转色期叶面氮素调控对酿酒葡萄‘赤霞珠’品质的影响
2022-11-13马婷慧
张 舒,王 晶,马婷慧,王 锐
转色期叶面氮素调控对酿酒葡萄‘赤霞珠’品质的影响
张 舒1,王 晶1,马婷慧2,王 锐1※
(1. 宁夏大学农学院,银川 750021;2. 宁夏农林科学院,银川 750011)
宁夏贺兰山东麓现阶段水肥一体轻简化栽培模式下酿酒葡萄对氮素营养需求发生了巨大变化,如果继续沿用传统氮肥施用方式可能会引发酿酒葡萄成熟过快、浆果内含物累计不足、果皮中酵母可同化氮偏低等问题。以喷清水为对照,在酿酒葡萄转色期内叶面喷施硫酸铵、硝酸铵钙、尿素、苯丙氨酸及谷氨酸5种水溶性氮源,研究不同氮源对酿酒葡萄‘赤霞珠’品质的影响。结果表明:转色期叶面氮素调控的葡萄浆果可溶性固形物以硫酸铵处理最佳,高达29.21%;花色苷在尿素处理下含量高达2.28 mg/g,较其余氮素处理提高16.33%~55.10%;单宁含量以苯丙氨酸处理最佳,高达19.88 mg/g;总酚含量在苯丙氨酸处理下高达19.56 mg/g,较其余氮素处理提高8.91%~27.34%。综合分析得出,转色期叶面喷施苯丙氨酸和尿素两种氮源均可改善酿酒葡萄生长发育,提升浆果品质。
氮素;尿素;酚;酿酒葡萄;转色期;酵母可同化氮
0 引 言
氮素是酿酒葡萄生长过程中不可或缺的矿质营养元素[1],能促进蛋白质和叶绿素的形成,提升光合和养分累积能力[2]。它在影响酿酒葡萄生长发育和品质形成[3]的同时也是葡萄酒后期发酵环节所需酵母可同化氮的重要来源。氮素供应不足时,会导致树体发育不良,酿酒葡萄产量及品质降低,氮过剩则会导致果实贪青晚熟,甚至引发土壤面源污染[4]。针对传统氮肥施用存在的问题及酿酒葡萄生育期需氮差异,在酿酒葡萄生产上进行精准氮素调控显得尤为重要。
在农业生产中,对鲜食葡萄的要求没有酿酒葡萄高,只要果粒大、产量高、糖酸适中,有较好的外观和口感就能达到鲜食葡萄的标准。但酿酒葡萄对其品质具有较高的要求,酿酒葡萄需果粒小、果穗散且浆果含有丰富的糖、酸和酚类物质。农户常采用传统栽培技术,常在酿酒葡萄萌芽期和展叶期施用大量氮肥促进枝条生长,在后期控氮促进生殖生长。但采用传统栽培技术会导致酿酒葡萄成熟过快,浆果内含物累计不足等问题,因此,需要改良传统栽培技术以有效提高酿酒葡萄品质。酿酒葡萄进入转色期,树体营养生长减缓,叶面老化导致角质层腊有裂痕,通过在酿酒葡萄转色期叶面喷施氮肥,不仅能促进叶片表皮对氮素的吸收,还能及时、高效地满足浆果对氮的需求,促进浆果中氮素积累,提高浆果内含物及酵母可同化氮量,以改善酿酒葡萄品质。
酵母可同化氮是葡萄酒发酵的重要元素之一。国外酿酒葡萄采取调亏方式施氮,该类方法可能会导致酿酒葡萄浆果中无机态氮素、游离氨基酸含量过低,葡萄汁中酵母可同化氮不足,引发葡萄酒酒精发酵环节中止[5-6]。氮素是酵母发酵的动力来源,也是挥发性物质的前体,Herbert等[7]研究发现施用氮肥可提高葡萄汁中的总氮和氨基酸浓度,提高葡萄汁中的酵母可同化氮浓度有利于调节发酵酒中香气物质的形成[8-10],在发酵前补充足够的初始酵母可同化氮较后期添加酵母可同化氮对葡萄酒的品质改善效果更佳[11]。转色期开始及转色后叶面喷施氮肥可以有效提高葡萄的酵母可同化氮含量,促进香气物质的合成和酚类物质的积累[12]。缪成鹏等[13]认为葡萄果实酵母可同化氮含量可能主要与铵态氮含量有关,其含量直接影响葡萄酒中高级醇、酯类及挥发性脂肪酸等香气成分的形成。氮素形态的不同,对酿酒葡萄生理特性和品质指标都有一定的影响。Portu等[14]研究发现叶面施用尿素和苯丙氨酸可促进花色苷、酚类物质的生成,改善葡萄和葡萄酒中黄酮含量和果香。酿酒葡萄叶面喷施氮肥后葡萄汁中产生的混合氮源能满足不同酵母的氮源需求,加快糖的消耗,促进乙醇产量的增加[15],促进香气物质的生成[16]。初建青等[17]在研究尿素对氮代谢相关基因表达的过程中发现适当提高尿素水平既可以提高氮代谢基因的表达水平,又能提高果实大小等果形指数。Portu等[18]在对葡萄酒中酚类物质的研究中得出,苯丙氨酸和尿素有助于葡萄酒中花色苷和黄酮醇的生成和积累,但是对黄烷醇和非类黄酮的影响较小。前人开展转色期不同叶面氮素类型、用量对含氮化合物、酚类物质及氮代谢基因的研究发现施用硝态氮更利于提升葡萄叶片中叶绿素含量,而施用铵态氮对葡萄形态指标的影响效果更佳[19-22]。
葡萄的低氮利用效率要求选取效果最佳的氮素和施用方式[23],关于氮素施用方式及施用量对葡萄产量、品质的作用效果已有诸多研究,但有关酿酒葡萄转色期氮素调控对其生理、品质及酵母可同化氮的影响的报道有限。本文旨在研究酿酒葡萄转色期氮素调控对葡萄生理特征、品质、酵母可同化氮的影响,以期为酿酒葡萄生产实践提供参考,为生产优质葡萄酒提供优良原料。
1 材料与方法
1.1 研究区概况
试验地位于宁夏贺兰山东麓酿酒葡萄核心产区永宁县闽宁镇立兰酒庄葡萄基地内(38°28′N,105°97′E),该地属于典型的大陆性气候,年均气温约为8.7 ℃,全年≥10℃活动积温约3 246 ℃,年无霜期约167 d,年均降水量210 mm左右,年均蒸发量约1 730 mm,年日照时数为2 850~3 105 h。葡萄园土壤类型为砾质淡灰钙土,富含砾石,土质疏松,透气性好,昼夜温差大。供试材料为8年生酿酒葡萄品种‘赤霞珠’,藤蔓间隔为0.6 m× 3.5 m,南北行向定植,架型为“厂”字型。灌溉方式为滴灌(灌溉定额2 250 m3/hm2),采用内置贴片滴灌带,滴头流量为2.1 L/h,滴灌带毛管直径为16 mm,滴灌带距地高0.3 m,滴头间距0.3 m。葡萄园土壤理化性质见表1。
表1 葡萄园土壤理化性质
1.2 试验设计
2021年开展试验,试验采用区组数等于重复数的单因素随机区组设计,共设6个处理。分别为叶面喷施清水、硫酸铵、硝酸铵钙、尿素、苯丙氨酸及谷氨酸,以叶面喷施清水作为对照,重复3次,共18个小区,各小区20棵葡萄树,各处理包含60棵葡萄树。各处理氮肥用量以1.5‰尿素(质量比)等质量纯氮量进行折算(表2),选择晴朗无风天气,在09:00之前使用背负式电动喷雾器对酿酒葡萄叶面正反面以及果实进行全方位喷施,在酿酒葡萄转色期分3次(7月15日、7月31日及8月13日)进行叶面喷施。每年春季基施有机肥30 t/hm2,除试验叶面施氮肥外,不施任何化肥,试验期间各处理灌溉、修剪及病虫害防治等栽培管理方式与葡萄园一致。
表2 叶面喷施氮素类型及用量
1.3 测定方法
1.3.1 酿酒葡萄叶片光合特性
于2021年8月22日09:00,采用CI-340手持光合测量系统(精度±2%)测定葡萄各标记树的果穗以上成熟完全且未衰老的第12~14片叶片的光合特性指标:净光合速率、气孔导度、蒸腾速率和胞间二氧化碳浓度;叶片水分利用率由光合速率/蒸腾速率算得。采集第12~14片叶片,用装有干冰的取样箱迅速带回实验室,叶片叶绿素含量采用分光光度法(UV-1800PC,±0.5 nm,上海美谱达仪器有限公司)测定;叶面积先用中国佳能LiDE200扫描仪器(4 800×1 200 dpi)进行叶片扫描后使用ImageJ软件进行测定[24]。
1.3.2 酿酒葡萄形态及产量
在酿酒葡萄内核变成棕色,完全成熟后(9月23日),将每个小区标记树的葡萄全部采摘单独测产,得到其酿酒葡萄单株产量;将果粒全部剥离后称质量,求取百粒质量;随机选取酿酒葡萄30粒,用游标卡尺(±0.1 mm)测定其粒径;随机选取酿酒葡萄18穗,用卷尺(±0.1 mm)测定其果穗长。
1.3.3 酿酒葡萄浆果品质
酿酒葡萄成熟后,各小区随机选取18穗酿酒葡萄装入相应的自封袋内,用记号笔标记,运回实验室进行果实品质的测定。可溶性固形物选取酿酒葡萄30粒采用手持糖量计法(精度±0.2%)测定;将所有果实混合榨汁,可滴定酸采用0.10 mol/L氢氧化钠的标准溶液滴定法测定;单宁采用福林-丹宁斯法测定[25];总酚采用福林-肖卡法测定;总花色苷采用pH示差法测定。
1.3.4 酿酒葡萄酵母可同化氮测定
酿酒葡萄成熟后,采摘完毕后将所有果实混合榨汁,采用伯胺氮(Primary Amine Nitrogen, PAN)测定方法和氨氮(AMMONIA)测定方法,在Y15葡萄酒分析仪上(西班牙BioSystems S.A)进行测定。
可同化氮质量浓度(mg/L)=0.82AMMONIA+PAN(1)
1.4 分析与统计
试验数据采用Microsoft Excel 2010软件进行整理,用SPSS 25.0软件进行主成分分析和方差分析,表中所有数据均表示为3次重复的平均值±标准差,并采用最小显著差异法(Least Significant Difference,LSD)进行多重比较(=0.05)。
2 结果与分析
2.1 叶源氮素调控对酿酒葡萄光合特征的影响
如表3所示,叶面积受不同氮源叶面喷施影响有所不同,其中苯丙氨酸和尿素效果最好,较对照显著提高23.20%和21.08%。各施氮处理胞间CO2浓度均有不同程度的降低,硝酸铵钙、尿素和谷氨酸显著下降5.79%、3.94%和9.38%,硫酸铵和苯丙氨酸无显著降低。叶面喷施不同氮素均可提升酿酒葡萄叶片的气孔导度,苯丙氨酸、硝酸铵钙、尿素、谷氨酸和硫酸铵依次较对照显著提高44.18%、38.86%、37.99%、28.91%和13.26%。叶面喷施尿素和硝酸铵钙对叶片净光合速率提升效果最好,较对照显著提高43.46%和39.26%,其次是苯丙氨酸、谷氨酸,分别提高35.10%、24.25%。
表3 叶源氮素调控对酿酒葡萄叶片光合特征的影响
注:同列不同小写字母表示处理间差异显著(<0.05),下同。
Note: Different lowercase letters at the same column indicate significant difference among treatments (<0.05), the same below.
2.2 叶源氮素调控对酿酒葡萄叶片叶绿素含量的影响
如表4所示,喷施各种叶面肥均显著增加叶绿素a含量,其中喷施硝酸铵钙和尿素对叶片叶绿素a含量提高效果最好且数值相同,较对照平均显著提高14.39%。叶绿素b在硝酸铵钙处理下显著性最高,较对照和其他施氮处理显著提高38.64%、24.49%、35.56%、22.00%和69.44%,只有在谷氨酸处理下叶绿素b含量有所降低。叶面喷施尿素对类胡萝卜素影响最佳,较对照、苯丙氨酸和谷氨酸显著提高42.31%、15.63%和37.04%,其次为硫酸铵和硝酸铵钙处理效果较好,较对照平均显著提高30.70%。各施氮处理下叶绿素含量均有所提升,其中叶面喷施硝酸铵钙显著性最高,较对照显著提高20.22%,其余提高效果依次是尿素、苯丙氨酸和硫酸铵。
表4 叶源氮素调控对酿酒葡萄叶片叶绿素含量的影响
2.3 叶源氮素调控对酿酒葡萄形态及产量的影响
如表5所示,在叶面喷施不同氮源中,尿素和谷氨酸处理下的果实粒径提高最为显著,较对照分别显著提高25.96%、25.34%。穗长只在谷氨酸下增长显著,较对照及其他处理分别显著提高13.61%、8.53%、5.57%、4.01%和7.68%。相比对照,葡萄果实百粒质量除了在硫酸铵处理下显著降低7.42%外,在其他处理下均有显著性提高,其中,尿素和谷氨酸最显著提高了34.93%和34.09%,其余提升效果依次是硝酸铵钙和苯丙氨酸,分别显著提升了15.78%和6.05%。酿酒葡萄单株产量在谷氨酸处理下显著性最高,较喷施清水提高12.66%,硫酸铵、硝酸铵钙、尿素之间显著性一致,且数值相同。
表5 叶源氮素调控对酿酒葡萄形态及产量的影响
2.4 叶源氮素调控对酿酒葡萄品质及酵母可同化氮的影响
如表6所示,叶面喷施各类氮素均可提高浆果可溶性固形物含量,硫酸铵效果最好,较对照显著提高4.75百分点。各类氮素调控途径对浆果可滴定酸和糖酸比影响不大。喷施大部分氮素能增加浆果中单宁、花色苷和总酚含量。单宁在苯丙氨酸处理下显著性最高,其次是硫酸铵和硝酸铵钙,较对照分别显著提高25.58%、18.89%和15.22%,尿素和谷氨酸无显著提升。叶面喷施尿素最显著增加花色苷含量,较对照提高85.37%,较其余处理提高10.14%~55.10%。叶面喷施苯丙氨酸对酿酒葡萄果实中总酚含量提升效果最好,较对照显著提高31.63%,较其余施氮处理显著提高8.91%~27.34%,其余提升效果依次是尿素、硫酸铵。
酵母可同化氮浓度只在硫酸铵处理下较对照有所降低,在其余各处理下均有显著性提高,其中以硝酸铵钙处理效果最佳,较对照显著提高41.95%,较其余施氮处理显著提高9.40%~48.00%,其余提升效果依次是谷氨酸、尿素、苯丙氨酸,较对照分别显著提高29.76%、25.85%、5.37%。
表6 叶源氮素调控对酿酒葡萄品质和酵母可同化氮的影响
2.5 叶源氮素调控对酿酒葡萄光合及品质的综合评价
在叶源氮素调控下酿酒葡萄光合及品质的评价中,以酿酒葡萄的净光合速率、胞间CO2浓度、气孔导度、叶绿素、酵母可同化氮、可溶性固形物、可滴定酸、单宁、花色苷和总酚10个有代表性的指标为评价参数,根据各评价参数降维分析得到3个主成分,主要贡献率分别为59.52%、22.13%、11.77%。对3个主成分构建得分模型,见式(2)~式(4):
1=0.2991+0.3552+0.253+0.3084+0.2825+
0.1596+0.3837+0.3228+0.3399+0.39610(2)
2=−0.2231−0.1582−0.4223+0.2644−0.3795+
0.5816+0.2397+0.348X8+0.0239−0.12710(3)
3=0.4351−0.0422+0.1523−0.4814−0.4095+
0.2866−0.0927−0.1838+0.5089−0.11210(4)
式中1~3表示不同叶源氮素处理各主成分得分,1~10表示酿酒葡萄10个指标数值,表示不同叶源氮素处理综合得分。
分别计算各主成分得分,以各主成分相应的方差贡献率为权重,对3个主成分得分权重进行加和,建立综合评价函数:=0.5951+0.2212+0.1183,计算综合得分及排名,如表7所示。
表7 叶源氮素调控对酿酒葡萄光合及品质的综合评价
注:1~3为不同叶源氮素各主成分得分,为不同叶源氮素综合得分。
Note:1-3are the scores of each principal component of nitrogen from different leaf sources, andis the comprehensive score of nitrogen from different leaf sources.
由表7可知,在酿酒葡萄转色期叶面喷施不同氮素的综合效果均高于喷施清水,说明在酿酒葡萄转色期进行叶面喷施氮素对其光合特性及果实品质有提高效果,苯丙氨酸和尿素处理提高效果最好,综合得分排名由大到小依次为苯丙氨酸、尿素、硝酸铵钙、谷氨酸、硫酸铵、清水。
3 讨 论
转色期酿酒葡萄生长重心主要在浆果的养分积累,因其所需氮素较少,叶面喷施能迅速、高效补充生殖生长所需氮素,直接进入各种代谢途径,不与其他离子产生拮抗影响吸收[26]。总体来看,本试验中酿酒葡萄形态和产量指标在不同氮源处理下有所提升,这与Verdenal等[27]研究结果相符。其中谷氨酸对酿酒葡萄形态及产量影响最为明显,分析原因可能是谷氨酸最易被叶片吸收[28],促进酿酒葡萄营养生长,影响果实形态及产量。
酿酒葡萄光合特性与果实品质息息相关。本研究表明在某些叶源氮素调控下,胞间二氧化碳浓度有所下降,而气孔导度、蒸腾速率和净光合速率有不同程度提高,说明叶面喷施氮素,可有效提升叶肉细胞光合活性。分析原因,一方面,在转色期叶面喷施氮素能促进叶片生长,增加光合面积,另一方面,补充氮素能提高叶绿素含量,利于光合作用。其中在硝酸铵钙、尿素和谷氨酸处理下胞间二氧化碳浓度较对照显著降低了5.79%~9.38%,气孔导度在苯丙氨酸、硝酸铵钙、尿素和谷氨酸处理下提高效果最佳,叶片净光合速率以尿素、硝酸铵钙、苯丙氨酸和谷氨酸处理最佳。这与汪长伟[29]研究发现气孔导度、蒸腾速率与净光合速率成正相关,胞间二氧化碳浓度与净光合速率成负相关相符。其中苯丙氨酸和谷氨酸对净光合速率的提高十分显著,这与郑秋玲等[30]研究得出的在生长中后期喷施氨基酸源叶面肥能够显著改善叶片的光合性能这一结果一致,表明氨基酸态氮更易被植物吸收同化,从而降低植物进行生理代谢时所消耗的能量,可有效提高净光合速率。气孔导度、蒸腾速率、胞间二氧化碳浓度与净光合速率的相关性并非是净光合速率的决定性因素,还与叶绿素含量、酶活性、温度、光照等因素有关。本试验研究得出在硝酸铵钙处理下叶绿素含量提升效果最佳,类胡萝卜素含量在尿素处理下显著性最高。这与王剑等[19]研究发现硝态氮更有利于提高葡萄叶片叶绿素含量相符。分析原因,可能是因为NO3-是一种信号物质,有利于调控叶绿素的合成。
葡萄浆果的品质是衡量增施氮肥效果的指标之一。糖、酸、单宁、花色苷和总酚是构成酿酒葡萄品质优劣的要素[31]。足够的糖量是酿酒葡萄能在酵母效用下发酵成葡萄酒的事物基础之一。但贺兰山东麓冬春季的严寒干旱,夏秋季的高温多雨使酿酒葡萄出现酸含量严重不足的现象。酸度过低使葡萄酒颜色黯淡无光且影响口感[32]。本研究表明,相较对照,在所有叶源氮素中硫酸铵处理最显著提升可溶性固形物4.75%。这与杨阳等[33]发现在巨峰葡萄着色期叶面喷施尿素可有效提高总糖含量、降低可滴定酸含量结果有差异。分析原因,所栽培的葡萄品种不同,在葡萄成熟期间对有机酸的降解和转化程度不同。酚类物质具有抗氧化功能,且与酿酒葡萄品质息息相关。其中花色苷是决定酿酒葡萄外观品质的决定性因素,而单宁的涩味和收敛感造就了酿酒葡萄丰富的口感。李磊等[34]研究发现,施用适量氮肥能提高果实中花色苷含量,Garde-Cerdán等[20]研究表明,酚类化合物在叶面施用尿素和苯丙氨酸处理下有显著性提高。与前人研究结果相似,在苯丙氨酸、硫酸铵和硝酸铵钙处理下单宁含量显著提升15.22%~25.58%,花色苷在尿素和苯丙氨酸处理下效果最好,苯丙氨酸对总酚含量的提升最为显著,硫酸铵和尿素也可以显著提升总酚含量。在转色期叶面喷施不同氮源,葡萄浆果内可溶性固形物、可滴定酸、单宁、花色苷和总酚含量均有不同程度的变化,分析原因,在酿酒葡萄转色期间,营养生长几乎停止,补氮措施提高光合作用速率,导致光合作用积累的碳水化合物主要储存在浆果和活跃的次生代谢途径,为次生代谢产物合成提供必需的能量和碳骨架等,可以促进物质的合成并在果实中储藏,但由于植物对不同氮素的吸收和转化能力不同,各物质含量提高的效果不同。
酵母可同化氮影响发酵动力学和风味活性代谢物的形成[35],酿酒葡萄浆果内酵母可同化氮超过150 mg/L才能保证发酵顺利进行[13]。Garde-Cerdán等[10]研究发现苯丙氨酸和尿素可显著提高浆果中氨基酸含量。结果表明:除了硫酸铵处理下酵母可同化氮浓度降低外,其余处理酵母可同化氮浓度均显著提高,这与Verdenal等[27]的研究结果一致。其中,叶面喷施硝酸铵钙相较其他氮素对酿酒葡萄浆果内酵母可同化氮的补充最为有效,分析原因可能是硝酸铵钙中钙离子促进了植物对氮的吸收,更易于叶片和果实的吸收和转化。这一发现对于改善酵母氮的组成和提高葡萄酒品质具有重要意义。
4 结 论
通过对酿酒葡萄转色期叶面喷施氮素研究得出如下结论:酿酒葡萄转色期叶面喷施不同氮素对葡萄果实生理及品质指标影响不同,硫酸铵可提高浆果可溶性固形物,高达29.21%,硝酸铵钙有效改善酵母可同化氮浓度和叶片光合生理,喷施尿素对粒径、百粒质量、净光合速率、花色苷提升效果最为显著,苯丙氨酸处理下叶面积、气孔导度、单宁和总酚含量最高,叶面喷施谷氨酸能改善酿酒葡萄形态和产量。酿酒葡萄生理及品质10个指标的综合得分以苯丙氨酸和尿素最高,两种氮源对各品质指标提升效果显著,且苯丙氨酸处理下单宁、总酚高达19.88、19.56 mg/g,尿素处理下花色苷高达2.28 mg/g。因此,转色期叶面喷施苯丙氨酸和尿素两种氮源均可促进酿酒葡萄良好品质的形成。
本试验通过转色期叶面喷施氮素,主要研究了对酿酒葡萄品质的影响,而没有追踪氮素的转移运输过程。下一步研究需深入探讨对其运输及转化方面的影响,深刻理解外源氮对酿酒葡萄的调控作用机理。
[1] 赵常旭,郁继华,冯致,等.控释肥对基质栽培番茄产量、品质及养分利用率的影响[J].甘肃农业大学学报,2017,52(2):34-40.
Zhao Changxu, Yu Jihua, Feng Zhi, et al. The effect of controlled release fertilizer on the yield, quality and nutrient utilization of tomato grown in substrate[J]. Journal of Gansu Agricultural University, 2017, 52(2): 34-40. (in Chinese with English abstract)
[2] 郑睿,康绍忠,胡笑涛,等. 水氮处理对荒漠绿洲区酿酒葡萄光合特性与产量的影响[J]. 农业工程学报,2013,29(4):133-141.
Zheng Rui, Kang Shaozhong, Hu Yongxiao, et al. Effects of water and nitrogen conditions on the diurnal variation of photosynthetic characteristics and yield of grapevine in arid oasis region[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(4): 133-141. (in Chinese with English abstract)
[3] 谢海霞,何帅,侯振安. 全球红葡萄氮素营养及氮肥施用效果研究[J].安徽农业科学,2009,37(32):15804-15806.
Xie Haixia, He Shuai, Hou Zhenan. Nitrogen nutrition and nitrogen application effect of global red grape[J]. Anhui Agricultural Sciences, 2009, 37(32): 15804-15806. (in Chinese with English abstract)
[4] 王维刚,史海滨,李仙岳,等. SWAT模拟耕作方式与盐分对区域土壤氮运移及作物产量影响[J]. 农业工程学报,2022,38(3):55-65.
Wang Weigang, Shi Haibin, Li Xianyue, et al. Effects of tillage modes and salinity on regional nitrate nitrogen transport and crop yields using a SWAT model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(3): 55-65. (in Chinese with English abstract)
[5] Chengpeng M, Hui Z, Xiaoyan Y, et al. Effects of yeast assimilable nitrogen content on fermentation and aroma components of Cabernet Sauvignon wine[J]. China Brewing, 2015, 34(1): 131-136.
[6] 祝霞,刘琦,赵丹丹,等. 干白葡萄酒增香酿造工艺参数优化[J]. 农业工程学报,2019,35(18):282-291.
Zhu Xia, Liu Qi, Zhao Dandan, et al. Parameter optimization aroma enhancement fermentation technology of dry white wine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(18): 282-291. (in Chinese with English abstract)
[7] Herbert P, Santos L, Alves A. Simultaneous quantification of primary, secondary amino acids, and biogenic amines in musts and wines using OPA/3-MPA/FMOC-Cl fluorescent derivatives[J]. Journal of Food Science, 2001, 66(9): 1319.
[8] Barbosa C, Falco V, Mendes-Faia A. Nitrogen addition influences formation of aroma compounds, volatile acidity and ethanol in nitrogen deficient media fermented by Saccharomyces cerevisiae wine strains[J]. Journal of Bioscience & Bioengineering, 2009, 108(2): 99-104.
[9] Carrau F M, Karina M, Laura F, et al. Production of fermentation aroma compounds by Saccharomyces cerevisiae wine yeasts: Effects of yeast assimilable nitrogen on two model strains[J]. Fems Yeast Research, 2008, 8(7): 1196-1207.
[10] Garde-Cerdán T, Ancín-Azpilicueta C. Effect of the addition of different quantities of amino acids to nitrogen-deficient must on the formation of esters, alcohols, and acids during wine alcoholic fermentation[J]. LWT-Food Science and Technology, 2008, 41(3): 501-510.
[11] Mendes-Ferreira A, Barbosa C, Inês A, et al. The timing of diammonium phosphate supplementation of wine must affects subsequent H2S release during fermentation[J]. Journal of Applied Microbiology, 2009, 108(2): 540-549.
[12] Cheng X, Ma T, Wang P, et al. Foliar nitrogen application from veraison to preharvest improved flavonoids, fatty acids and aliphatic volatiles composition in grapes and wines[J]. Food Research International, 2020,137:109566.
[13] 缪成鹏,张晖,杨晓雁,等. 可同化氮含量对赤霞珠葡萄酒发酵和香气成分的影响[J]. 中国酿造,2015,34(1):131-136.
Liao Chengpeng, Zhang Hui, Yang Xiaoyan, et al. Effects of yeast assimilable nitrogen content on fermentation and aroma components of Cabernet Sauvignon wine[J]. China Brewing, 2015, 34(1): 131-136. (in Chinese with English abstract)
[14] Portu J, López-Alfaro I, Gómez-Alonso S, et al. Changes on grape phenolic composition induced by grapevine foliar applications of phenylalanine and urea[J]. Food Chemistry, 2015, 180: 171-180.
[15] Sturgeon J Q, Bohlscheid J C, Edwards C G. The effect of nitrogen source on yeast metabolism and H2S formation[J]. Journal of Wine Research, 2013, 24(3): 182-194.
[16] Torrea D, Varela C, Ugliano M, et al. Comparison of inorganic and organic nitrogen supplementation of grape juice - Effect on volatile composition and aroma profile of a Chardonnay wine fermented with Saccharomyces cerevisiae yeast[J]. Food Chem, 2011, 127(3): 1072-1083.
[17] 初建青,王文艳,房经贵,等. 叶面喷施尿素对葡萄氮代谢相关基因表达的影响[J]. 植物营养与肥料学报,2012,18(2):405-416.
Chu Jianqing, Wang Wenyan, Fang Jinggui, et al. Effects of foliar applied urea on expression of genes related to nitrogen metabolism in Fujiminori grapevine[J]. Journal of Plant Nutrition and Fertilizer, 2012, 18(2): 405-416. (in Chinese with English abstract)
[18] Portu J, Gonzalez-Arenzana L, Hermosin-Gutierrez I, et al. Phenylalanine and urea foliar applications to grapevine: Effect on wine phenolic content[J]. Food Chemistry, 2015, 180: 55-63.
[19] 王剑,李炳锐,李晓鹏,等. 利用葡萄氮代谢基因的表达评价不同氮肥肥效[J]. 园艺学报,2016,43(1):1-14.
Wang Jian, Li Bingrui, Li Xiaopeng, et al. Evaluation of N fertilizers effect based on the expression of N metabolic genes[J]. Acta Horticulture Sinica, 2016, 43(1): 1-14. (in Chinese with English abstract)
[20] Garde-Cerdán T, Lopez R, Portu J, et al. Study of the effects of proline, phenylalanine, and urea foliar application to Tempranillo vineyards on grape amino acid content. Comparison with commercial nitrogen fertilisers[J]. Food Chem, 2014, 163: 136-141.
[21] Gutiérrez-Gamboa G, Garde-Cerdán T, Gonzalo-Diago A, et al. Effect of different foliar nitrogen applications on the must amino acids and glutathione composition in Cabernet Sauvignon vineyard[J]. LWT-Food Science and Technology, 2017, 75: 147-154.
[22] Gutiérrez-Gamboa G, Garde-Cerdán T, Portu J, et al. Foliar nitrogen application in Cabernet Sauvignon vines: Effects on wine flavonoid and amino acid content[J]. Food Research International, 2017, 96: 46-53.
[23] Los A, Rs B, Ras C, et al. Ideal nitrogen concentration in leaves for the production of high-quality grapes cv 'Alicante Bouschet' (L.) subjected to modes of application and nitrogen doses-ScienceDirect[J]. European Journal of Agronomy, 2020.
[24] 付诗宁,魏新光,郑思宇,等. 滴灌水肥一体化对温室葡萄生理特性及水肥利用效率的影响[J]. 农业工程学报,2021,37(23):61-72.
Fu Shining, Wei Xinguang, Zheng Siyu, et al. Effects of integrated management of water and fertilizer on the physiological characteristics and water-fertilizer use efficiency of grapes in greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(23): 61-72. (in Chinese with English abstract)
[25] 姜璐,包怡红,贾雨彤,等. 18个品种蓝靛果营养成分分析及综合品质评价[J]. 农业工程学报,2022,38(7):326-335.
Jiang Lu, Bao Yihong, Jia Yutong, et al. Nutritional component analysis and comprehensive quality evaluation of 18 different varieties of Lonicera caerulea[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(7): 326-335. (in Chinese with English abstract)
[26] 孙聪伟,陈展,赵艳卓,等. 不同施肥方式下葡萄幼苗对15N-尿素的吸收、分配和利用[J]. 华北农学报,2017,32(增刊1):260-264.
Sun Congwei, Chen Zhan, Zhao Yanzhuo, et al. Absorption, distribution and utilization of15N in jumeigui seedlings under different fertilization methods [J]. Acta Agriculturae Boreal-Sinica, 2017, 32(Suppl 1): 260-264. (in Chinese with English abstract)
[27] Verdenal T, Spangenberg J E, Zufferey V, et al. Effect of fertilisation timing on the partitioning of foliar-applied nitrogen incv. Chasselas: A15N labelling approach[J]. Australian Journal of Grape & Wine Research, 2015, 21(1): 110-117.
[28] Sally J B, Paul A H. Implications of nitrogen nutrition for grapes, fermentation and wine[J]. Australian Journal of Grape and Wine Research, 2005, 11(3): 242-295.
[29] 汪长伟. 葡萄光合特性和果实品质研究[D]. 合肥:安徽农业大学,2018.
Wang Changwei. Study on Photosynthetic Characteristics and Fruit Quality of Grape[D]. Hefei: Anhui Agricultural University, 2018. (in Chinese with English abstract)
[30] 郑秋玲,韩真,王慧,等. 不同叶面肥对赤霞珠葡萄果实品质及树体贮藏养分的影响[J]. 中外葡萄与葡萄酒,2009(7):13-16,19.
Zheng Qiuling, Han Zhen, Wang Hui, et al. Effects of different foliar fertilizers on fruit quality and storage nutrients of Cabernet Sauvignon grapevine[J]. Chinese and Foreign Grapes and Wine, 2009(7): 13-16, 19. (in Chinese with English abstract)
[31] 何英霞,蒋玉梅,李霁昕,等. 不同酶和酵母对干红葡萄酒香气影响的差异分析[J]. 农业工程学报,2016,32(增刊1):325-332.
He Yingxia, Jiang Yumei, Li Jixin, et al. Effection of different yeasts and maceration enzymes on aromatic components of cabernet gernischt red wine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(Suppl. 1): 325-332. (in Chinese with English abstract)
[32] 李治苇,张萍,李庆,等. 酿酒葡萄果实发育过程中糖酸积累规律的研究[J]. 食品安全质量检测学报,2021,12(19):7738-7743.
Li Zhiwei, Zhang Ping, Li Qing, et al. Study on the accumulation regularity of sugar and acid in the development process of wine grape fruit[J]. Journal of Food Safety Quality Testing, 2021, 12(19): 7738-7743. (in Chinese with English abstract)
[33] 杨阳,钟晓敏,闫志刚,等. 氮素形态对巨峰葡萄果实品质的影响[J]. 植物营养与肥料学报,2010,16(4):1037-1040.
Yang Yang, Zhong Xiaomin, Yan Zhigang, et al. Effects of nitrogen forms on nitrate accumulation and quality of “Kyoho” grape fruit[J]. Journal of Plant Nutrition and Fertilizer, 2010, 16(4): 1037-1040. (in Chinese with English abstract)
[34] 李磊,王锐,纪立东,等. 氮肥施用量对酿酒葡萄初果期生长及产量品质的影响[J]. 北方园艺,2016(21):32-36.
Li Lei, Wang Rui, Ji Lidong, et al. Effects of nitrogen fertilizer application on beginning growth, yield and quality of wine grape[J]. North Horticulture, 2016(21): 32-36. (in Chinese with English abstract)
[35] Son H S, Lim K S, Chung H J, et al. Metabolic phenotyping of berries in different six grape () cultivars[J]. Journal of the Korean Society for Applied Biological Chemistry, 2014, 57(4): 491-502.
Effects of foliar nitrogen regulation on the quality of wine grape ‘Cabernet Sauvignon’ during veraison
Zhang Shu1, Wang Jing1, Ma Tinghui2, Wang Rui1※
(1.,,750021,;2.,750011,)
The integrated light and simplified cultivation of water and fertilizer has been widely applied at the eastern foothills of Helan Mountain in western China. However, it is a high demand for the nitrogen nutrition of wine grapes at the current stage. This study aims to demonstrate the regulation of the foliar nitrogen on wine the grape 'Cabernet Sauvignon' during the veraison period, with the location in the Lilan Winery, Yongning County, Ningxia Hui Autonomous Region, China (38°28′N, 105°97′E). The test material was 8-year-old wine grape 'Cabernet Sauvignon'. A single-factor randomized block design was utilized with the number of blocks equal to the number of replicates. A total of six subjects were chosen for the experiment, including ammonium sulfate, calcium ammonium nitrate, urea, phenylalanine, glutamic acid, and control (water), which were reused three times each. Among them, 20 vines were used per replicate subject and 60 vines per treatment for a total of 18 plots. The amount of nitrogen fertilizer in each treatment was converted to 1.5‰ urea and other quality pure nitrogen. The foliage was firstly sprayed with nitrogen fertilizer three times (July 15, July 31, and August 13) during the veraison period. The photosynthetic indicators of wine grapes were then measured after ten days (August 22), including the net photosynthetic rate, transpiration rate, intercellular CO2concentration, stomatal conductance, leaf area, water use efficiency, and chlorophyll. Once the wine grapes were ripe (September 23), the morphology and yield were determined, including the particle size, spike length, 100-grain mass, and yield plant. At the same time, the quality indicators of wine grapes were also determined in this case, including the soluble solids, titratable acids, tannins, anthocyanins, total phenols, and yeast assimilable nitrogen. A variance analysis was carried out on the measured photosynthetic, morphological, yield, and quality indicators, in order to evaluate the different treatments, photosynthesis, and quality indicators of wine grapes. Three principal components were then obtained to establish a comprehensive evaluation function. The scores were calculated and sorted for the optimal treatment. The result indicated that all five treatments improved the physiology and quality of wine grapes, compared with the control group. The best performance (up to 29.21%) was achieved by spraying ammonium sulfate on the soluble solids in the berries. Furthermore, the greatest synergy was also obtained in the chlorophyll and yeast assimilable nitrogen under the calcium ammonium nitrate, which increased by 20.22% and 41.95%, respectively, compared with the control. The best effect was obtained under the urea treatment for the net photosynthetic rate, particle size, 100-grain mass, titratable acid, and anthocyanin. Phenylalanine presented the best effect on the leaf area, stomatal conductance, tannins, and total phenols. Glutamic acid improved the morphology and yield of wine grapes. Specifically, the spike length and yield plant significantly increased by 13.61% and 12.66%, respectively, compared with the control group. Three principal components contributed 59.52%, 22.13% and 11.77%, respectively, compared with the nitrogen fertilizer treatment. Phenylalanine and urea gained the highest scores for ten indicators, such as the wine grape physiology and quality. The titratable acid was best treated with urea, indicating the best acid value of 0.68% in the production area. Moreover, the anthocyanin content was as high as 2.28 mg/g under the urea treatment, which was higher than the rest of nitrogen treatments. There was the best effect of Phenylalanine on the increasing tannin content, up to 19.88 mg/g, which was 5.63%-24.87% higher than that of the rest nitrogen treatments. By contrast, the total phenolic content was as high as 19.56 mg/g under phenylalanine treatment, which was 8.91%-27.34% higher than the others. In conclusion, foliar spraying phenylalanine and urea during the veraison stage can be expected to improve the physiological characteristics of wine grapes and the quality of berries. The traditional cultivation techniques can also be optimized to promote low nitrogen application efficiency. The finding can provide a strong reference for the wine grape production in mountain areas.
nitrogen; urea; phenols; wine grape; veraison; yeast assimilable nitrogen
10.11975/j.issn.1002-6819.2022.15.035
S663.1
A
1002-6819(2022)-15-0323-07
张舒,王晶,马婷慧,等. 转色期叶面氮素调控对酿酒葡萄‘赤霞珠’品质的影响[J]. 农业工程学报,2022,38(15):323-329.doi:10.11975/j.issn.1002-6819.2022.15.035 http://www.tcsae.org
Zhang Shu, Wang Jing, Ma Tinghui, et al.Effects of foliar nitrogen regulation on the quality of wine grape ‘Cabernet Sauvignon’ during veraison[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(15): 323-329. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2022.15.035 http://www.tcsae.org
2021-11-17
2022-05-10
宁夏自然科学基金项目(2020AAC03281);宁夏农业科技自主创新专项(NKYZZ-J-19-04)
张舒,研究方向为植物营养与农业资源利用。Email:zs541882@163.com.
王锐,博士,教授,研究方向为酿酒葡萄营养与施肥。Email:amwangrui@126.com.