyimides with intrinsic microporosity[J].Advanced Materials,2008,20(14):2766-2771.
[25] Rogan Y,Starannikova L,Ryzhikh V,et al.Synthesis and gas permeation properties of novel spirobisindane-based polyimides of intrinsic microporosity[J].Polymer Chemistry,2013,4(13):3813-3820.
[26] Ma X,Mukaddam M,Pinnau I.Bifunctionalized intrinsically microporous polyimides with simultaneously enhanced gas permeability and selectivity[J].Macromolecular Rapid Communications,2016,37(11):900-904.
[27] Ma X,Salinas O,Litwiller E,et al.Pristine and thermally-rearranged gas separation membranes from novel o-hydroxyl-functionalized spirobifluorene-based polyimides[J].Polymer Chemistry,2014,5(24):6914-6922.
[28] Ma X,Abdulhamid M,Miao X,et al.Facile synthesis of a hydroxyl-functionalized troger′s base diamine:a new building block for high-performance polyimide gas separation membranes[J].Macromolecules,2017,50(24):9569-9576.
[29] Hazazi K,Ma X,Wang Y,et al.Ultra-selective carbon molecular sieve membranes for natural gas separations based on a carbon-rich intrinsically microporous polyimide precursor[J].Journal of Membrane Science,2019,585:1-9.
[30] Ghanem B S,Swaidan R,Litwiller E,et al.Ultra-microporous triptycene based polyimide membranes for high-performance gas separation[J].Advanced Materials,2014,26(22):3688-3692.
[31] Swaidan R,Al-Saeedi M,Ghanem B,et al.Rational design of intrinsically ultramicroporous polyimides containing bridgehead-substituted triptycene for highly selective and permeable gas separation membranes[J].Macromolecules,2014,47(15):5104-5114.
[32] Alaslai N,Ghanem B,Alghunaimi F,et al.High-performance intrinsically microporous dihydroxyl-functionalized triptycene-based polyimide for natural gas separation[J].Polymer,2016,91:128-135.
[33] Luo S,Liu Q,Zhang B,et al.Pentiptycene-based polyimides with hierarchically controlled molecular cavity architecture for efficient membrane gas separation[J].Journal of Membrane Science,2015,480:20-30.
[34] Alghunaimi F,Ghanem B,Alaslai N,et al.Gas permeation and physical aging properties of iptycene diamine-based microporous polyimides[J].Journal of Membrane Science,2015,490:321-327.
[35] Ghanem B,Alghunaimi F,Ma X,et al.Synthesis and characterization of novel triptycene dianhydrides and polyimides of intrinsic microporosity based on 3,3′-dimethylnaphthidine[J].Polymer,2016,101:225-232.
[36] Ji W,Li K,Shi W,et al.The effect of chain rigidity and microporosity on the sub-ambient temperature gas separation properties of intrinsic microporous polyimides[J].Journal of Membrane Science,2021,635:119439.
[37] Zhuang Y,Seong J G,Do Y S,et al.Intrinsically microporous soluble polyimides incorporating Tröger′s base for membrane gas separation[J].Macromolecules,2014,47(10):3254-3262.
[38] Zhuang Y,Seong J G,Do Y S,et al.High-strength,soluble polyimide membranes incorporating Tröger′s Base for gas separation[J].Journal of Membrane Science,2016,504:55-65.
[39] Ghanem B,Alaslai N,Miao X,et al.Novel 6FDA-based polyimides derived from sterically hindered Tröger′s base diamines:Synthesis and gas permeation properties[J].Polymer,2016,96:13-19.
[40] Wang Z,Wang D,Zhang F,et al.Troger′s base-based microporous polyimide membranes for high-performance gas separation[J].ACS Macro Letters,2014,3(7):597-601.
[41] Ma X,Abdulhamid M A,Pinnau I.Design and synthesis of polyimides based on carbocyclic pseudo-Troger′s base-derived dianhydrides for membrane gas separation applications[J].Macromolecules,2017,50(15):5850-5857.
[42] Ma X,Pinnau I.Effect of film thickness and physical aging on“intrinsic”gas permeation properties of microporous ethanoanthracene-based polyimides[J].Macromolecules,2018,51(3):1069-1076.
[43] Rogan Y,Malpass-Evans R,Carta M,et al.A highly permeable polyimide with enhanced selectivity for membrane gas separations[J].Journal of Materials Chemistry A,2014,2(14):4874-4877.
[44] Cho Y J,Park H B.High performance polyimide with high internal free volume elements[J].Macromolecular rapid communications,2011,32(7):579-586.
[45] Rúnarsson Ö V,Artacho J,Wärnmark K.The 125th anniversary of the Tröger′s base molecule:Synthesis and applications of Tröger′s base analogues[J].European Journal of Organic Chemistry,2012,2012(36):7015-7041.
[46] Abdulhamid M A,Ma X,Miao X,et al.Synthesis and characterization of a microporous 6FDA-polyimide made from a novel carbocyclic pseudo Tröger′s base diamine:Effect of bicyclic bridge on gas transport properties[J].Polymer,2017,130:182-190.
Research progress of polymers of intrinsic microporosity gas separation membranes
WEN Xinjun1,JIA Hongge2,3
(1. School of Chemistry and Chemical Engineering,2. School of Materials Science and Engineering,3. Heilongjiang Province Key Laboratory of Polymer Matrix Composites,Qiqihar University,Qiqihar 161006,China)
Overview the different pore forming elements of polymers of intrinsic microporosity in reserent years.In gas separation,the best structure of polymers of intrinsic microporosity gas separation membrane was selected by comparing the gas separation performance of different pore forming units.Five kinds of polymers of intrinsic microporosity pore forming units,including spiro indole(SBI)unit,spiro difluorinate(SBF)unit,triphene(Trip),ethyleneanthracene(EA)and terzag base(TB)were summarized.In a comprehensive comparison,among the porogens with polymers of intrinsic microporosity gas separation performance,Trip has a rigid Y-shaped structure with high free volume(IFV)and a bridged bicyclic structure of EA,both of which can provide a high shape persistence structure for polymers to ensure microporosity.Due to a certain degree of conformational flexibility in SBI,the rigidity of the polymer backbone will be damaged,resulting in low overall gas separation performance.Polyimide with SBF as porogen has medium gas separation performance among the five kinds of porogen.Therefore,Trip and EA structures have more development potential in the preparation of polymers of intrinsic microporosity gas separation membranes in the future.
polymers of intrinsic microporosity;gas separation membrane;pore forming elements;gas separation performance
1007-9831(2022)11-0057-06
O69
A
10.3969/j.issn.1007-9831.2022.11.011
2022-06-03
黑龙江省重点研发计划指导类项目(GZ20210034);黑龙江省领军人才梯队后备带头人资助项目(黑人社函2019(278)号)
闻芯君(1996-),女,黑龙江黑河人,在读硕士研究生,从事聚酰亚胺气体分离膜研究.E-mail:1748259983@qq.com
贾宏葛(1978-),黑龙江大庆人,教授,博士,从事聚酰亚胺气体分离膜、过渡金属催化剂研究.E-mail:jiahongge@qqhru.edu.cn