不同类型有机肥对珠三角水稻产量和温室气体排放的影响
2022-08-31钱栋胡明成申卫收林先贵钟振芳邱崇文
钱栋 胡明成 申卫收 林先贵 钟振芳 邱崇文
1 南京信息工程大学 环境科学与工程学院/江苏省大气环境监测与污染控制高技术研究重点实验室/大气环境与装备技术协同创新中心,南京,210044 2 中国科学院南京土壤研究所,南京,210008 3 广东海纳农业有限公司,惠州,516000 4 广东海纳农业研究院,惠州,516000
0 引言
我国是水稻种植大国,栽培面积达到2 900万hm2[1].同时,我国也是化学肥料消耗大国,统计数据显示,2019年我国化肥施用量达5 404×104t[2].施用化肥能够增加水稻产量,但长期大量施用化肥也会带来许多负面问题,例如土壤酸化、有机质含量下降、氮肥利用效率降低和氮环境负效应[3].2015年,农业农村部制定了《到2020年化肥使用量零增长行动方案》,提出了到2020年主要农作物化肥使用量实现零增长的目标任务,而有机肥替代化肥便是实现这一目标的关键路径之一[4].有机肥的主要原料有畜禽粪便、农作物秸秆和菇渣等,可通过不同工艺加工成商品有机肥.施用有机肥不仅能够提升土壤肥力、改善土壤结构,还能增加作物产量和提高农产品品质等[5].
全球气候变暖是当今世界面临的重大环境问题,CH4和N2O是大气中仅次于CO2的两大重要温室气体[6].在100年尺度上,单位质量的CH4和N2O对温室效应的贡献分别相当于CO2的25和298倍[7].稻田是CH4和N2O的重要排放源[8-9].全球水稻田年均CH4排放量占到排放到大气中CH4总量的10%~20%[10-11],水稻田干湿交替也会造成N2O大量排放[12].研究表明,我国水稻田CH4年排放量达到6~10 Tg[13].到21世纪末,我国大陆气温将升高约2.5~4.9 ℃,高于全球平均值[14].水稻田温室气体排放高效控制对于实现碳中和目标和农业绿色发展至关重要.
目前,已有大量关于有机肥替代化肥对水稻田温室气体排放影响的研究.苗茜等[15]在研究城市污泥堆肥和猪粪堆肥配施化肥对宁波地区水稻田CH4和N2O排放的影响时发现,有机肥等氮替代化肥增加了稻田CH4排放量和水稻产量,减少了N2O排放量.李桂花等[16]在探究秸秆还田条件下有机肥部分替代尿素对江西双季水稻田温室气体排放的影响试验时也发现类似现象.
珠江三角洲地区经济发达,是我国重要的双季稻种植区.受限于高温、降雨、台风等客观条件,该区域田间试验开展程度远不及华东地区、华北地区等.目前,有关珠三角地区水稻田有机肥施用的研究较少,尤其是施用不同有机肥对珠三角地区典型双季稻产量及水稻田N2O和CH4排放的影响尚不清楚.因此,本研究以我国珠三角地区典型水稻田为研究对象,设置了无肥对照、化肥、条垛有机肥、促腐有机肥、新鲜有机肥和灭菌有机肥6种处理,在等氮量施肥条件下,研究不同类型有机肥对水稻产量及温室气体排放的影响,为水稻田地力提升和农业绿色发展提供关键科学数据.
1 材料与方法
1.1 研究区概况
试验地位于广东省惠州市惠城区水口街道下源村(114°5′ E,23°1′ N).该地区属亚热带季风气候,水热资源丰富,多年平均气温22 ℃,降水量2 200 mm.双季稻是该地区典型的稻作模式.试验地土壤为华南地区典型赤红壤,土壤pH为5.8,有机质质量分数为18.60 g·kg-1,全氮质量分数为1.10 g·kg-1,全磷质量分数为0.88 g·kg-1,全钾质量分数为18.90 g·kg-1.试验期间降雨量和气温变化情况如图1所示.
图1 2018年早、晚稻生长季内气温和降雨量的动态变化
1.2 试验设计
田间试验于2018年开始.试验共设置无肥对照(CK)、化肥(CF)、条垛有机肥(SOF)、促腐有机肥(COF)、新鲜有机肥(FOF)和灭菌有机肥(STOF)6个处理,每个处理4个重复,共24个小区,随机区组排列,每个小区面积为42.75 m2(7.5 m×5.7 m).4种有机肥生产工艺各不相同.
传统工厂生产的商品有机肥多为条垛有机肥,其采用条垛堆肥工艺生产,具体生产过程为:首先将鸡粪与秸秆按一定比例堆成长约20 m,宽约2.5 m,高约1 m的条垛状,然后每隔几天利用翻堆机进行翻堆,使鸡粪和秸秆混合均匀并呈好氧状态,约20 d后停止翻堆,使有机物料进入后期腐熟阶段,约30 d后可得到条垛有机肥成品.堆肥过程中的高温会杀死有机物料中的病原微生物,实现有机肥的无害化.然而,条垛有机肥生产时间较长,且堆肥过程中往往会散发出大量臭气,影响环境质量.同时,鸡粪中的养分含量也因堆肥过程中NH3、N2O和CH4等气体的排放而大打折扣.促腐有机肥采用新型物理化学促腐工艺生产,具体生产过程为:人为外加100 ℃左右高温杀灭鸡粪中的病原微生物,这一过程约5 h左右,以达到无害化目的,同时向鸡粪中添加促腐剂来快速降解其中的纤维素、木质素等难降解物质,使鸡粪腐熟时间缩短到1星期以内,达到快速腐熟的目的.灭菌有机肥经过高温灭菌处理后制成,人为外加高温使鸡粪快速无害化,但其未经腐熟处理.新鲜有机肥为未经高温灭菌和腐熟处理制成的有机肥.
各施肥处理均为等氮量施肥,用量为105 kg·hm-2(以N计),具体施肥情况如表1所示.化肥处理所用肥料包括尿素和复合肥(N、P2O5、K2O的质量分数均为15%),其中尿素用量为150 kg·hm-2,复合肥用量为240 kg·hm-2.条垛有机肥、促腐有机肥、新鲜有机肥和灭菌有机肥的原料均为鸡粪.其中:条垛有机肥的氮质量分数为1.63%,纯干基用量为6 441.75 kg·hm-2;促腐有机肥的氮质量分数为2.35%,纯干基用量为4 468.05 kg·hm-2;新鲜有机肥的氮质量分数为4.43%,纯干基用量为2 370.15 kg·hm-2;灭菌有机肥的氮质量分数为3.23%,纯干基用量为3 250.81 kg·hm-2.4种有机肥处理采用表面撒施并结合耙田的施肥方式,肥料作基肥一次施用,后期不再追肥;化肥处理包括基肥和分蘖肥2次施肥.
田间原位试验所用水稻栽培品种为美香占2号.早稻于2018年4月6日施基肥,4月9日插秧,4月30日施分蘖肥(化肥处理),7月20日早稻收割,收割后秸秆不还田.晚稻于2018年8月8日施基肥,8月11日插秧,9月1日施分蘖肥(化肥处理),11月15日收割,其中插秧、收割方式及田间管理方式等同早稻一致.田间管理参照当地农民的传统做法:在试验开始之前进行淹水灌溉、耕田,然后施肥、插秧;插秧后田面保持淹水状态1个月左右,期间淹水深度维持在5~10 cm;之后为中期烤田,持续约2个星期;烤田后田面复水灌溉,至水稻黄熟期排水晒田,最后收割.
1.3 样品采集与分析
1)CH4和N2O采集.使用静态暗箱-气相色谱法.暗箱尺寸为0.5 m×0.5 m×0.6 m,箱体侧面留有采样口,上面留有圆形小孔,用于电子温度计测定箱中的温度.底座尺寸为0.6 m×0.6 m×0.3 m,采样前将底座下部埋入土中,并保持水平,底座上部有凹槽.采样时将箱体置于底座上,在底座凹槽里注入水,使得底座和箱体之间密封,在第0、15、30 min时使用50 mL注射器缓慢抽取箱中气体30 mL,注入15 mL真空玻璃瓶中,并记录此刻箱中温度.采样时间为早上08:00—12:00,水稻生长期前2个月每5 d采样1次,之后每7 d采样1次.样品寄回实验室后使用气相色谱仪(Agilent 7890B)测定样品中CH4和N2O的含量.气相色谱仪相关参数:前检测器为火焰离子化检测器(FID),可测定CH4含量,工作温度250 ℃,高纯H2流量为60 mL·min-1,高纯空气流量为400 mL·min-1;后检测器为微池电子捕获检测器(ECD),可测定N2O含量,工作温度为300 ℃,含5%甲烷的氩气流量为2 mL·min-1.
2)水稻产量测定.水稻成熟后,人工收割并使用脱粒机对每个小区的水稻进行脱粒,晒干称质量,获得各试验处理的产量.
1.4 温室气体排放计算方法
CH4和N2O排放通量[17]计算公式为
F=(M/V0)·H·(P/P0)·(T/T0)·(dc/dt),
(1)
式中:F为CH4排放通量(mg·m-2·h-1)或N2O排放通量(μg·m-2·h-1,以N计);M为气体摩尔质量(g·mol-1);V0为标准状况下的摩尔体积(L·mol-1);H为静态暗箱的有效高度(m);P0为标准状况下的大气压力(101.3 kPa);P为箱内气压,采样时箱内外气压几乎不变,对CH4和N2O的影响可以忽略,故取与P0相同的值;T为气体样品采集时静态暗箱内的气温(K);T0为标准状况下的大气温度(273 K);dc/dt为气体排放速率(μL·L-1·min-1).
CH4和N2O累积排放量计算方法:将相邻两次采样日期的温室气体排放通量取平均值,与相邻两次采样日期间隔天数相乘,所得即为这一阶段温室气体的排放量.
单位产量水稻引起的CH4和N2O排放量(吸收量)计算方法:气体排放量/水稻产量,单位分别为g·kg-1和mg·kg-1(以N计).
温室气体综合温室效应(全球增温潜势,Global Warming Potential,GWP)计算方法:25×CH4排放量+298×N2O排放量[7],单位为kg·hm-2,以CO2计.
单位产量的水稻产生的温室效应(温室气体排放强度,Greenhouse Gas Emission Intensity,GHGI)计算方法:全球增温潜势/水稻产量[18],单位为kg·kg-1,以CO2计.
1.5 数据分析
使用IBM SPSS Statistics 21.0软件及Microsoft Excel 2010软件对相关数据进行统计分析和显著性检验.
2 结果与分析
2.1 水稻产量
全年水稻产量依次为灭菌有机肥>新鲜有机肥>促腐有机肥>化肥>条垛有机肥>无肥对照(表2).与无肥对照相比,早、晚稻施用化肥和有机肥均显著增加了水稻产量(P<0.05).灭菌有机肥、新鲜有机肥和促腐有机肥处理相对于化肥处理增加了早稻产量,分别增加了25.6%、25.3%和18.1%(P<0.05);灭菌有机肥、促腐有机肥和新鲜有机肥处理也增加了晚稻产量,分别增加了11.5%、12.2%和7.1%(P>0.05).从全年水稻产量来看,灭菌有机肥、新鲜有机肥和促腐有机肥处理相对于化肥处理增加了水稻产量,分别为19.3%、17.1%和15.5%(P<0.05);条垛有机肥处理水稻产量略有减少(P>0.05).
表2 不同处理水稻产量
2.2 水稻田经济效益分析
水稻田的经济效益由其生产总成本和产值决定.本研究中,尿素、复合肥的价格分别为2 500元·t-1、2 800元·t-1,条垛有机肥、促腐有机肥、新鲜有机肥、灭菌有机肥的生产成本分别为800元·t-1、600元·t-1、150元·t-1、700元·t-1.早稻和晚稻的种子费均为1 125元·hm-2,无肥和化肥处理的人工费用分别为5 250元·hm-2和6 750元·hm-2,4种有机肥处理的人工费均为6 000元·hm-2.稻谷价格为3.2元·kg-1.从表3可以看到,条垛有机肥、促腐有机肥和灭菌有机肥处理相对于化肥处理均增加了水稻田的生产总成本,增幅分别为37.6%、9.9%和5.4%.从产值来看,促腐有机肥处理、新鲜有机肥处理和灭菌有机肥处理比化肥处理分别增加了15.5%、17.1%和19.3%.促腐有机肥、灭菌有机肥和新鲜有机肥处理相对于化肥处理均增加了纯利润,增幅分别为24.2%、41.2%和69.4%.
表3 不同处理下水稻田的年经济效益
2.3 水稻田CH4排放特征
早、晚稻水稻田CH4排放通量动态变化如图2所示.早稻田CH4排放通量变化范围为0.04~263.51 mg·m-2·h-1.CH4排放主要集中在插秧后1个月内,之后除促腐有机肥处理有较明显的CH4排放外(42.97 mg·m-2·h-1),其余处理CH4排放通量接近于零.早稻田CH4排放通量先升高后降低,CH4排放通量峰值出现在插秧后20 d左右.烤田开始后田面水迅速落干,各处理CH4排放通量迅速降低;烤田结束后田间复水灌溉,CH4排放通量并没有出现回升,而是进一步下降至接近于零.不同类型有机肥处理下早稻田CH4排放通量高于化肥和无肥对照处理.晚稻田CH4的排放通量变化范围为0~180.08 mg·m-2·h-1,在插秧后即出现CH4排放高峰,且在插秧后1个月左右的淹水期内变化幅度较小.晚稻烤田于9月10日开始,此后田面水因高温快速落干,各处理稻田CH4排放通量迅速下降至接近于零;烤田于10月10日结束,之后田间复水灌溉,晚稻田CH4排放通量同样未出现明显上升趋势,至水稻收割各处理稻田CH4排放通量均维持在很低水平.
图2 2018年早、晚稻不同处理CH4排放通量动态变化
水稻田CH4累积排放量如表4所示.早稻田CH4累积排放量依次为促腐有机肥>新鲜有机肥>条垛有机肥>灭菌有机肥>化肥>无肥.相比于无肥对照,施用有机肥和化肥均显著增加了稻田CH4排放(P<0.05).促腐有机肥、新鲜有机肥、条垛有机肥和灭菌有机肥处理相对于化肥处理,CH4累积排放量分别增加了498.6%、339.2%、235.4%和213.7%(P<0.05).晚稻田CH4累积排放量依次为促腐有机肥>新鲜有机肥>条垛有机肥>灭菌有机肥>化肥>无肥,总体趋势和早稻田一致,但晚稻田CH4累积排放量相对于早稻田有所增加.与无肥对照相比,有机肥和化肥处理均显著增加晚稻田CH4排放(P<0.05).促腐有机肥、新鲜有机肥、条垛有机肥和灭菌有机肥处理相对于化肥处理,CH4累积排放量分别增加了239.5%、208.2%、107.8%和80.2%(P<0.05).
表4 2018年早、晚稻不同处理CH4累积排放量
2.4 水稻田N2O排放特征
水稻田N2O排放通量动态变化如图3所示.早稻田N2O排放主要集中在烤田中期和后期,淹水期N2O排放通量多为负值.早稻生长期各处理N2O排放通量最大值为35.59 μg·m-2·h-1(以N计)(5月7日化肥处理),最小值为-40.49 μg·m-2·h-1(以N计)(6月11日化肥处理).总体来看,早稻田N2O排放通量变化幅度较小,没有出现脉冲式的排放峰.晚稻田N2O排放主要集中在生长中期,淹水期和烤田后期各处理N2O排放通量多为负值.晚稻田N2O排放通量最大值为69.23 μg·m-2·h-1(以N计)(9月28日条垛有机肥处理),最小值为-36.69 μg·m-2·h-1(以N计)(8月20日灭菌有机肥处理).晚稻田N2O排放通量变化幅度略大于早稻田,出现了较为明显的N2O排放峰.从早、晚稻田N2O排放特征来看,N2O排放同田间水分条件变化趋势密切相关,N2O排放主要集中在烤田期,淹水期N2O排放通量多为负值.
图3 2018年早、晚稻不同处理N2O排放通量动态变化
水稻田N2O累积排放量如表5所示.早稻田N2O累积排放量依次为新鲜有机肥>促腐有机肥>灭菌有机肥>化肥>条垛有机肥>无肥.除新鲜有机肥外各处理的N2O累积排放量均为负值.晚稻田N2O累积排放量依次为条垛有机肥>新鲜有机肥>化肥>促腐有机肥>无肥>灭菌有机肥.相比于早稻,晚稻季N2O排放更为明显,其中条垛有机肥、新鲜有机肥和化肥处理均出现了明显的N2O排放.该地区水稻田N2O排放水平较低,且各处理水稻田N2O累积排放量以负值居多.
表5 2018年早、晚稻不同处理N2O累积排放量
2.5 水稻田CH4和N2O综合温室效应及排放强度
为了综合评价水稻产量和水稻田CH4、N2O排放量的关系,计算了各处理单位粮食产量下早、晚稻田CH4和N2O的排放量(表6).从各处理单位粮食产量CH4的排放量上来看,促腐有机肥处理最高(224.0 g·kg-1),无肥处理最低(38.6 g·kg-1).相比于无肥和化肥处理,有机肥处理单位产量CH4的排放量均出现了明显增加(P<0.05).从单位产量N2O的排放量上来看,早、晚稻新鲜有机肥处理均为正值,其余处理则为负值.不同类型有机肥中灭菌有机肥处理早、晚稻单位产量N2O的排放量最低(-23.6 mg·kg-1,以N计).
表6 不同处理单位粮食产量CH4和N2O排放量
为了综合评价水稻田排放的CH4和N2O对温室效应的贡献,计算了各处理水稻田排放的CH4和N2O的GWP(表7).除新鲜有机肥外,早、晚稻田排放的N2O的GWP均为负值.水稻田排放的CH4的GWP远大于N2O,对温室效应的贡献几乎全部来自CH4.无肥对照的总GWP最低,有机肥和化肥处理均高于无肥处理.促腐有机肥、新鲜有机肥、条垛有机肥、灭菌有机肥处理相对于化肥处理,早、晚稻总GWP分别增加334.2%、262.1%、154.5%和128.5%(P<0.05).有机肥处理中,总GWP最高的处理是促腐有机肥处理,最低的是灭菌有机肥处理.
表7 不同处理温室气体全球增温潜势(GWP)
水稻田温室气体排放强度(GHGI)是指生产出单位质量的粮食造成的温室效应,可以很好地将水稻生产效益和环境效益结合起来.除新鲜有机肥处理外,早、晚稻田排放的N2O总GHGI均为负值(表8).其中,化肥处理GHGI最低,水稻田每生产1 kg水稻吸收的N2O相当于从大气中吸收12.3 g CO2.早、晚稻田排放的CH4总GHGI远大于N2O,其中促腐有机肥处理最高,每生产1 kg水稻排放的CH4相当于向大气中排放6.3 kg CO2.总GHGI最高的是促腐有机肥处理,最低的是化肥处理.相比于化肥处理,促腐有机肥、新鲜有机肥、条垛有机肥和灭菌有机肥处理总GHGI分别增加了273.8%、206.5%、157.1%和90.5%(P<0.05).
表8 不同处理温室气体排放强度(GHGI)
3 讨论
施用促腐有机肥、新鲜有机肥和灭菌有机肥相对于化肥均显著增加了水稻产量,而施用条垛有机肥后水稻产量略有下降.这与周贝贝[19]的研究结果一致,其在水稻盆栽试验中发现,利用鲜粪、快腐粪肥完全替代单施化肥促进了水稻分蘖,提高了干物质在籽粒中的分配比例,增加了水稻产量,而条垛堆肥并没有明显增产.不同肥料进入土壤后速效氮释放速率的不同也会造成水稻产量出现差异[20-22].虽然各施肥处理施氮量相同,但化肥进入土壤后快速增加了土壤中速效氮的含量,这些氮素容易以NH3挥发、硝酸盐淋溶等形式损失,水稻可吸收利用的氮素含量降低,而有机肥中有机氮矿化需要一定的时间,水稻对矿质氮的利用效果也更好,由此水稻产量也更高.此外,Yang等[23]研究发现有机肥替代化肥有利于水稻根系的生长,促进了根系对氮素的吸收,并增加了养分向稻穗输送的比例.大部分研究表明,有机肥部分替代化肥会增加水稻产量,而有机肥完全替代化肥则会使水稻减产[24].由于大部分研究者使用的有机肥为商品有机肥,其生产工艺多为条垛式堆肥,所以本研究中条垛有机肥替代化肥造成水稻产量略微下降与大部分研究者的结果一致.施用条垛有机肥相对于化肥导致水稻产量略微下降的原因可能是条垛有机肥在好氧堆肥的生产过程中往往会排放大量NH3,造成肥料中的铵态氮含量降低,施入稻田后可供水稻利用的矿质氮含量大打折扣[25];同时,条垛有机肥中的有机氮矿化速率较慢,速效氮释放速率与水稻养分吸收不匹配,导致水稻不能及时吸收利用氮素.
水稻田是CH4重要的排放源,是土壤CH4产生过程、氧化过程和传输扩散过程综合作用的结果[26].本研究发现,不同施肥处理下,水稻田CH4排放通量变化特征基本一致,CH4的排放集中在淹水时期,这表明田间水分条件是稻田CH4排放的主要影响因子[27].田间水分条件影响土壤的通气性和氧化还原电位,从而对土壤中产甲烷古菌和甲烷氧化细菌群落组成和丰度产生影响,进而影响CH4的净排放.与无肥对照相比,施肥显著增加了水稻田CH4的排放,这可能是施肥促进了水稻的生长发育,水稻根系分泌物显著增加,为土壤中产甲烷古菌提供了大量营养物质[28].与化肥处理相比,施用有机肥均显著增加了稻田CH4的排放.有机肥中有机质含量较高,为土壤产甲烷古菌提供了丰富的代谢前体,同时有机质的降解还会造成土壤氧化还原电位的下降,有利于产甲烷古菌的生长和繁殖[29-30].不同类型有机肥处理下水稻田CH4排放量也表现出明显不同,促腐有机肥处理CH4累积排放量最高,灭菌有机肥处理CH4累积排放量最低,不同的有机肥生产工艺可能导致其有机质含量不同,影响土壤中产甲烷古菌的群落组成和丰度,从而导致CH4排放量出现差异[31].
水稻田N2O排放是土壤N2O产生和还原综合作用的结果,其受施肥、田间水分和温度等因素影响较大.本研究发现,无论是早稻还是晚稻,不同施肥处理下N2O排放通量变化趋势大致相同.整个水稻生育期N2O的排放通量较低,累积排放量为负值或接近零,仅在移栽20~30 d后的烤田期间出现排放峰,最高也仅有69.23 μg·m-2·h-1(以N计),普遍低于已报道的水稻田N2O的排放通量.烤田期间较低的排放通量也导致整个水稻生育期N2O累积排放量较低,甚至出现了负值.易琼等[32]在研究不同施肥模式对华南水稻田CH4和N2O排放影响时也发现类似现象.田间水分条件显著影响了水稻田N2O的排放[33].水稻种植使田间水位较深且珠三角地区降水充沛,土壤长期处于淹水还原状态下,严格厌氧条件促使反硝化过程进行剧烈,土壤产生和大气扩散进入土壤的N2O进一步被还原为N2[34].此外,本研究中氮肥用量为105 kg·hm-2(以N计),与已报道的氮肥用量相比偏低[35-36],也减少了水稻田N2O排放.施用不同类型有机肥对水稻田N2O排放的影响知之甚少,相关研究表明其主要受有机肥的种类、碳氮比、微生物和植物对氮素的利用争夺等因素的影响[37],将来可从土壤微生物角度探索其机理.
有机肥替代化肥在农业碳中和目标的实现、地力提升和农业绿色发展中具有重要作用.4种不同类型有机肥相对于化肥均显著增加了CH4排放量,同时水稻田N2O的排放水平较低,GWP和GHGI显著升高主要归因于CH4排放.通常有机肥堆肥过程中会排放大量CH4和N2O.由于促腐有机肥堆制时间较短、腐熟程度较高,因而从全生命周期来看,促腐有机肥生产和使用过程中排放的温室气体相对于其他类型有机肥明显较低.因而,促腐有机肥不仅具有较好的农学和经济效益,同时兼顾了生态环境效益,将为有机肥替代化肥提供科学依据和实际指导.
4 结论
施用促腐有机肥、新鲜有机肥和灭菌有机肥相对于化肥增加了水稻产量,增幅分别为15.5%、17.1%和19.3%(P<0.05),但施用条垛有机肥后水稻产量略有下降(P>0.05).水稻田CH4排放集中在水稻移栽后一个月内.施用不同类型有机肥相对于化肥促进了双季水稻田CH4的排放.水稻生育期内N2O排放集中在烤田期,但其排放水平较低.CH4是珠三角地区双季水稻田的主要温室气体,全球增温潜势主要来自CH4的贡献.从全生命周期来看,促腐有机肥替代化肥不仅可以增加水稻产量和水稻田的经济效益,还可以兼顾生态环境效益.