APP下载

致密砂岩油藏裂缝与基质间渗吸特征及主控因素

2022-09-15宋西翔孙新毅董利飞

油气地质与采收率 2022年5期
关键词:采出程度动用岩心

林 魂,宋西翔,罗 超,孙新毅,杨 兵,董利飞

(1.重庆科技学院,重庆 401331;2.重庆三峡学院,重庆 404130)

鄂尔多斯盆地地域广阔,蕴藏着丰富的致密油气资源,开发潜力无限。致密砂岩储层具有孔隙度小、渗透率低、纳米级孔隙占比高、孔喉结构复杂等特征,水驱采收率低,且存在注水困难、能量补充不足和产量迅速下降等问题[1-4]。为提高致密砂岩油藏采收率,大规模应用水平井和体积压裂技术,有效地改善了注水开发效果,但人工裂缝和天然裂缝的存在导致水驱时油井快速见水,储层基质中原油动用程度低[5-8]。如何提高渗吸效率,增大基质原油采出程度,是目前中外学者面临的共同难题。

近些年,中外学者针对致密砂岩储层开展了大量的自发渗吸实验研究[9-11],分析了多种影响因素对自发渗吸效率的影响,并建立了相关的渗吸模型[12-15],基本明确了自发渗吸机理。然而,受到实验仪器及技术的限制,前人的研究大部分集中在静态自发渗吸,对于注水驱替过程中的动态渗吸研究较少。随着核磁共振技术在石油工业领域的不断发展,水驱过程中岩心微观孔隙的动用特征能够被清晰表征,具有操作便捷、测试参数覆盖广、无损样品等特点[16-18]。笔者基于核磁共振测试原理,以鄂尔多斯盆地A83 区块长8 储层为研究对象,通过开展核磁共振在线扫描的岩心水驱渗吸实验,研究了裂缝型致密砂岩储层水驱开发中基质的动用特征,定量评价了3类孔隙的采出程度,并且分析了渗透率、驱替速度、表面活性剂浓度和焖井时间对渗吸效率的影响,明确了动态渗吸机理及其主控因素,以期为鄂尔多斯盆地提高水驱开发效率提供参考和借鉴。

1 实验内容

1.1 实验岩心

实验岩心取自鄂尔多斯盆地A83 区块长8 储层。岩心经过清洗烘干后,测定孔隙度和渗透率,并切下厚度约为2 cm 的岩心切片开展高压压汞测试,从中选取11块物性及孔隙结构相似的岩心作为实验岩心,另外再选取2 块渗透率差异较大的岩心进行对比实验,实验岩心基础物性参数见表1。由3块不同渗透率岩心孔隙半径(简称孔径)分布(图1)可知,随着岩心渗透率的增加,孔径分布向右平移,孔隙结构变好,平均孔径增大。实验中为了模拟裂缝与基质间的渗吸特征,将岩心柱横向等体积切割成两半,再采用环氧树脂将岩心2个端面封住,以排除岩心端面渗吸的影响,确保渗吸仅发生在裂缝与基质间。

表1 实验岩心基础物性参数Table1 Basic physical property parameters of experimental cores

图1 3种渗透率岩心孔径分布对比Fig.1 Comparison of pore radius distribution of cores with three different permeability

1.2 实验流体

实验原油取自A83 区块长8 储层J13 井的井口脱气原油,储层温度67 ℃下脱气原油密度为0.821×103kg/m3,黏度为4.53 mPa·s。由于地层原油泡点压力仅为3.6 MPa,溶解气油比为24.3 m3/m3,因此实验中直接采用脱气原油作为实验用油。

实验中所用的注入水为一定浓度的表面活性剂(APG0816)溶液,采用重水(D2O)作为溶剂配制以屏蔽氢原子对实验结果的干扰。通过界面张力测定实验可得,油-水间的界面张力随表面活性剂质量分数的增加呈现先降低后增大的趋势,在质量分数为0.15%时油-水间的界面张力最低,为0.74 mN/m,因此,实验中最佳表面活性剂质量分数为0.15%。此外,在研究表面活性剂质量分数对渗吸效率的影响时,为了防止表面活性剂质量分数过大对岩石表面润湿性造成较大反转,测定了不同质量分数下岩石-油-水三相的接触角。结果显示,质量分数为0.04%~0.3%时,润湿接触角仅变化了3.4°(可以忽略不计)。因此,除最佳表面活性剂质量分数外,再选取质量分数分别为0,0.05%和0.3%作为对比实验。

1.3 实验装置

实验装置核心为核磁共振扫描仪,型号为MR12-150H-I,频率为4.8MHz,磁感应强度为0.094 0~0.117 5 T,频率精度为0.01 Hz,采集参数为回波间隔0.2 ms,扫描次数256,等待时间6 s。此外,还包括高压无磁岩心夹持器(最高压力和温度分别为40 MPa 和85 ℃)、高压高精度驱替泵(ISCO泵,精度为0.001 mL/min)、岩心夹持器加热套和温控器(温度精度为±0.01 ℃)、中间容器(体积为1 000 mL,最大承压为120 MPa)、压力传感器(最大压力为200 MPa,精度为0.01 MPa)和油水分离器(体积为10 mL,精度为0.1 mL)等(图2)。

图2 动态渗吸实验流程Fig.2 Experimental flow of dynamic imbibition

1.4 实验步骤

岩心准备阶段 将切割后的岩心再次清洗烘干后放入高压无磁岩心夹持器中进行T2谱扫描,并记录岩心的基准信号,核磁共振扫描操作方法按照岩样核磁共振参数实验室测量规范[17]执行。将抽真空后的岩心放入高压容器,在30 MPa下用实验原油饱和岩心4~5 d。取出后用环氧树脂密封岩心2个端面后,将岩心放入夹持器,并加2.0 MPa 围压,再向岩心中注入原油,排空夹持器内残余空气,同时调节温控器升温至67 ℃。待温度稳定后对此状态下的岩心进行T2谱扫描。

动态渗吸实验 以恒定0.1 mL/min的速度向1#岩心内注入质量分数为0.15%的表面活性剂溶液,并每隔相同时间(5 min)对岩心进行一次扫描,当连续3 次获得的T2谱分布不再变化时,停止实验。实验过程中记录每次扫描时对应的注水量、产油量和产水量。

渗吸影响因素分析实验 在岩心准备阶段完成的基础上分别开展以下实验:①在保证注入速度(0.1 mL/min)和注入表面活性剂浓度(0.15%)不变的前提下,分别对12#和13#岩心开展渗吸实验。②在保证注入表面活性剂浓度(0.15%)不变的前提下,分别对2#,3#,4#岩心开展3 种注入速度(0.01,0.05 和0.3 mL/min)下的驱替实验。③在保证其他注入参数不变的前提下,分别对5#,6#,7#岩心开展不同注入表面活性剂浓度(0,0.05%和0.3%)的驱替实验。④在保证实验中总时间恒定和其他注入参数不变的前提下,调整注水时间与焖井时间的比例,对8#,9#,10#,11#岩心开展焖井时间对渗吸效率的影响研究。

2 实验结果及分析

2.1 弛豫时间与孔径之间转换关系

基于核磁共振测试原理[19-21],在饱和含氢流体的岩心中,孔径大的孔隙内流体氢原子的弛豫速度快,对应的弛豫时间长,而孔径小的孔隙内流体氢原子的弛豫速度慢,对应的弛豫时间短。因而可以根据弛豫时间判断孔隙大小。根据3块不同渗透率级别岩心在充分饱和油后T2谱分布(图3)可知,3块岩心的T2谱分布中左右两峰均非常明显,两峰之间连续性较好,说明3 块岩心中左峰代表的小孔隙和右峰代表的大孔隙发育程度均较好,其中小孔隙发育程度略高于大孔隙,小孔隙和大孔隙之间具有较好的连通性。

图3 3块不同渗透率级别岩心T2谱换算后与孔径分布重叠图Fig.3 Overlapping diagram between T2 spectra after conversion and pore radius distribution of cores with three different permeability

此外,根据核磁共振岩心实验成果可知[18-20],孔径与横向弛豫时间成正相关关系,两者之间可以由换算系数进行换算,即:

在计算换算系数时,通过对比同一岩心的T2谱分布与高压压汞获得的孔径分布,将T2谱分布与孔径分布绘制于同一对数坐标系中,使T2谱分布与孔径分布中波峰对应的弛豫时间与孔径相重合。根据波峰对应的弛豫时间与孔径,结合(1)式可以计算出每块岩心的换算系数。取13 块实验岩心换算系数的平均值,可以近似认为目标储层的平均换算系数约为0.025 μm/ms。

以1#和13#岩心为例,虽然2 块岩心渗透率相差很大,且孔径分布与T2谱分布也存在较大差异,但是通过换算系数换算后,2 块岩心的孔径分布与T2谱分布的波峰均有较好的对应率。说明由此方法计算出的换算系数能够代表目标储层弛豫时间与孔径的换算系数,为后续渗吸过程中孔隙动用特征分析提供依据。

2.2 裂缝与基质间渗吸特征

以1#岩心为例,根据渗吸过程中不同平衡时间下T2谱分布的变化(图4a),可以对基质与裂缝对应的弛豫时间范围进行识别,当0.03 ms<T2≤180 ms时为基质,当180 ms<T2≤1 000 ms 时为裂缝。结合T2值与孔径分布之间的换算系数,可进一步将基质内的孔隙划分为3 类:微小孔隙(0.03 ms<T2≤1.5 ms,0.75×10-3μm<r≤0.038 μm)、中孔隙(1.5 ms<T2≤8 ms,0.038 μm<r≤0.2 μm)和大孔隙(8 ms<T2≤180 ms,0.2 μm<r≤4.5 μm)。

由图4a 可知,随着注水时间的增加,微小孔隙和大孔隙对应的振幅在不断降低,而中孔隙对应的振幅变化没有规律性,说明注入水在沿着裂缝流动的同时,会在基质中毛管压力的作用下渗吸进入微小孔隙,将微小孔隙中的原油排出。而中孔隙由于其孔径介于微小孔隙和大孔隙之间,主要起到连通微小孔隙和大孔隙的作用,在渗吸过程中原油会在其中不停流动,导致其振幅出现忽高忽低的变化。此外,在32 和80 min 下,裂缝对应的振幅出现了不为0 的现象,说明此时基质中排出的原油刚好进入裂缝,使得裂缝中存在氢原子的信号,但在下一个扫描时间裂缝对应的振幅又变为0,说明一段时间后裂缝中的原油被驱出。

基于核磁共振测试原理,某一孔径范围内的孔隙对应信号振幅值之和与该范围孔径的孔隙中原油赋存量成正比。因而可以通过岩心在饱和油状态下的T2谱及渗吸后的T2谱计算出不同孔隙中的含油饱和度及采出程度,即:

根据(2)和(3)式可以计算出3类孔隙中原油采出程度的变化规律(图4b),并将动态渗吸过程划分为3个阶段。当表面活性剂溶液注入岩心后会造成裂缝中压力的快速上升,注入水在沿裂缝流动的同时,部分水会在压差的作用下进入大孔隙,以驱替的方式将部分大孔隙内的原油驱出,导致大孔隙和岩心总采出程度快速上升,此为第1阶段,持续时间较短。在第2 阶段中,裂缝及其周围大孔隙中的水会在毛管压力和润湿作用下,附着在骨架颗粒表面自发地渗吸进入微小孔隙,并逐步挤压微小孔隙中原油进入大孔隙和裂缝。此阶段微小孔隙采出程度大幅上升,且持续时间较长。受毛管压力大小和润湿性强度的影响,水相存在一定的渗吸距离[21-23]。在第3阶段,大、中和微小孔隙逐渐达到一个渗吸平衡状态,此时所有孔隙中原油采出程度变化非常缓慢。当整个动态渗吸结束时,微小孔隙采出程度为18.3%,对总采出程度的贡献率达到了60%;大孔隙的采出程度为14.9%,对总采出程度的贡献率为35%,而中孔隙仅为4.4%,仅占总采出程度的5%。因此,在后续的影响因素分析中,将主要针对微小孔隙和大孔隙的动用特征进行研究。

图4 1#岩心动态渗吸过程中T2谱分布及不同孔隙采出程度随时间的变化Fig.4 Variation of T2 spectrum distribution and recovery of different pores with time in dynamic imbibition process of core1#

2.3 渗吸效率影响因素

2.3.1 渗透率

从不同渗透率岩心在动态渗吸实验后不同孔隙采出程度的变化(图5)可以看出,微小孔隙、大孔隙的采出程度和总采出程度均随渗透率的增加而增大,这是因为岩心渗透率增加,孔径分布逐渐向右移动,即孔径增大,毛管压力降低,孔隙中的原油更容易被驱出。微小孔隙的动用比例(微小孔隙采出程度占总采出程度的比例)随渗透率的增加而逐渐降低。这是由于随着渗透率的增加,大孔隙占比不断增大,裂缝中的注入水在同等压差下更容易进入阻力较小的大孔隙,以驱替方式排出原油;而微小孔隙占比不断降低,导致渗吸作用逐渐减弱。

图5 不同渗透率岩心在动态渗吸实验后不同孔隙采出程度的变化Fig.5 Effect of core permeability on recovery of various pores

2.3.2 驱替速度

从驱替速度对不同孔隙采出程度的影响(图6)可知,随着驱替速度的增大,微小孔隙采出程度不断降低,大孔隙采出程度逐渐增大,而总采出程度则呈现出先增大后降低的趋势。当驱替速度为0.1 mL/min时,岩心总采出程度最大,为16.3%。微小孔隙动用比例随驱替速度的增大而不断下降,说明在低流速(0.01 mL/min)下,裂缝中的水流动缓慢,有利于水相渗吸进入微小孔隙,此时逆向渗吸作用为主要采油方式,微小孔隙动用比例达到95.5%,而大孔隙采出程度很低。随着驱替速度不断增加,裂缝中的压力升高,在不断增大的压差作用下,裂缝中的水开始进入大孔隙中驱替原油,大孔隙采出程度逐渐增加[24-26],此时驱替作用为主要采油方式。与此同时,驱替速度的增加导致静态渗吸环境被破坏,使微小孔隙采出程度不断降低。但是从岩心总采出程度的变化可以看出,驱替速度并非越快或越慢越好,而是存在一个最佳驱替速度,确保能够同时最大程度地发挥渗吸和驱替2种采油方式。

图6 驱替速度对不同孔隙采出程度的影响Fig.6 Effect of displacement rates on recovery of different pores

2.3.3 表面活性剂浓度

由不同表面活性剂质量分数对不同孔隙采出程度的影响(图7)可知,当质量分数由0 增加至0.05%时,界面张力则由22.9 mN/m 降至7.6 mN/m,微小孔隙采出程度和总采出程度达到最大,此时微小孔隙是总采出程度的主要“贡献者”,这主要是由于界面张力下降,降低了原油的黏滞力,使得微小孔隙中的原油更容易被排出。当界面张力继续降低至1.2 mN/m 时,微小孔隙采出程度急剧下降,而大孔隙采出程度达到最大值,对岩心总采出程度的贡献程度上升。这主要是由于表面活性剂存在一个临界胶束浓度(0.05%),当质量分数超过0.05%时便会形成胶束,将制约表面活性剂进入纳米孔隙。同时,界面张力的不断降低也会降低微小孔隙中的毛管压力,导致渗吸强度减弱,造成微小孔隙采出程度大幅降低。而大孔隙由于孔隙表面积较大,受临界胶束浓度的影响相对较小,界面张力的降低会进一步降低大孔隙中原油的黏滞力,水更容易将原油驱替出来,使得大孔隙的采出程度增加。当界面张力继续降至0.74 mN/m 时,基质中的毛管压力会大幅降低,导致渗吸作用基本停止,对于致密岩心而言,这将会严重影响3 类孔隙采出程度和岩心总采出程度。因此,在选择表面活性剂浓度时,应考虑界面张力的作用,一方面,需要降低界面张力以减小原油黏滞力,另一方面,又需要提高界面张力以保证渗吸作用顺利进行时所需的毛管压力。

图7 表面活性剂质量分数对不同孔隙采出程度的影响Fig.7 Effect of surfactant concentrations on recovery of different pores

2.3.4 焖井时间

从焖井时间占总时间(总时间(恒定)=注入时间+焖井时间)比例对不同孔隙采出程度的影响(图8)可知,随着焖井时间占比的增加,微小孔隙采出程度和总采出程度先增大后减小,而大孔隙采出程度则上下波动。说明增加焖井时间能够有效提高微小孔隙的渗吸效率和动用程度,但焖井时间的增加又会减小注入时间,导致大孔隙的采出程度降低。当焖井时间占比达到75%时,微小孔隙、大孔隙的采出程度和岩心总采出程度均达到最大值,此时微小孔隙动用比例为54.5%,说明岩心总采出程度的一半来源于微小孔隙一半来源于大孔隙。这是因为微小孔隙通过渗吸作用排出的原油会通过中孔隙最终进入大孔隙中,而保持适当的注水时间又能够最大程度地将大孔隙中的原油驱出。当焖井时间占比高于75%时,大孔隙中的原油得不到有效动用,导致大孔隙的动用比例下降,进而又会影响微小孔隙中的原油顺利地向大孔隙中流动,造成3 类孔隙采出程度和总采出程度的下降。因此,整个动态渗吸过程就如同一个有机体,想要提高岩心总采出程度,就必须要在提高微小孔隙动用程度的同时也尽可能提高大孔隙的动用程度,仅提高微小孔隙或大孔隙的采出程度很难获得最高的采出程度。

3 结论

鄂尔多斯盆地A83 区块长8 储层岩心弛豫时间与孔径的换算系数为0.025 μm/ms,结合核磁共振在线扫描技术成功实现了对动态渗吸过程中不同孔径孔隙动用程度的定量表征。

根据不同孔隙动用特征,目标储层动态渗吸过程可以划分为3 个阶段,第1 阶段在驱替作用下大孔隙采出程度快速增加,第2 阶段在渗吸作用下微小孔隙采出程度缓慢增加,第3 阶段为动态渗吸平衡阶段。渗吸过程中微小孔隙动用程度最大,对总采出程度的贡献率最高,大孔隙次之,而中孔隙作为连接微小孔隙和大孔隙的流动通道,动用程度最低。整个动态渗吸过程就如同一个有机体,想要最大程度提高总采出程度,就必须控制好驱替速度(0.1 mL/min)、表面活性剂质量分数(0.05%)和焖井时间(占比75%),最大程度地发挥渗吸和驱替2 种采油方式,确保在提高微小孔隙动用程度的同时也尽可能地增大大孔隙的采出程度。

符号解释

ER——原油采出程度,%;

f——换算系数,μm/ms;

r——孔径,μm;

So——含油饱和度,%;

T2——横向弛豫时间,ms;

T2,min,T2,max——T2谱分布中某一孔隙对应的最小弛豫时间和最大弛豫时间,ms;

wi,d——渗吸过程中不同平衡时间下对应的振幅;

wi,0——岩心充分饱和油后对应的振幅。

猜你喜欢

采出程度动用岩心
满语动词的使动用法
延长油田南部长8致密油藏注CO2吞吐实验
Osteotomized folded scapular tip free flap for complex midfacial reconstruction
采出程度对内源微生物驱油效果的影响研究
一种页岩岩心资料的保存方法
聚合物驱油田交替注聚参数优化研究
Acellular allogeneic nerve grafting combined with bone marrow mesenchymal stem cell transplantation for the repair of long-segment sciatic nerve defects: biomechanics and validation of mathematical models
基于波前快速推进法的页岩气储层动用预测
二氧化碳驱油注入方式优选实验
汽车起动用蓄电池健康诊断及应急点火仪的研制