气体传感器在食品智能包装中的应用研究进展
2022-08-23黄迎港王桂英
黄迎港,王桂英
食品流通与包装
气体传感器在食品智能包装中的应用研究进展
黄迎港,王桂英
(东北林业大学 a.工程技术学院 b.轻工技术与工程实验室,哈尔滨 150000)
系统介绍气体传感器的种类和应用现状,以期为气体传感器在不同食品智能包装中的应用提供参考和借鉴。综述气体传感器在水果、蔬菜、海鲜、肉类等智能包装方面的应用研究进展,分析气体传感器在食品智能包装中应用的局限性及其未来发展趋势。当前消费者对食品安全和新鲜度的要求不断提高决定了气体传感器的应用范围将不断扩大,并向安全、绿色、无污染的方向不断发展。将气体传感器用于改善食品安全性和追溯性具有巨大的潜力,具有广阔的发展前景,它能够在食品保质期内跟踪和监测其新鲜度,保证食品的安全性,并有效地促进了食品包装技术的快速发展。
食品包装;气体传感器;保鲜包装;实时监测
智能包装在产品的流通过程中承担着信息传递、存储和反馈的功能[1],传感器作为智能包装中至关重要组成部分已成为当前研究的热点。李洪军等[2]对智能包装在动物源性食品质量与安全监控中应用的研究进行了总结,但并没有对传感器在果蔬智能包装中的应用进行详细阐述。路玉凤等[3]分析了传感器在果蔬品质检测上的应用,却仅就电子鼻和图像识别技术2个方面进行展开。廖恺芯等[4]结合果蔬检测机理对传感器在包装上的应用进行研究归纳并对气体传感器进行了分类,但在传感器研究的最新进展上不够全面,因此,文中系统介绍气体传感器的种类和它在各种食品智能包装中的应用现状,以期为气体传感器在不同食品智能包装中的应用提供参考和借鉴。
1 气体传感器概述
根据研究方向的不同,智能包装技术可以分为信息型和功能控制型2种,气体传感器作为信息智能包装中的一种有效载体,它能够对包装内环境中特定气体敏感并发生反应,以监测包装内食品的新鲜度,消费者在选购商品时能够通过包装上气体传感器的变化得到产品的有效信息,以便做出正确选择[5]。包装材料的破损、微生物代谢等作用都会使包装系统内气体组分发生很大的变化,气体传感器可以通过化学或酶等反应,在标签上发生颜色变化,从而起到监测产品新鲜度的作用。根据所检测气体种类的不同,气体传感器可以分为二氧化碳、氧气、挥发性含硫化合物、挥发性含氮化合物和乙烯综合型气体指示器等。
2 气体传感器监测产品新鲜度的机理
气体传感器可以通过监测二氧化碳和氧气含量的变化来计算果蔬的呼吸速率,或者通过监测乙烯等气体来分析果蔬的成熟度。它也可以通过识别鱼类中产生的挥发性含氮化合物、肉制品产生的硫化氢等气体来检测生鲜类食品的新鲜度,目前气体传感器检测产品新鲜度的机理主要分为以下2种。
1)通过将天然色素或者某种化学试剂制成可以与特定气体反应的色素染料,染料与基材复合成指示标签。将指示标签置于包装系统内,智能标签和这些代谢产物进行化学反应,发生颜色改变等可视变化,起到提示作用。智能指示标签能够以成本低的优势应用于果蔬和肉类的品质监测。
2)通过气体传感器可以识别包装内的气体组分,当气体环境发生改变,传感器能够通过监测转换成信号反映出产品的新鲜特性,如电子鼻等设备。目前,电气体传感器虽然在产品新鲜度的指示领域中具有测试更准确等优势,但这类系统目前绝大多数结构很复杂,需要昂贵的仪器,大量应用在产品包装中的成本会过高,因此暂时不适合用在销售包装中。
3 气体传感器在食品智能包装的应用研究
3.1 水果
在果蔬的智能包装系统中,气体传感器可对水果在成熟过程中释放的各种特定气体进行测定,从而判断水果的成熟度等质量状态。基于气体传感器在水果新鲜度监测方面的应用研究见表1。Mahajan等[6]开发了一种小型且灵活的基于传感器的呼吸计,借助于呼吸计上的电化学传感器和红外传感器,用于连续地测量草莓中氧气的含量。早在2004年,新西兰的P‒P Enterprises超级市场推出了Ripe SenceTM洋梨智能包装,当洋梨成熟后产生芳香气体,包装上的智能标签由红色变成黄色[7]。Kim等[8]开发了一种基于甲基红的由功能油墨直接打印在纸介质上的柔性传感器标签,当苹果成熟释放出醛时,标签颜色由黄色变成橙色,最后变成红色。
表1 基于气体传感器在水果新鲜度监测的研究
Tab.1 Research on fruit freshness monitoring based on gas sensors
电子鼻是由某种特定识别模式系统和气体传感器组成的仪器,由于电子鼻具有气体选择性,使得它不仅可以检测单一气体也可以检测混合气体。此外,电子鼻在监测草莓在采后物流过程新鲜度、撞击损伤程度等方面也得到了广泛的研究。这些研究均表明,电子鼻技术能够有效且智能地分析检测水果的新鲜度。
王顺[11]提出了基于视觉和嗅觉多传感器融合技术的水果成熟度检测系统,将视觉系统获取外观信息和嗅觉传感器获取的气味信息进行数据融合,从而准确无损地检测水果成熟度。孙雪[12]构建了适用于葡萄冷链物流环境中检测的气体传感器,通过测试物流冷链环境中CO2、O2和SO2气体浓度来检测葡萄的品质变化。Deng等[13]将壳聚糖、纳米金颗粒等材料制成可对有机磷、甲基和硫磷农药快速响应的生物传感器,该传感器能快速识别有害物质。近几年也有很多研究者[14]通过提取天然色素制成新鲜度指示标签对水果进行新鲜度的检测。
3.2 蔬菜
由于蔬菜的呼吸作用会产生特殊性气体使得包装内气氛环境发生变化,因此,可在包装内使用可视化的指示材料来监测生蔬的新鲜程度[15],基于气体传感器在蔬菜新鲜度监测方面的应用研究见表2。Lee等[16]开发了一种以无纺布作为基材片,溴甲酚绿为变色层,低密度聚乙烯薄膜为外层固定染料的新鲜度指示器,该传感器可有效地检测二氧化碳的浓度变化,并能通过连接手机来读取蔬菜的新鲜度。Chen等[17]通过在成膜液中混合甲基红和溴百里酚蓝溶液制备了辨别鲜切青椒新鲜度的智能标签,随着在储存期间包装中的二氧化碳的浓度增加,智能标签从黄绿色变为橙色。Meng等[18]将使用化学染料作为指示剂,并与基材混合制备了CO2传感器,研究发现随着蔬菜产生CO2浓度的增加,标签颜色发生明显变化。
表2 基于气体传感器在蔬菜新鲜度监测的研究
除了可以检测二氧化碳气体外,近几年也有采用检测硫化气体[19]来测试蔬菜新鲜度的方法。此外电子鼻也能够智能有效地监测生蔬的新鲜度[20],并且气体传感器在蔬菜中的农药残留病变[21]等方面也有了部分研究,切实保障了食品的安全性。
3.3 海鲜
海鲜类产品含有丰富的蛋白质,营养丰富,但在加工、流通和销售过程中极易发生腐败,因此,研究海鲜类产品新鲜度监测技术具有广阔的发展前景。海产品的品质变化可以通过在检测它产生的挥发性盐基氮(Tolal Volatile Basic Nitrogen,TVBN)的浓度来判定,随着TVBN的含量增加会改变环境的pH值,因此,pH指示剂在海产品的包装应用中具有巨大的潜力[22]。
3.3.1 虾类
基于天然色素的气体传感器在虾类新鲜度监测方面的应用研究见表3。Liu等[31]通过流延法制备了一种基于姜黄素、黑枸杞花青素和κ–卡拉胶基质的智能包装膜。在虾的储存过程中,随着TVBN值的升高,包装膜颜色由浅灰色先变蓝绿色再变黄。黄佳茵等[32]以改性聚乙烯醇(Polyvinyl Alcohol, PVA)和甲基纤维素(Methyl Cellulose, MC)作为成膜基材,甲基红和溴甲酚紫作为指示剂制备指示膜,并对南美白对虾进行新鲜度监测。结果表明在储存过程中指示膜由红褐色转为紫褐色最终变为黑色。
除了天然色素以外,Wang等[33]使用了具有高固态发射的香豆素氢衍生物来制作了新型比色传感器。目前,采用电子鼻技术监测鲜虾新鲜度的研究较少[34],部分学者将荧光物质通过共价键链接在纤维素分子链上来制备荧光传感器,研究表明该类传感器具有很高的检测精度,能够有效监测海鲜的腐败程度[35]。
3.3.2 鱼类
近几年来,具有成本低、响应快等优点的比色阵列传感器在食品安全领域方面具有巨大的应用潜力。张一冉[36]通过溶胶–凝胶的方法来改善气敏材料的防水特性并与滤纸结合制备成阵列传感器来监测鲈鱼的新鲜度,实验发现该传感器能够成功识别腐败的鲈鱼从而提高食品安全性。
由于花青素的来源广泛,易于提取且无毒无害的优点使其作为指示剂更容易被人们所接受。一些研究人员从玫瑰茄[37]、紫薯[38]等植物中提取花青素制备指示膜应用于鱼类包装,均起到了很好的指示作用。Zhai等[39]基于玫瑰茄花青素(Roselle Anthocyanins, RACNs)和淀粉/聚乙烯醇(Starch Polyvinyl Alcohol,SPVA)开发了用于实时监测鱼肉在冷藏温度下的新鲜度。随着鱼变质过程中会产生多种碱性挥发性胺,比色膜随时间呈现可见的颜色变化,见图1。目前,基于天然色素作为染料的鱼肉新鲜度的气体传感器也得到了广泛的应用,表4列出了相关的研究。
表3 基于天然色素的气体传感器在虾类新鲜度监测的研究
Tab.3 Research on the freshness monitoring of shrimp by gas sensors based on natural pigment
除了天然色素外,也有很多化学染料可用于制备新鲜指示剂。Aghaei等[49]使用静电纺丝技术制备含有茜素的玉米醇溶蛋白纳米纤维传感器来监测在4 ℃冷藏条件下虹鳟鱼片的品质变化,在储存5~9 d后传感器变为淡紫色,在10~12 d时传感器的颜色变为洋红色。基于化学染料的气体传感器在鱼类新鲜度监测的研究见表5。
目前人们通过对数据进行主成分分析(Principal Components Regression, PCA)和线性判别分析(Linear Discriminant Analysis, LDA),并结合挥发性盐基氮、菌落总数和三甲胺含量的变化进行分析,可以建立一种利用电子鼻技术判别鱼类新鲜度的方法。这类技术在鱼肉腐败检测中已有了不少的研究[56]。此外,Chung等[57]开发了一种使用高频射频识别(High Frequency Radio Frequency Identification, HF RFID)技术的近端无电池智能传感器标签,该系统可通过测量鱼的储存温度和H2S或NH3气体的浓度,能够有效监测鱼肉的腐败过程。
图1 比色膜在4 ℃下165 h内贮藏鲢鱼过程中的相应颜色变化
表4 基于天然色素的气体传感器在鱼类新鲜度监测的研究
Tab.4 Research on fish freshness monitoring by gas sensors based on natural pigment
表5 基于化学染料的气体传感器在鱼类新鲜度监测的研究
Tab.5 Research on fish freshness monitoring by gas sensors based on chemical dyes
3.4 肉类
肉类含有丰富的优质的蛋白质、脂肪、碳水化合物等营养物质,是人们日常能量摄入的主要来源之一。新鲜肉类在运输流通的环节中容易受到微生物的作用发生腐败变质。目前消费者更易接受在流通过程中与肉类产生的微生物代谢特征产物发生反应的气体传感器,该传感器能够准确地提供肉类产品的新鲜度信息[58]。
3.4.1 猪肉
对鲜猪肉新鲜度指标的判定,主要从感官、理化和微生物等几个方面的变化来评价猪肉的新鲜度[59]。在国内猪肉品质的监测中已有了很多学者以化学染料作为pH指示剂来制备新鲜度指示卡。胡云峰等[60]选用溴甲酚紫作为pH指示剂,并以棉质纤维纸为基材制备了智能指示纸,研究发现随着猪肉腐败过程的加剧,指示纸的颜色由浅黄色变成深紫色。此外,Chen等[61]开发了一种由琼脂(Agar, AG)和ZnTPPS4组成的猪肉新鲜度比色指示剂,室温(25 ℃)试验表明,随着TVBN浓度的升高,标签的颜色发生显著变化。Li等[62]开发了一种基于钌纳米颗粒的H2S纳米仿生传感器,该传感器对H2S具有特定的快速响应,能够在线性范围(0~1 800 nM)内现场监测猪肉的新鲜度。基于天然色素的气体传感器应用于猪肉新鲜度监测的研究见表6,将花青素作为天然pH指示剂并结合不同的基材可以制备出多种纯天然有效的猪肉新鲜度指示标签。
表6 基于天然色素的气体传感器在猪肉新鲜度监测的研究
Tab.6 Research on pork freshness monitoring by gas sensors based on natural pigments
电子鼻系统可以对猪肉进行挥发性盐基总氮检测,它可以快速准确地预测出猪肉在贮藏期间的品质变化,从而监测猪肉的新鲜度[69]。此外,Song等[70]首次使用废弃的葱根作为生物模板制造了SnO2微管,它在低能耗的情况下便能准确检测高湿大气下的H2S气体,因此该传感器在鲜猪肉检测方面极具应用价值。Shi等[71]基于二氧化钛聚苯胺/丝素纤维开发了一种新型低成本微型传感器,该传感器的输出响应值与猪肉中的TVBN水平显示出良好的相关性。
3.4.2 鸡肉
基于气体传感器在鸡肉新鲜度监测的研究见表7。早在1995年,Otto等[72]在鸡肉的包装材料上涂覆作为指示剂的硝酸铅乳液,指示剂会与鸡肉腐败产生的H2S发生反应,由棕色变为黑色。Liang等[73]使用沙蒿胶、红甘蓝花青素和羧甲基纤维素钠制备了一种智能指示膜,该薄膜随着NH3浓度的升高,颜色由黄绿色变为黄色。
表7 基于气体传感器在鸡肉新鲜度监测的研究
Tab.7 Research on chicken freshness monitoring based on gas sensors
Koskela等[76]利用柔性印制电路板的技术,以醋酸铜印刷纸为原料,在基板上制成了一种用于监测鸡肉新鲜度的气体传感器。实验证明,气体传感器对鸡肉腐败产生的H2S具有良好的响应。Lee等[77]开发了一种由内部聚醚嵌段酰胺、8种聚合物固定的pH染料变色层和外部聚对苯二甲酸乙二醇酯组成的比色阵列新鲜度指示器,为鸡肉新鲜度的监测提供一种低成本的方法。
3.4.3 牛肉
基于气体传感器在牛肉新鲜度监测的研究见表8。Mehdizadeh等[78]以石榴皮提取物、百里香精油和壳聚糖–淀粉制备了复合膜,并探究智能膜对4 ℃下储藏21 d牛肉货架期的影响,发现制得的复合薄膜具备更好的抗菌和力学性能,并能够延长牛肉的货架期。Ezati等[79]通过在纤维素–壳聚糖膜中掺入茜素制成了比色指示膜,当牛肉腐败时的总挥发性碱性氮(TVBN)达到临界值时,指示膜显示出从棕色到紫色的颜色变化。
翟晓东[81]利用荧光共振能量转移效应,制备了具有双发射特点的硅量子点–银纳米簇智能指示膜,在牛肉的腐败过程中,指示膜与硫化氢和甲硫醇发生反应,颜色由红色变成蓝色。此外电子鼻技术在监测牛肉新鲜度、分析炖煮牛肉的风味[82]、辨别掺假牛肉[83]等方面也有了部分研究。
3.4.4 羊肉
基于气体传感器在羊肉新鲜度监测的研究见表9。孙武亮[84]将染料通过静电纺丝技术制备了能够响应羊肉新鲜度的纳米纤维膜,发现其对冷鲜羊肉贮藏期间的品质有了很好的监测。Alizadeh-sani等[85]通过将伏牛花花色苷与甲基纤维素/壳聚糖纳米纤维复合膜混合制备了pH指示膜,当羊肉腐败时,薄膜由粉色变成无色。
表8 基于气体传感器在牛肉新鲜度监测的研究
Tab.8 Research on beef freshness monitoring based on gas sensors
表9 基于气体传感器在羊肉新鲜度监测的研究
Tab.9 Research on mutton freshness monitoring based on gas sensors
此外王綪等[90]、张宗国等[91]将电子鼻结合顶空气相色谱–离子迁移谱(Gas Chromatographyion Mobility Spectrometry,GC-IMS)技术对掺了鸭肉的假羊肉进行定性辨别,实验表明电子鼻能够准确地区分不同掺假比例的羊肉样品,说明该技术可为掺了鸭肉的假羊肉的检测提供良好的技术支撑。
3.5 其他食品
3.5.1 泡菜
泡菜这类发酵类产品中,CO2是微生物生长过程中的主要代谢产物,因此,CO2含量的上升标志着食品新鲜度的下降[92]。Hong等[93]制备了用于指示韩国泡菜的新鲜度的pH指示薄膜,研究发现在泡菜发酵的过程中,二氧化碳浓度逐渐升高,从而使包装内环境的酸性增强,薄膜颜色会发生明显变化,对泡菜的品质起到了监测的作用。Baek等[94]制备并表征了具有pH依赖性的聚醚嵌段酰胺膜型CO2指示器,其中包含了甲基红和溴百里酚蓝指示剂染料。在泡菜初始发酵阶段,指示器为蓝色,最佳发酵期间为黄色,发酵结束时为红色,实现了在储存期间对包装内泡菜的实时监控。
3.5.2 甜品
Nopwinyuwong等[95]通过在尼龙/线性低密度聚乙烯膜上流延并涂覆溴麝香草酚蓝和甲基红,制备用于实时监测甜点新鲜度的指示标签,随着甜品中二氧化碳浓度的不断增加,指示标签从绿色变为橙色(绿色表示新鲜、橙色表示变质),见图2。邢月等[96]开发了一种基于聚乳酸、溴百里香酚蓝和甲基红的新鲜度指示卡,用于监测馒头、面包等面食的新鲜度。当食品发生腐败时,指示卡由绿色变为黄色,最终变为橙红色。Pisuchpen[97]研制了一种基于甲基红和溴百里酚蓝混合染料的CO2指示标签,用来监测和指示泰国传统甜品Thong–EK的保质期。在储存过程中随着CO2含量的增加,指示标签由蓝色逐渐变成绿黄色、绿色,最后变成黄色。
图2 Nopwinyuwong开发的用于实时监测甜食新鲜度的指示标签
3.5.3 乳类食品
在乳类食品中,乳酸菌的发酵会产生CO2,因此乳类食品的新鲜度监测主要也是通过pH指示剂监测包装内的CO2的浓度来实现的。当食品腐败过程释放出CO2时,包装上的pH指示剂会随着包装内环境pH值的降低发生明显的颜色变化[98]。基于天然色素的气体传感器在牛奶新鲜度监测的研究见表10。
表10 基于天然色素的气体传感器在牛奶新鲜度监测的研究
Tab.10 Research on milk freshness monitoring by gas sensors based on natural pigments
王帅等[105]开发了一种基于无线射频识别技术的低功率pH传感器,该传感器可应用于对O2和CO2气体敏感的牛奶和肉类的包装中,以实时监测其新鲜度的变化。此外,具有高灵敏性和客观性的电子鼻技术在牛奶的风味检测[106]、安全性检测[107]和货架期预测[108]中均有了很多的研究应用,电子鼻技术在实现奶类制品的检测的同时保证了奶类制品的品质。
4 结语
气体传感器作为智能包装的分支能够在提高包装智能化和信息化的同时也满足了人们对于食品安全性的需求。目前,气体传感器在不同的食品上已有了广泛的应用,它的应用与发展为产品的质量和安全提供了可靠的保障,但是对智能包装中的活性与智能成分的毒理学的研究还不够全面,许多应用在气体传感器中的化学成分较为复杂,也存在很多人工合成的物质成分,它的安全性还不能得到保证,智能包装的高成本也阻碍了气体传感器的应用,因此,需要更多地去探究低成本的天然物质应用于气体传感器的可行性,以发挥气体传感器在改善食品安全性和可追溯性的巨大潜力,推动该项智能技术的发展,使智能包装技术具有更广阔的前景。
[1] 王志伟. 智能包装技术及应用[J]. 包装学报, 2018, 10(1): 27-33.
WANG Zhi-wei. Intelligent Packaging Technology and Its Application[J]. Packaging Journal, 2018, 10(1): 27-33.
[2] 李洪军, 王俊鹏, 贺稚非, 等. 智能包装在动物源性食品质量与安全监控中应用的研究进展[J]. 食品与发酵工业, 2019, 45(21): 272-279.
LI Hong-jun, WANG Jun-peng, HE Zhi-fei, et al. Research Progress on Intelligent Packaging in Quality and Safety Monitoring of Animal Derived Food Products[J]. Food and Fermentation Industries, 2019, 45(21): 272-279.
[3] 路玉凤, 闫娟, 茅健, 等. 基于传感器的果蔬品质检测研究[J]. 物流科技, 2021, 44(4): 38-41.
LU Yu-feng, YAN Juan, MAO Jian, et al. Research on Sensor-Based Quality Detection of Fruits and Vegetables[J]. Logistics Sci-Tech, 2021, 44(4): 38-41.
[4] 廖恺芯, 夏宇轩, 王军. 果蔬可视化新鲜度检测智能包装研究进展[J]. 湖南包装, 2021, 36(2): 35-37.
LIAO Kai-xin, XIA Yu-xuan, WANG Jun. Research Progress of Intelligent Packaging for Visual Freshness Detection of Fruits and Vegetables[J]. Hunan Packaging, 2021, 36(2): 35-37.
[5] 廖雨瑶, 陈丹青, 李伟, 等. 智能包装研究及应用进展[J]. 绿色包装, 2016(2): 39-46.
LIAO Yu-yao, CHEN Dan-qing, LI Wei, et al. Intelligent Packaging Research and Application Progress[J]. Green Packaging, 2016(2): 39-46.
[6] MAHAJAN P V, LUCA A, EDELENBOS M. Development of a Small and Flexible Sensor-Based Respirometer for Real-Time Determination of Respiration Rate, Respiratory Quotient and Low O2Limit of Fresh Produce[J]. Computers and Electronics in Agriculture, 2016, 121: 347-353.
[7] 许文才, 付亚波, 李东立, 等. 食品活性包装与智能标签的研究及应用进展[J]. 包装工程, 2015, 36(5): 1-10.
XU Wen-cai, FU Ya-bo, LI Dong-li, et al. Research and Application Progress of Food Active Packaging and Smart Labels[J]. Packaging Engineering, 2015, 36(5): 1-10.
[8] KIM Y H, YANG Y J, KIM J S, et al. Non-Destructive Monitoring of Apple Ripeness Using an Aldehyde Sensitive Colorimetric Sensor[J]. Food Chemistry, 2018, 267: 149-156.
[9] LIU Q, ZHAO N, ZHOU D, et al. Discrimination and Growth Tracking of Fungi Contamination in Peaches Using Electronic Nose[J]. Food Chemistry, 2018, 262: 226-234.
[10] 张雨辰. 基于挥发物无损测量技术的草莓新鲜度及机械伤快速检测研究[D]. 杭州: 浙江大学, 2020: 10-23.
ZHANG Yu-chen. Rapid Determination of Freshness and Mechanical Damage of Strawberry Based on Nondestructive Volatile Compound Detection Techniques[D]. Hangzhou: Zhejiang University, 2020: 10-23.
[11] 王顺. 水果成熟度检测的机器视觉和嗅觉可视化技术研究[D]. 镇江: 江苏大学, 2018: 23-40.
WANG Shun. Study on the Machine Vision and Olfactory Visualization for Fruit Maturity Detecting[D]. Zhenjiang: Jiangsu University, 2018: 23-40.
[12] 孙雪. 基于传感器阵列的鲜食葡萄冷链微环境气体检测方法研究[D]. 烟台: 山东工商学院, 2018: 6-15.
SUN Xue. Researches on Micro-Environment Gas Detection Method of Fresh Grape Cold Chain Based on Sensor Array[D]. Yantai: Shandong Institute of Business and Technology, 2018: 6-15.
[13] DENG Y, LIU K, LIU Y, et al. An Novel Acetylcholinesterase Biosensor Based on Nano-Porous Pseudo Carbon Paste Electrode Modified with Gold Nanoparticles for Detection of Methyl Parathion[J]. Journal of Nanoscience &Nanotechnology, 2016, 16(9): 9460-9467.
[14] 冯刚. 蓝莓智能包装新鲜度指示剂研究[D]. 哈尔滨: 东北林业大学, 2019: 16-55.
FENG Gang. Blueberry Intelligent Packaging Freshness Indicator Research[D]. Harbin: Northeast Forestry University, 2019: 16-55.
[15] 高琳, 易凯, 蔡锋, 等. 可视化智能包装在减少食物浪费中的应用[J]. 包装工程, 2020, 41(7): 125-133.
GAO Lin, YI Kai, CAI Feng, et al. Application of Visible Intelligent Packaging in Reducing Food Waste[J]. Packaging Engineering, 2020, 41(7): 125-133.
[16] LEE S, JUNG S, LEE S. Air-Activation of Printed Time-Temperature Integrator: A Sandwich Package Case Study[J]. Food Control, 2019, 101(1): 89-96.
[17] CHEN Hui-zhi, ZHANG Min, BHANDARI B, et al. Applicability of a Colorimetric Indicator Label for Monitoring Freshness of Fresh-Cut Green Bell Pepper[J]. Postharvest Biology and Technology, 2018, 140: 85-92.
[18] MENG Xiang-peng, LEE K, KANG T Y, et al. An Irreversible Ripeness Indicator to Monitor the CO2Concentration in the Headspace of Packaged Kimchi during Storage[J]. Food Science and Biotechnology, 2015, 24(1): 91-97.
[19] SACHDEV D, KUMAR V, MAHESHWARI P H, et al. Silver Based Nanomaterial, as a Selective Colorimetric Sensor for Visual Detection of Post Harvest Spoilage in Onion[J]. Sensors & Actuators: B Chemical, 2016, 228: 471-479.
[20] 王敏, 高凡, 张钧煜, 等. 基于智能电子鼻的冰箱冷藏食品新鲜度原位检测技术[J]. 传感技术学报, 2019, 32(2): 161-166.
WANG Min, GAO Fan, ZHANG Jun-yu, et al. In-Situ Refrigerator Food Freshness Detection Based on Smart Electronic Nose[J]. Chinese Journal of Sensors and Actuators, 2019, 32(2): 161-166.
[21] GARCÍA-TOJAL J, CUEVAS J V, ROJO M J, et al. Synthesis of Fluorogenic Arylureas and Amides and Their Interaction with Amines: A Competition between Turn-on Fluorescence and Organic Radicals on the Way to a Smart Label for Fish Freshness[J]. Molecules (Basel, Switzerland), 2021, 26(5): 1404.
[22] LIU Jing-rong, WANG Hua-lin, GUO Min, et al. Extract from Lycium Ruthenicum Murr. Incorporating Κ-Carrageenan Colorimetric Film with a Wide PH-Sensing Range for Food Freshness Monitoring[J]. Food Hydrocolloids, 2019, 94: 1-10.
[23] CHAYAVANICH K, THIRAPHIBUNDET P, IMYIM A. Biocompatible Film Sensors Containing Red Radish Extract for Meat Spoilage Observation[J]. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 2020, 226: 117601.
[24] ZHANG K, HUANG T S, YAN H, et al. Novel PH-Sensitive Films Based on Starch/Polyvinyl Alcohol and Food Anthocyanins as a Visual Indicator of Shrimp Deterioration[J]. International Journal of Biological Macromolecules, 2020, 145: 768-776.
[25] MERZ B, CAPELLO C, LEANDRO G C, et al. A Novel Colorimetric Indicator Film Based on Chitosan, Polyvinyl Alcohol and Anthocyanins from Jambolan (Syzygium Cumini) Fruit for Monitoring Shrimp Freshness[J]. International Journal of Biological Macromolecules, 2020, 153: 625-632.
[26] WU L T, TSAI I L, HO Y C, et al. Active and Intelligent Gellan Gum-Based Packaging Films for Controlling Anthocyanins Release and Monitoring Food Freshness[J]. Carbohydrate Polymers, 2021, 254: 117410.
[27] MOHAMMADALINEJHAD S, ALMASI H, MORADI M. Immobilization of Echium Amoenum Anthocyanins into Bacterial Cellulose Film: A Novel Colorimetric pH Indicator for Freshness/Spoilage Monitoring of Shrimp[J]. Food Control, 2020, 113: 107169.
[28] EZATI P, RHIM J W. PH-Responsive Pectin-Based Multifunctional Films Incorporated with Curcumin and Sulfur Nanoparticles[J]. Carbohydrate Polymers, 2020, 230: 115638.
[29] QIN Yan, LIU Yun-peng, ZHANG Xin, et al. Development of Active and Intelligent Packaging by Incorporating Betalains from Red Pitaya (Hylocereus Polyrhizus) Peel into Starch/Polyvinyl Alcohol Films[J]. Food Hydrocolloids, 2020, 100: 105410.
[30] JASIM Z, GIORGIO M, MATTEO B, et al. Porous pH natural indicators for acidic and basic vapor sensing[J]. Chemical Engineering Journal, 2021, 403(1): 126373.
[31] LIU Jing-rong, WANG Hua-lin, WANG Peng-fei, et al. Films Based on Κ-Carrageenan Incorporated with Curcumin for Freshness Monitoring[J]. Food Hydrocolloids, 2018, 83: 134-142.
[32] 黄佳茵, 周雅琪, 陈美玉, 等. 基于甲基纤维素改性聚乙烯醇指示膜的制备、表征及对南美白对虾的鲜度指示[J]. 食品科学, 2021, 42(3): 194-203.
HUANG Jia-yin, ZHOU Ya-qi, CHEN Mei-yu, et al. Preparation and Characterization of Indicator Films Based on Polyvinyl Alcohol Modified by Methyl Cellulose and PH-Sensitive Dyes for Shrimp Freshness Monitoring[J]. Food Science, 2021, 42(3): 194-203.
[33] WANG Chen-xia, YU Zian, ZHAO Xiao-wei, et al. Rapid Response to Amine Vapor Based on Fluorescent Light-Up Sensor for Real-Time and Visual Detection of Crawfish and Fish Freshness[J]. Dyes and Pigments, 2021, 189(1): 109228.
[34] 王晓龙, 马华威, 谭日健, 等. 电子鼻-主成分分析-线性回归拟合法检测江平虾冷藏过程中的新鲜度[J]. 肉类研究, 2017, 31(6): 40-44.
WANG Xiao-long, MA Hua-wei, TAN Ri-jian, et al. Rapid Detection of the Freshness of Jiangping Shrimp by Electronic Nose, Principal Component Analysis and Linear Regression Fitting Model[J]. Meat Research, 2017, 31(6): 40-44.
[35] QUAN Zong-yan, HE Hui, ZHOU Hang, et al. Designing an Intelligent Nanofiber Ratiometric Fluorescent Sensor Sensitive to Biogenic Amines for Detecting the Freshness of Shrimp and Pork[J]. Sensors and Actuators: B Chemical, 2021, 333: 129535.
[36] 张一冉. 基于气敏传感的鱼肉新鲜度指示卡纸的制备[D]. 无锡: 江南大学, 2020: 23-54.
ZHANG Yi-ran. Preparation of Paper Indicator Card of Fish Freshness Based on Gas Sensors[D]. Wuxi: Jiangnan University, 2020: 23-54.
[37] 卢立新, 贾代涛, 潘嘹. 基于改性玫瑰茄花青素的新鲜度指示膜研制及其在鲳鱼包装中的应用[J]. 包装工程, 2020, 41(3): 1-6.
LU Li-xin, JIA Dai-tao, PAN Liao. Development of Freshness Indicator Film Based on Modified Roselle Anthocyanin and Its Application in Catfish Packaging[J]. Packaging Engineering, 2020, 41(3): 1-6.
[38] JIANG G, HOU X, ZENG X, et al. Preparation and Characterization of Indicator Films from Carboxymethyl- Cellulose/Starch and Purple Sweet Potato (Ipomoea Batatas (L.) Lam) Anthocyanins for Monitoring Fish Freshness[J]. International Journal of Biological Macromolecules, 2020, 143: 359-372.
[39] ZHAI Xiao-dong, SHI Ji-yong, ZOU Xiao-bo, et al. Novel Colorimetric Films Based on Starch/Polyvinyl Alcohol Incorporated with Roselle Anthocyanins for Fish Freshness Monitoring[J]. Food Hydrocolloids, 2017, 69: 308-317.
[40] KANATT S R. Development of Active/Intelligent Food Packaging Film Containing Amaranthus Leaf Extract for Shelf Life Extension of Chicken/Fish during Chilled Storage[J]. Food Packaging and Shelf Life, 2020, 24: 100506.
[41] SANI M A, TAVASSOLI M, HAMISHEHKAR H, et al. Carbohydrate-Based Films Containing PH-Sensitive Red Barberry Anthocyanins: Application as Biodegradable Smart Food Packaging Materials[J]. Carbohydrate Polymers, 2021, 255: 117488.
[42] CHEN Hui-zhi, ZHANG Min, BHANDARI B, et al. Novel PH-Sensitive Films Containing Curcumin and Anthocyanins to Monitor Fish Freshness[J]. Food Hydrocolloids, 2020, 100: 105438.
[43] LI Y, WU K, WANG B, et al. Colorimetric Indicator Based on Purple Tomato Anthocyanins and Chitosan for Application in Intelligent Packaging[J]. International Journal of Biological Macromolecules, 2021, 174: 370-376.
[44] ZHAI Xiao-dong, ZOU Xiao-bo, SHI Ji-yong, et al. Amine-Responsive Bilayer Films with Improved Illumination Stability and Electrochemical Writing Property for Visual Monitoring of Meat Spoilage[J]. Sensors and Actuators: B Chemical, 2020, 302: 127130.
[45] WANG Hong-xia, LI Bing, DING Fu-yuan, et al. Improvement of Properties of Smart Ink via Chitin Nanofiber and Application as Freshness Indicator[J]. Progress in Organic Coatings, 2020, 149: 105921.
[46] EZATI P, BANG Y J, RHIM J W. Preparation of a Shikonin-Based PH-Sensitive Color Indicator for Monitoring the Freshness of Fish and Pork[J]. Food Chemistry, 2021, 337: 127995.
[47] YAN Jia-tong, CUI Rui, QIN Yu-yue, et al. A pH Indicator Film Based on Chitosan and Butterfly Pudding Extract for Monitoring Fish Freshness[J]. International Journal of Biological Macromolecules, 2021, 177: 328-336.
[48] GE Yu-jun, LI Yuan, BAI Yan, et al. Intelligent Gelatin/Oxidized Chitin Nanocrystals Nanocomposite Films Containing Black Rice Bran Anthocyanins for Fish Freshness Monitorings[J]. International Journal of Biological Macromolecules, 2020, 155: 1296-1306.
[49] AGHAEI Z, GHORANI B, EMADZADEH B, et al. Protein-Based Halochromic Electrospun Nanosensor for Monitoring Trout Fish Freshness[J]. Food Control, 2020, 111: 107065.
[50] 王佳燕, 刘秀英, 李学鹏, 等. 双重指示标签对鲤鱼新鲜度的实时监测[J]. 食品工业科技, 2020, 41(12): 197-200.
WANG Jia-yan, LIU Xiu-ying, LI Xue-peng, et al. On-Package Dual Indicating Label for Real-Time Monitoring the Freshness of Cyprinus Carpio[J]. Science and Technology of Food Industry, 2020, 41(12): 197-200.
[51] EZATI P, TAJIK H, MORADI M, et al. Intelligent PH-Sensitive Indicator Based on Starch-Cellulose and Alizarin Dye to Track Freshness of Rainbow Trout Fillet[J]. International Journal of Biological Macromolecules, 2019, 132: 157-165.
[52] LIU Xiu-ying, WANG Yu, ZHU Li-jie, et al. Dual-Mode Smart Packaging Based on Tetraphenylethylene-
Functionalized Polyaniline Sensing Label for Monitoring the Freshness of Fish[J]. Sensors and Actuators: B Chemical, 2020, 323: 128694.
[53] LIU X, CHEN K, WANG J, et al. An On-Package Colorimetric Sensing Label Based on a Sol-Gel Matrix for Fish Freshness Monitoring[J]. Food Chem, 2020, 307: 125580.
[54] DOMÍNGUEZ-ARAGÓN A, OLMEDO-MARTÍNEZ J A, ZARAGOZA-CONTRERAS E A. Colorimetric Sensor Based on a Poly(Ortho -Phenylenediamine- Co -Aniline) Copolymer for the Monitoring of Tilapia (Orechromis Niloticus) Freshness[J]. Sensors & Actuators: B Chemical, 2018, 259: 170-176.
[55] WELLS N, YUSUFU D, MILLS A. Colourimetric Plastic Film Indicator for the Detection of the Volatile Basic Nitrogen Compounds Associated with Fish Spoilage[J]. Talanta, 2019, 194: 830-836.
[56] LUO Qian, ZHANG Ya-qin, ZHOU Yan, et al. Portable Functional Hydrogels Based on Silver Metallization for Visual Monitoring of Fish Freshness[J]. Food Control, 2021, 123: 107824.
[57] CHUNG W Y, LE G T, TRAN T V, et al. Novel Proximal Fish Freshness Monitoring Using Batteryless Smart Sensor Tag[J]. Sensors & Actuators: B Chemical, 2017, 248: 910-916.
[58] 王芳, 陈满儒, 赵郁聪, 等. 冷鲜肉新鲜度指示标签的研究及应用进展[J]. 包装工程, 2020, 41(5): 83-90.
WANG Fang, CHEN Man-ru, ZHAO Yu-cong, et al. Progress in Study and Application of Chilled Meat Freshness Indicator[J]. Packaging Engineering, 2020, 41(5): 83-90.
[59] 王树庆, 范维江, 郭风军. 冷鲜猪肉新鲜度检测的特征性化合物[J]. 食品工业, 2015, 36(11): 40-42.
WANG Shu-qing, FAN Wei-jiang, GUO Feng-jun. The Characteristic Compounds of Freshness of Chilled Pork[J]. The Food Industry, 2015, 36(11): 40-42.
[60] 胡云峰, 王雅迪, 唐裕轩. pH敏感型指示纸的制备及在猪肉品质检测中的应用[J]. 包装工程, 2019, 40(1): 49-56.
HU Yun-feng, WANG Ya-di, TANG Yu-xuan. Preparation of pH Sensitive Indicator Paper and Its Application in Pork Quality Detection[J]. Packaging Engineering, 2019, 40(1): 49-56.
[61] CHEN L, CHEN L, HU X, et al. A Novel Colorimetric Label Based on ZnTPPS4/AG Indicating Pork Freshness[J]. Journal of Porphyrins and Phthalocyanines, 2021, 25(3): 181-187.
[62] LI H, GENG W, SUN X, et al. Fabricating a Nano-Bionic Sensor for Rapid Detection of H2S during Pork Spoilage Using Ru NPs Modulated Catalytic Hydrogenation Conversion[J]. Meat Science, 2021, 177: 108507.
[63] 王芳. 基于花青素的猪肉新鲜度智能指示包装膜的制备与研究[D]. 西安: 陕西科技大学, 2020: 12-45.
WANG Fang. Preparation and Exploration of Intelligent Indication Packaging Film for Anthocyanin-Based Pork Freshness[D]. Xi'an: Shaanxi University of Science & Technology, 2020: 12-45.
[64] LIU D, CUI Z, SHANG M, et al. A Colorimetric Film Based on Polyvinyl Alcohol/Sodium Carboxymethyl Cellulose Incorporated with Red Cabbage Anthocyanin for Monitoring Pork Freshness[J]. Food Packaging and Shelf Life, 2021, 28(4): 100641.
[65] QIN Y, LIU Y, YONG H, et al. Preparation and Characterization of Active and Intelligent Packaging Films Based on Cassava Starch and Anthocyanins from Lycium Ruthenicum Murr[J]. Int J Biol Macromol, 2019, 134: 80-90.
[66] CHI Wen-rui, CAO Le-le, SUN Guo-hou, et al. Developing a Highly pH-Sensitive ĸ-Carrageenan-Based Intelligent Film Incorporating Grape Skin Powder Via a Cleaner Process[J]. Journal of Cleaner Production, 2020, 244(1): 118862.
[67] ZHANG C, SUN G, LI J, et al. A Green Strategy for Maintaining Intelligent Response and Improving Antioxidant Properties of Κ-Carrageenan-Based Film via Cork Bark Extractive Addition[J]. Food Hydrocolloids, 2021, 113(9): 106470.
[68] 曹乐乐. 具有可视pH感应功能决明子胶基膜的制备与性能研究[D]. 哈尔滨: 东北林业大学, 2020: 10-37.
CAO Le-le. Study on the Preparation and Properties of Cassia Gum Based Films with Visual-pH Sensing Function[D]. Harbin: Northeast Forestry University, 2020: 10-37.
[69] 蒙万隆, 郑丽敏, 杨璐, 等. 电子鼻技术对猪肉挥发性盐基氮的预测研究[J]. 食品工业科技, 2018, 39(7): 243-248.
MENG Wan-long, ZHENG Li-min, YANG Lu, et al. Research on Prediction of the Total Volatile Basic Nitrogen in Pork by Electronic Nose Technique[J]. Science and Technology of Food Industry, 2018, 39(7): 243-248.
[70] SONG Bao-yu, ZHANG Meng, TENG Yang, et al. Highly Selective PPB-Level H2S Sensor for Spendable Detection of Exhaled Biomarker and Pork Freshness at Low Temperature: Mesoporous SnO2Hierarchical Architectures Derived from Waste Scallion Root[J]. Sensors and Actuators: B. Chemical, 2020, 307(7): 127662.
[71] SHI Y, LI Z, SHI J, et al. Titanium Dioxide-Polyaniline/Silk Fibroin Microfiber Sensor for Pork Freshness Evaluation[J]. Sensors & Actuators: B. Chemical, 2018, 260(1): 465-474.
[72] OTTO S W, HELMUT L. Method for Quality Controlof Packaged Organic Substances and Packaging Material for Use with This Method: US, 5407829[P]. 1995-04-18.
[73] LIANG T, SUN G, CAO L, et al. Film Based on Artemisia Sphaerocephala Krasch. Gum and Red Cabbage Anthocyanins Anchored by Carboxymethyl Cellulose Sodium Added as a Host Complex[J]. Food Hydrocolloids, 2019, 87(2): 858-868.
[74] ZHAI Xiao-dong, LI Zhi-hua, SHI Ji-yong, et al. A Colorimetric Hydrogen Sulfide Sensor Based on Gellan Gum-Silver Nanoparticles Bionanocomposite for Monitoring of Meat Spoilage in Intelligent Packaging[J]. Food Chem, 2019, 290: 135-143.
[75] KIM D, LEE S, LEE K, et al. Development of a pH Indicator Composed of High Moisture-Absorbing Materials for Real-Time Monitoring of Chicken Breast Freshness[J]. Food Science and Biotechnology, 2017, 26(1): 37-42.
[76] KOSKELA J, SARFRAZ J, IHALAINEN P, et al. Monitoring the Quality of Raw Poultry by Detecting Hydrogen Sulfide with Printed Sensors[J]. Sensors and Actuators B: Chemical, 2015, 218(6): 89-96.
[77] LEE K, PARK H, BAEK S, et al. Colorimetric Array Freshness Indicator and Digital Color Processing for Monitoring the Freshness of Packaged Chicken Breast[J]. Food Packaging and Shelf Life, 2019, 22(7): 100408.
[78] MEHDIZADEH T, TAJIK H, LANGROODI A M, et al. Chitosan-Starch Film Containing Pomegranate Peel Extract and Thymus Kotschyanus Essential Oil can Prolong the Shelf Life of Beef[J]. Meat Science, 2020, 163: 108073.
[79] EZATI P, TAJIK H, MORADI M. Fabrication and Characterization of Alizarin Colorimetric Indicator Based on Cellulose-Chitosan to Monitor the Freshness of Minced Beef[J]. Sensors & Actuators: B Chemical, 2019, 285: 519-528.
[80] KUSWANDI B, NURFAWAIDI A. On-Package Dual Sensors Label Based on pH Indicators for Real-Time Monitoring of Beef Freshness[J]. Food Control, 2017, 82: 91-100.
[81] 翟晓东. 基于比色型智能指示标签的典型冷鲜肉新鲜度实时监测研究[D]. 镇江: 江苏大学, 2020: 13-42.
ZHAI Xiao-dong. Real-Time Monitoring of Typical Chilled Meat and Freshness Based on Colorimetric Intelligent Indicator Label[D]. Zhenjiang: Jiangsu University, 2020: 13-42.
[82] 王伟静, 张松山, 谢鹏, 等. 电子鼻和电子舌快速检测炖制下牛肉的品质[J]. 食品研究与开发, 2017, 38(17): 124-128.
WANG Wei-jing, ZHANG Song-shan, XIE Peng, et al. Quick Detection of the Quality of Wtewed Beef Using E-Nose and E-Tongue[J]. Food Research and Development, 2017, 38(17): 124-128.
[83] 张申. 电子鼻基于数据处理方法对掺假牛肉检测研究[D]. 咸阳: 西北农林科技大学, 2016: 24-53.
ZHANG Shen. Rapid Identification Adulteration Beef by Electronic Nose Based on Data Processing Methods[D]. Xianyang: Northwest Sci-Tech University of Agriculture and Forestry, 2016: 24-53.
[84] 孙武亮. 花青素基纳米纤维标签的制备及可视化监测羊肉新鲜度[D]. 呼和浩特: 内蒙古农业大学, 2020: 12-42.
SUN Wu-liang. Preparation of Anthocyanin-Based Nanofiber Tags and Usage in Visualized Testing in Freshness of Lamb[D]. Hohhot: Inner Mongolia Agricultural University, 2020: 12-42.
[85] ALIZADEH-SANI M, TAVASSOLI M, MOHAMMADIAN E, et al. PH-Responsive Color Indicator Films Based on Methylcellulose/Chitosan Nanofiber and Barberry Anthocyanins for Real-Time Monitoring of Meat Freshness[J]. International Journal of Biological Macromolecules, 2021, 166: 741-750.
[86] PRIETTO L, MIRAPALHETE T C, PINTO V Z, et al. PH-Sensitive Films Containing Anthocyanins Extracted from Black Bean Seed Coat and Red Cabbage[J]. LWT-Food Science and Technology, 2017, 80: 492-500.
[87] KUREK M, GAROFULIĆ I E, BAKIĆ M T, et al. Development and Evaluation of a Novel Antioxidant and pH Indicator Film Based on Chitosan and Food Waste Sources of Antioxidants[J]. Food Hydrocolloids, 2018, 84: 238-246.
[88] 郭素娟, 卢士玲, 李开雄, 等. 基于TTI的冷鲜羊肉新鲜度研究[J]. 食品工业科技, 2014, 35(13): 112-116.
GUO Su-juan, LU Shi-ling, LI Kai-xiong, et al. Study of Freshness of Chilled Mutton Based on of the Temperature-Time Indication System[J]. Science and Technology of Food Industry, 2014, 35(13): 112-116.
[89] 刘静静, 李志刚, 张旭, 等. 基于聚类–RBF神经网络的家庭冷藏羊肉新鲜度的评价方法[J]. 石河子大学学报(自然科学版), 2020, 38(4): 403-408.
LIU Jing-jing, LI Zhi-gang, ZHANG Xu, et al. Freshness Evaluation of Home Refrigerated Lamb Based on Clustering-Rbf Neural Network[J]. Journal of Shihezi University (Natural Science), 2020, 38(4): 403-408.
[90] 王綪, 李璐, 王佳奕, 等. 电子鼻结合气相色谱-质谱法对宁夏小尾寒羊肉中鸭肉掺假的快速检测[J]. 食品科学, 2017, 38(20): 222-228.
WANG Qian, LI Lu, WANG Jia-yi, et al. Rapid Detection of Ningxia Small-Tailed Han Sheep Meat Adulterated with Duck by Electronic Nose Combined with GC-MS[J]. Food Science, 2017, 38(20): 222-228.
[91] 张宗国, 陈东杰, 孟一, 等. 基于顶空气相色谱-离子迁移谱与电子鼻技术快速检测宁夏滩羊肉中掺假鸭肉[J]. 肉类研究, 2020, 34(12): 43-48.
ZHANG Zong-guo, CHEN Dong-jie, MENG Yi, et al. Rapid Detection of Ningxia Tan Sheep Meat Adulteration with Duck Meat Using Gas Chromatography-Ion Mobility Spectrometry and Electronic Nose[J]. Meat Research, 2020, 34(12): 43-48.
[92] 李洋, 冯刚, 王磊明, 等. 新鲜度指示型智能包装的研究进展[J]. 现代食品科技, 2018, 34(4): 287-293.
LI Yang, FENG Gang, WANG Lei-ming, et al. Review: Freshness Indicator Intelligent Packaging[J]. Modern Food Science and Technology, 2018, 34(4): 287-293.
[93] HONG Si, PARK W. Use of Color Indicators as an Active Packaging System for Evaluating Kimchi Fermentation[J]. Journal of Food Engineering, 2000, 46(3): 67-72.
[94] BAEK S, MARUTHUPANDY M, LEE K, et al. Freshness Indicator for Monitoring Changes in Quality of Packaged Kimchi during Storage[J]. Food Packaging and Shelf Life, 2020, 25: 100528.
[95] NOPWINYUWONG A, TREVANICH S, SUPPAKUL P. Development of a Novel Colorimetric Indicator Label for Monitoring Freshness of Intermediate-Moisture Dessert Spoilage[J]. Talanta, 2010, 81(3):1126-1132.
[96] 邢月. 以CO2为特征气体的新鲜度比色指示卡的研究[D]. 天津: 天津科技大学, 2015: 16-34.
XING Yue. Study on Freshness Colorimetric Indicates Cards of Characterized Gas by CO2[D]. Tianjin: Tianjin University of Science & Technology, 2015: 16-34.
[97] PISUCHPEN S. Development of Color Indicator Tag for Monitoring Freshness of intermediate-Moisture Dessert[J]. Italian Journal of Food Science, 2012, 24(4): 178-182.
[98] 李田田, 李洋, 王磊明. 智能包装指示器在食品工业中的研究进展[J]. 食品研究与开发, 2019, 40(15): 190-199.
LI Tian-tian, LI Yang, WANG Lei-ming. Research Progress of Intelligent Packaging Indicators in Food Industry[J]. Food Research and Development, 2019, 40(15): 190-199.
[99] YONG Hui-min, WANG Xing-chi, ZHANG Xin, et al. Effects of Anthocyanin-Rich Purple and Black Eggplant Extracts on the Physical, Antioxidant and PH-Sensitive Properties of Chitosan Film[J]. Food Hydrocolloids, 2019, 94: 93-104.
[100]MA Qian-yun, WANG Li-juan. Preparation of a Visual PH-Sensing Film Based on Tara Gum Incorporating Cellulose and Extracts from Grape Skins[J]. Sensors & Actuators: B Chemical, 2016, 235: 401-407.
[101]WESTON M, PHAN M A T, ARCOT J, et al. Anthocyanin-Based Sensors Derived from Food Waste as an Active Use-by Date Indicator for Milk[J]. Food Chemistry, 2020, 326: 127017.
[102]LUCHESE C L, GARRIDO T, SPADA J C, et al. Development and Characterization of Cassava Starch Films Incorporated with Blueberry Pomace[J]. International Journal of Biological Macromolecules, 2018, 106: 834-839.
[103]EBRAHIMI TIRTASHI F, MORADI M, et al. Cellulose/Chitosan PH-Responsive Indicator Incorporated with Carrot Anthocyanins for Intelligent Food Packaging[J]. International Journal of Biological Macromolecules, 2019, 136: 920-926.
[104]PAKEEZA M, MUHAMMAD B K, ZAIB J, et al. PVA/Starch/Propolis/Anthocyanins Rosemary Extract Composite Films as Active and Intelligent Food Packaging Materials[J]. Journal of Food Safety, 2019, 40(1): 12725.
[105]王帅, 吕玉祥. 面向食品质量检测的低功耗射频pH传感器设计[J]. 传感技术学报, 2017, 30(6): 956-961.
WANG Shuai, LYU Yu-xiang. Design of a Low-Power Radio Frequency pH Sensor for Food Quality Monitoring[J]. Chinese Journal of Sensors and Actuators, 2017, 30(6): 956-961.
[106]宋慧敏, 芦晶, 吕加平, 等. 基于电子鼻和电子舌对牛奶加热程度及风味变化的评价[J]. 中国乳品工业, 2016, 44(2): 12-15.
SONG Hui-min, LU Jing, LYU Jia-ping, et al. Evaluation of the Degree of Heating Milk and Flavor Changes Using Electronic Nose and Electronic Tongue[J]. China Dairy Industry, 2016, 44(2): 12-15.
[107]马利杰, 刘占东, 杨春杰, 等. 电子鼻对原料羊乳中掺假过期复原乳的检测[J]. 乳业科学与技术, 2014, 37(5): 17-20.
MA Li-jie, LIU Zhan-dong, YANG Chun-jie, et al. Rapid Detection of Raw Goat Milk Adulterated with Expired Reconstituted Milk Using Electronic Nose[J]. Journal of Dairy Science and Technology, 2014, 37(5): 17-20.
[108]张虹艳, 丁武. 电子鼻对不同温度下生鲜羊奶贮藏时间的判定[J]. 食品科学, 2011, 32(16): 257-260.
ZHANG Hong-yan, DING Wu. Discrimination of Storage Time and Volatile Compositions of Raw Goat Milk by Electronic Nose[J]. Food Science, 2011, 32(16): 257-260.
Research Progress of Gas Sensors in Smart Food Packaging
HUANG Ying-gang, WANG Gui-ying
(a. College of Engineering and Technology b. Light Industry Technology and Engineering Laboratory,Northeast Forestry University, Harbin 150000, China)
The work aims to sysmetaically introduce the type and application status of gas sensors, so as to provide experience and reference for the application of gas sensors in different smart food packaging. The application research progress of gas sensors in smart packaging of fruits, vegetables, seafood, meat, etc. was reviewed and the limitations of the application of gas sensors in smart food packaging and the future development trends were analyzed. The current consumers’ increasing requirements for food safety and freshness determined the wide application of gas sensors and made them continue to develop in a safe, green, and pollution-free direction. The application of gas sensors in improving food safety and traceability has great potential and broad development prospects. The gas sensors can track and monitor the freshness of food during the shelf life, ensure food safety, and effectively promote the development of food packaging technology.
food packaging; gas sensors; fresh-keeping packaging; real-time monitoring
TS206
A
1001-3563(2022)15-0137-13
10.19554/j.cnki.1001-3563.2022.15.016
2021–12–29
国家自然科学基金面上项目(32071685);黑龙江省自然科学基金资助项目(LH2019E001);黑龙江省自然科学基金联合引导项目(LH2019C002)
黄迎港(1997—),女,东北林业大学硕士生,主攻智能包装材料成型技术。
王桂英(1968—),女,博士,东北林业大学副教授,主要研究方向为轻工技术装备及自动化、智能包装技术。
责任编辑:曾钰婵