中国不同水果生产系统温室气体排放及减排措施
2022-08-31韩双颖高兵赵川崔胜辉
韩双颖 高兵 赵川 崔胜辉
1 中国科学院城市环境研究所 城市环境与健康重点实验室,厦门,361021 2 中国科学院大学,北京,100049 3 中国科学院城市环境研究所 厦门市城市代谢重点实验室,厦门,361021
0 引言
随着人民生活水平提高,水果消费量日益增长,2013—2020年中国居民人均鲜瓜果消费量增加了35.7%[9].由此水果种植面积不断增长,2020年中国果园种植面积为1 264.6万hm2,占农作物总播种面积的7.6%,为第4大种植作物[9].由于果农盲目追求经济效益,过量施肥已成为水果生产中普遍存在的问题[10-12].2010年全球化肥总消费量达到172.2 Mt,其中水果消费氮肥总量占到5.8%[13].中国2010年水果种植的氮肥(N)、磷肥(P2O5)和钾肥(K2O)消费量分别占总消费量的9.9%、8.4%和10.9%,紧随小麦、玉米、水稻三大粮食作物和蔬菜之后[13].中国整个水果生产体系氮肥施用量为472±16 kg(N)·hm-2·a-1,约为马铃薯生产体系氮肥施用量的2.5倍[14],北方、东北、中部和东部、南方、西南以及西北各区域水果生产氮肥施用量分别为415±39、358±54、425±31、540±37、416±45、521±31kg(N)·hm-2·a-1[15].农田N2O排放与氮肥投入成正比关系[16],在区域尺度上,果园土壤也被视为重要的N2O来源[17-18].中国整个果园系统N2O平均排放量为5.2±0.2 kg(N2O)·hm-2·a-1,区域果园系统N2O 排放量范围为3.9±0.6~5.9±0.4 kg(N2O)·hm-2·a-1[15].中国果园系统N2O排放量约为马铃薯生产体系的3倍,棉花生产体系的1.2倍,东北地区大豆生产体系的3.7倍[7].因其高投入及较高的GHG排放,果园系统GHG排放和减排受到越来越多的关注,国内外学者进行了众多试验探究水果生产过程中如何优化管理措施来实现高产与低碳的双赢目标.Maris等[19]通过田间研究发现,施用硝化抑制剂以及滴灌配施50 kg(N)·hm-2措施,既可以提高橄榄园生产力又可以控制其GHG排放.Fentabil等[20]对一个苹果园两年的试验研究,证明滴灌频率的降低和覆盖可有效控制滴灌果园N2O排放.两年的葡萄园试验研究也表明,使用碎树皮和木材作为地面覆盖物,可降低N2O累积通量[21].Han等[22]在中国主要苹果种植区黄土高原的两年田间研究发现,施用生物炭土壤能够固存更多的有机碳,有助于减少苹果生产过程对气候变化的影响.
国内针对不同果园系统肥料用量和类型、灌溉用量、灌溉频率、作物覆盖等管理措施开展了大量的案例研究,为研究中国水果生产系统资源投入、GHG排放和GHG平衡计算等奠定了数据基础.Zhao等[15]进行了常规措施下全国整体和分区的水果体系研究.而中国水果种类繁多,不同水果种植土壤条件、物质投入、管理措施等差别较大,这些因素都与GHG排放密切相关.因此有必要开展不同水果生产体系净GHG平衡和不同产量水平下的GHG排放强度(GHGI)的综合比较及其优化潜力分析.本文利用2000年至2021年上半年发表的相关文献汇编成数据库,并对其进行Meta分析,计算了传统和优化管理措施下中国主要水果生产系统的氮磷钾肥投入、灌溉量、产量、净GHG平衡和GHGI.研究目的主要有:1)比较传统和优化管理措施下不同水果生产系统的单位面积肥料投入、灌溉量和产量差异;2)分析传统和优化管理措施下不同水果生产系统净GHG平衡和GHGI;3)识别中国不同水果生产系统中净GHG平衡的主要源与汇,提出不同水果生产系统减排增汇的关键措施.本文的研究结果可为中国水果生产系统绿色低碳发展提供科学依据.
1 研究系统描述
为估算中国不同水果从播种到收获整个生产管理期间相关的直接和间接GHG排放[23],本文引入水果生产系统这一概念方便计算不同水果生产的净GHG平衡[15].水果在其“从摇篮到农场大门”的各个阶段,均会产生GHG排放,主要包括种子、化肥、农药以及农膜等农资的生产加工和运输过程会排放CO2以及N2O,水果生产过程中的化肥施用、秸秆还田、机械耕作、灌溉等管理措施也与CO2、N2O以及CH4等GHG有关[24].同时,不同农田管理措施也会导致土壤有机碳的变化,可用于反映不同管理措施下农田土壤与大气间的净CO2交换量[25].基于上述GHG来源,本文分别计算了中国不同水果生产系统传统和优化管理措施下的净GHG平衡.
2020年中国水果总产量达到28 692.4万t,其中柑橘、苹果、梨、葡萄以及香蕉的产量分别为5 121.9万t、4 406.6万t、1 781.5万t、1 431.4万t和1 151.3万t[9].根据国家统计局数据,2019年中国水果播种面积的前5位为:柑橘261.7万hm2,苹果197.8万hm2,梨94.1万hm2,葡萄72.6万hm2,香蕉33.0万hm2,分别占水果总播种面积的21.3%、16.1%、7.7%、5.9%、2.7%.因此本文将中国种植面积和产量占前5位的不同水果和除前5位外的其他水果作为6个研究对象.
2 数据与方法
2.1 数据收集
本文中优化管理措施下中国不同水果生产体系的氮、磷、钾肥投入数据、灌溉水量数据以及产量数据是通过在中国知网中利用关键词大规模搜索相关文献后筛选得到的,关键词主要包括“水果”、“生产”、“产量”、“灌溉”、“果园”、“碳排放”、“温室气体”以及各种水果的名称.常规管理措施下所对应的各项数据是基于Zhao 等[15]已经构建的数据库进行筛选补充得到.最终常规和优化管理措施下分别收集整理了307个和333个数据集,各水果种类常规和优化措施下数据量分别为:柑橘(42和43个)、苹果(77和61个)、梨(20和21个)、葡萄(50和65个)、香蕉(48和57个)和其他(70和86个).因部分田间管理数据可获取性及样本数量原因,本研究优化管理措施仅考虑施肥和灌溉两个方面,其他农业管理措施如机械翻耕、农药和套袋等则采用常规管理水平数据,为Zhao等[15]在研究中计算的全国平均水平.
2.2 CO2-eq的计算
在计算水果生产系统的净GHG平衡时,需先把整个过程中各项措施引起的GHG排放量均量化为二氧化碳当量(CO2-eq).百年时间范围内单位土壤N2O和CH4排放量的CO2-eq分别为265 kg(CO2-eq)·kg-1和28 kg(CO2-eq)·kg-1[26].所有农业管理措施的CO2-eq计算是由农业投入乘以单位农业投入的CO2-eq强度(表1)来估算.
表1 土壤GHG排放和农业投入的排放因子
2.3 净GHG平衡和GHGI计算方法
不同水果生产系统的净GHG平衡采用式(1)计算,该公式已被广泛地用于计算农业净GHG平衡[16,32-33].水果生产系统净GHG平衡能够反映周年尺度上单位面积果园体系和大气之间的碳增益和排放量,正值表示果园生产体系是大气中CO2的排放源,负值则表示果园生产体系是大气中CO2的汇.GHGI采用式(2)[34]进行计算,表示单位水果产量的GHG排放强度.
(1)
(2)
式(1)中:净GHG平衡单位为kg(CO2-eq)·hm-2·a-1;GHGI单位为kg(CO2-eq)·kg-1;小写字母代表土壤N2O和CH4排放量和不同农业投入的数量,具体包括化肥(N、P2O5、K2O)、灌溉、燃料、农药、塑料薄膜和套袋用量,数字为小写字母各项所对应的CO2-eq排放因子,如表1所列.式(2)中的Y代表水果的干质量产量,取为收集水果产量鲜质量数据的10%[15].
2.4 不确定性分析
为降低本研究的不确定性,在收集数据或参数时建立了统一标准,详见文献[7,14],最终采用95%的置信区间来计算不同水果生产系统的肥料投入量、灌溉用量和土壤有机碳变化量的平均值和变化范围.在计算净GHG平衡和GHGI的时候也存在不确定性,采用数理统计的误差传递方程进行不确定性分析[35],详细计算过程见文献[15].
3 结果与讨论
3.1 中国不同水果生产系统的产量和农业投入
传统措施下中国不同水果生产系统的产量排序为香蕉(43.9±1.6 Mg·hm-2·a-1)>苹果(33.7±2.4 Mg·hm-2·a-1)>柑橘(31.0±2.5 Mg·hm-2·a-1)>梨(29.9±2.6 Mg·hm-2·a-1)>其他(26.1±2.2 Mg·hm-2·a-1)>葡萄(24.7±2.1 Mg·hm-2·a-1).与传统管理措施相比,优化管理措施下梨的产量略有降低(5.3%),其余各水果产量均有不同程度的增加,其中苹果增产幅度最大,增加35.6%,其次是其他类水果生产系统(22.6%).优化措施下产量排序为香蕉(49.5±1.4 Mg·hm-2·a-1)>苹果(45.7±2.7 Mg·hm-2·a-1)>柑橘(33.0±2.6 Mg·hm-2·a-1)>其他(32.0±2.2 Mg·hm-2·a-1)>梨(28.4±2.6 Mg·hm-2·a-1)>葡萄(27.6±2.3 Mg·hm-2·a-1).意大利北部的苹果生产体系在传统措施下产量可达到40 Mg·hm-2[36],比传统措施下中国苹果生产体系的产量高6.3 Mg·hm-2,比优化措施下中国苹果生产体系的产量低5.7 Mg·hm-2.
图1 中国不同水果生产系统常规和优化措施下的产量(柱形图高度为平均值;误差棒长度为标准误)
常规管理措施下氮肥施用量从其他类的397±29 kg(N)·hm-2·a-1至香蕉的688±35 kg(N)·hm-2·a-1,磷肥施用量从柑橘的225±27 kg(P2O5)·hm-2·a-1至梨的412±61 kg(P2O5)·hm-2·a-1,钾肥施用量从其他类的310±24 kg(K2O)·hm-2·a-1至香蕉的1 100±65 kg(K2O)·hm-2·a-1.中国水果生产系统中过量施肥是一直存在的问题,在陈翠霞等[10]对黄土高原苹果产区的调查研究中就发现,两个果园的年平均施氮肥量分别高达1 115 和1 208 kg(N)·hm-2.Ju等[11]对华北平原苹果生产系统的研究中也发现,年平均施氮量为661 kg(N)·hm-2,高于当地推荐施氮量450 kg(N)·hm-2,本文中收集整理的传统措施下苹果生产系统的施氮量为576±30 kg(N)·hm-2,也远高于此推荐量,优化措施下为407±26 kg(N)·hm-2,与推荐施氮量相近.Lu等[12]通过对西北大量猕猴桃园的调查发现,猕猴桃果园存在过度施肥现象,氮肥的总投入为1 201 kg(N)·hm-2,年平均表观养分过剩量为1 081 kg(N)·hm-2,造成了地下水污染,增加了环境负担.高产优先、小规模耕作、缺乏有效的推广系统以及果农手工施肥都可能是导致中国果园过度施肥的原因[37].通过优化管理措施,不同水果生产系统的施氮量减少为葡萄的248±22 kg(N)·hm-2·a-1至香蕉的617±28 kg(N)·hm-2·a-1.常规与优化管理措施下磷肥施用的变化特征与氮肥相似,各水果生产系统都有不同程度的减少,其中葡萄的减少幅度最大,达到45.2%,柑橘的减少幅度最小,但也达到19.4%.而钾肥的变化特征与氮磷肥不同,仅柑橘、梨、葡萄、香蕉的钾肥施用量分别下降了10.6%、10.3%、27.2%、10.9%.由于滴灌、微喷灌和水肥耦合等优化措施的实施,各水果生产系统的灌溉量均有不同程度的减少.传统措施下梨和香蕉的灌溉量较大,优化措施下其减少幅度也较大,分别为58.3%和52.0%,传统措施下柑橘的灌溉量最少,因此其优化潜力也较小,仅为4.3%.中国水果生产系统即使在优化措施下的肥料投入量,仍远高于国外传统管理下的肥料投入[38].Mouron等[38]在对瑞士12个水果农场进行了为期4 a的调查后得到,苹果种植过程中的平均肥料投入量仅为62.0 kg(N)·hm-2、3.8 kg(P2O5)·hm-2和47.2 kg(K2O)·hm-2,优化措施下中国水果生产系统的各肥料投入分别是其4.0~10.0倍,44.9~75.9倍,5.9~20.8倍.由此可见,我国不同水果生产系统仍均有较大的优化减肥空间.
图2 中国不同水果生产系统常规和优化措施下的肥料投入(N、P2O5、K2O)和灌溉水量
3.2 中国不同水果生产系统的净GHG平衡和GHGI
在中国不同水果生产系统的土壤N2O和CH4排放、所有农业投入相关GHG排放以及土壤有机碳储量变化的基础上,计算得到不同水果生产系统的净GHG平衡(图3).可以看出,中国不同水果生产系统净GHG平衡均为正值,排名为香蕉>梨>苹果>葡萄>其他>柑橘,分别为14.8±0.7、12.7±0.9、11.5±0.6、10.7±0.7、9.5±0.6、8.7±0.6 Mg(CO2-eq)·hm-2·a-1,表示水果生产系统是较大的大气CO2排放源,这与Gao等[7]的研究结果中国的作物系统是GHG的净排放源结论一致.传统管理措施下中国整个水果生产系统的净GHG平衡低于蔬菜和水稻生产系统,高于小麦、马铃薯、玉米以及大豆生产系统的净GHG平衡[15].传统管理措施下,不同水果体系GHGI排名为葡萄>梨>其他>苹果>香蕉>柑橘,分别为4.3±0.3、4.2±0.3、3.7±0.2、3.4±0.2、3.4±0.2、2.8±0.2 kg(CO2-eq)·kg-1.优化管理措施下,不同水果体系净GHG平衡为香蕉>梨>苹果>葡萄>其他>柑橘,分别为6.9±0.6、3.9±0.8、3.6±0.6、2.7±0.6、2.5±0.6、2.1±0.6 Mg(CO2-eq)·hm-2·a-1.相比传统措施明显降低,减少幅度分别为53.2%、69.0%、68.5%、75.0%、73.9%、75.8%.优化措施下GHGI(图4)为香蕉>梨>葡萄>苹果>其他>柑橘,分别为1.4±0.1、1.4±0.3、1.0±0.2、0.8±0.1、0.8±0.2、0.6±0.2 kg(CO2-eq)·kg-1,相比传统管理措施分别减少58.5%、67.3%、77.5%、76.8%、78.7%、77.3%.然而中国水果生产系统即使在优化措施下,其碳排放仍然不具有优势.传统措施下瑞士苹果园的碳排放平均值仅为2.6 Mg(CO2-eq)·hm-2[38],低于优化措施下中国香蕉、梨、苹果体系碳排放.英国苹果在整个生产过程中的碳排放约为2.7 Mg(CO2-eq)·hm-2[39],与优化措施下中国葡萄生产的碳排放相近,远低于香蕉、梨、苹果生产碳排放.意大利北部的苹果园在传统措施下的碳排放仅为0.16 Mg(CO2-eq)·hm-2[36],中国不同水果生产体系在优化措施下的碳排放为其13.2~43.4倍.可见我国水果生产体系具有较大的GHG减排潜力,在未来水果需求大幅增长的情况下,急需采取优化施肥和优化灌溉等措施来降低单位水果产品的GHG排放强度,减缓我国水果生产体系的GHG排放,助力农业碳达峰和碳中和.
图3 中国不同水果生产系统常规和优化措施下的净GHG平衡
图4 中国不同水果生产系统常规和优化措施下的GHGI
3.3 中国不同水果生产系统净GHG平衡的主要来源
如图5a、c所示,传统措施下不同水果生产系统GHGs最大来源是由氮肥施用引起的上游生产和运输过程中的GHG排放,占比在33.2%~43.6%.机械灌溉能源和氮肥诱导的土壤N2O也是GHG排放的主要来源,传统措施下两者占比分别在6.0%~23.0%和11.7%~15.3%.由于不合理的施肥现象普遍存在,氮肥不仅是水果生产系统,也是国内外各类农作物生产过程中GHG排放的主要来源[40-42].在中国主要小麦种植区,由氮肥生产所导致的GHG排放量最大,省级尺度上其占比为10.0%~21.1%,在主要玉米种植区其占比为6.4%~13.3%[41].美国玉米、大豆和小麦的传统耕作系统中,温室气体排放的最大贡献者也是由肥料的生产和施用造成的,肥料生产(N、P和K)的温室气体排放量和肥料施用于土壤导致的N2O排放量分别占GHG总排放量的54%和55%[42].传统措施下土壤有机碳储量减少,对总GHGs排放的贡献率比在 5.9%~10.1%,意味着土壤固存碳的功能并未得到很好地利用.而优化措施促进了土壤有机碳含量增加,从图5b、d来看,土壤有机碳储量增加成为抵消不同水果生产系统GHG总排放量的最大贡献者,占比达到-205.9%~-62.6%.研究表明,土壤有机碳固存对提高土壤肥力,从而提高农田作物产量至关重要,且能够极大地缓解大气中GHG浓度的增加[16,43].Aguilera等[44]在对西班牙传统和有机果园进行对比时发现,覆盖种植和剪枝残茬的掺入等管理措施导致更高的碳输入,增加了土壤碳固存,使GHG排放量平均下降了39%.施用有机肥以及秸秆还田等处理均可以增加土壤有机碳[45],抵消GHG排放量,谷类作物生产系统中有机碳的增加可抵消GHG排放总量的23.2%~66.7%[46].优化措施下,氮肥施用引起的上游GHG排放和土壤N2O以及机械灌溉仍是导致不同水果生产系统GHG排放的主要来源,三者占比分别变为73.8%~135.6%、25.9%~47.6%和21.6%~77.2%.优化田间碳投入管理,特别是肥料管理,对于促进高产低碳生产,提高农业生态系统的生态效益具有重要意义,并能进一步促进清洁可持续的农业生产[47].对于中国不同水果生产系统来说,通过更好的田间管理实现高效的养分吸收,是在满足生产需求的同时减少GHG排放的主要途径[48].
图5 中国不同水果生产系统常规和优化措施下温室气体排放量的来源及占比
虽然不同水果生产系统中各GHG来源占比略有不同,但主要排放来源基本是氮肥施用、灌溉机械能耗和土壤有机碳固存,因此不同水果生产系统减排增汇的关键措施主要有氮肥减量、灌溉减量、增加土壤有机碳储量这3个方面.Chen等[49]在对中国典型柚子产区的调查研究中也发现,减少氮肥过量施用和提高氮肥利用效率,既可以达到相似产量,又可以降低生产成本,还可以降低柚子生产过程中的碳排放强度.不仅是水果生产系统,基于养分的肥料管理还可以使水稻的全球变暖潜力降低约2.5%,小麦的全球变暖潜力降低约12%~20%[50].由于获取先进氮肥管理信息和技术的途径有限,再加上机械、知识等固定投入占总投入的比例较低,中国农户往往将过度施肥作为避免产量损失的“保险”[51-52].本文收集结果证明,合理施肥、水肥耦合、地面覆盖等管理措施更有利于增产,且对环境改善具有一定贡献.因此,加强对先进果园管理经验和技术措施的推广应用,有望实现我国水果生产体系绿色低碳的转型,减缓未来我国水果消费需求增加而引起的GHG排放压力.
4 结论
不合理的水肥管理,不仅提高了水果生产系统的投入成本,也引发了较高的GHG排放.面对未来中国居民水果消费需求的不断增加,亟需开展不同水果生产体系的GHG排放差异比较及其优化潜力分析,制定针对性减排措施,为中国水果生产体系的绿色低碳发展提供科学指导.为此,本文基于近20多年来中国大量不同水果生产系统的田间试验数据收集与分析,比较了传统和优化管理措施下不同水果生产系统的净GHG平衡和GHGI,识别了不同水果生产的主要GHG来源,计算了不同优化措施对中国不同水果生产系统GHG减排的贡献率.结果发现:常规和优化措施下氮肥施用均是不同水果生产体系最大GHG来源,常规措施下机械灌溉能源(除柑橘外)和氮肥施用诱导的N2O排放也具有较大贡献.优化措施下除葡萄和其他水果两个体系是机械灌溉能源外,氮肥施用引起的N2O排放均为第二大排放源.通过优化氮肥管理、水肥耦合和节水灌溉等措施可显著降低中国不同水果生产体系的GHG排放.优化管理措施下水果生产系统具有巨大的固碳减排潜力,不同水果体系土壤固碳能够抵消38.4%~66.9%的总GHG排放,主要的果园固碳措施包括秸秆还田、地面覆盖、推荐施肥以及免耕等.通过综合优化氮肥管理、节水灌溉和地面覆盖等措施,可有效降低中国水果生产体系单位种植面积的GHG排放,减缓水果消费需求增加带来的GHG增加压力,为中国实现碳达峰做出些许贡献.