APP下载

近红外技术在南极磷虾油关键品质指标快速检测中的应用研究

2022-08-03苗钧魁张雅婷金永霈刘小芳冷凯良杨增光蒋永毅

食品工业科技 2022年14期
关键词:酸价青素磷虾

苗钧魁,张雅婷,金永霈,刘小芳,于 源,冷凯良,2,*,杨增光,蒋永毅

(1.中国水产科学研究院黄海水产研究所,农业部海洋渔业可持续发展重点实验室,青岛市极地渔业资源开发工程研究中心,山东青岛 266071;2.青岛海洋科学与技术试点国家实验室,山东青岛 266200;3.青岛菲优特检测有限公司,山东青岛 266111)

随着全球渔业资源的衰退,南极磷虾资源作为可持续的渔业替代资源,受到越来越多的关注[1]。南极磷虾生物量可达6.5~10 亿吨[2],南极海洋生物资源养护委员会(CCAMLR)制定的谨慎性捕捞限额为561 万吨,而目前实际捕捞量约为20~30 万吨,因此,南极磷虾资源具有巨大的开发潜力[3]。南极磷虾富含优质的蛋白、脂肪、虾青素、矿物质等成分,是优质的食品和保健品原料。以南极磷虾为原料开发的磷虾油产品,因其具有良好的营养功效而备受关注[4-5]。

南极磷虾油富含磷脂、EPA、DHA 等多ω-3 多不饱和脂肪酸、虾青素等多种功效成分[6],相较于鱼油,其中ω-3 多不饱和脂肪酸与磷脂形成的磷脂复合物具有更好的生物利用度和生物活性[7],并且可以更好的促进虾青素等脂溶性活性物质的吸收[8]。在营养健康方面,南极磷虾油具有心血管预防[9-10]、抗炎[11-12]、调节脂质/糖代谢[13-14]、保护神经功能[15-16]等多种功效。2008 年磷虾油获得美国食品和药物管理局(Food and Drug Administration,FDA)公认安全(Generally Recognized as Safe,GRAS)认证,2009 年欧盟也批准其作为新资源食品[6],2013 年被中国卫计委(现为国家卫生健康委员会)批准为新食品原料,2019 年4 种磷虾油产品已获得保健食品批号。磷虾油未来极有可能获得与鱼油同等的认可程度,具有广阔的市场前景[17]。

随着市场热度的不断提升,各类磷虾油产品层出不穷,品质差异很大,对于磷虾油产品品质指标的检测需求也相应提升。行业标准SC/T 3506-2020《磷虾油》中对于虾油产品品质鉴定的主要指标包括:EPA、DHA、磷脂、虾青素、酸价等,以上检测方法均需要专业检测人员和设备投入,检测周期长,检测成本高,极大的增加了生产企业的成本,因此亟需一种低成本的快速检测方法实现南极磷虾油多指标检测,以满足产业快速发展的需求。

近红外光谱检测方法通过化学计量学建立近红外吸收光谱与待测成分含量间的关系模型,能够实现对于目标成分的快速准确测定[18],现已发展成为多指标快速检测的主要方法,在食品[19]、医药[20]、农业[21]等众多行业中得到广泛应用。在油脂产品定性和定量检测方面,近红外检测方法也具有很好的应用前景[22]。张瑜等[23]利用可见-近红外检测方法对鱼油掺假进行定量分析,通过建立偏最小二乘回归(Partial least squares regression,PLSR)模型实现对对鱼油掺假物含量的检测;王楠等[24]建立了鱼油中EPA 和DHA 含量的近红外快速检测方法,其中两种成分的预测模型RC均达到0.94 以上。但近红外检测技术在磷虾油检测方面的应用研究尚未见报道。本文收集了10 种不同规格的南极磷虾油样品,依据SC/T 3506-2020《磷虾油》测定鱼油中磷脂、EPA、DHA、虾青素的含量及酸价,采用偏最小二乘法(Partial least squares,PLS)建立近红外检测模型,通过多种处理方法的比较,择优确定最优模型条件,从而实现对南极磷虾油样品中磷脂、EPA、DHA、虾青素含量和酸价等多指标的快速准确测定。

1 材料与方法

1.1 材料与仪器

南极磷虾油 青岛南极维康生物科技有限公司提供,采样于2018 年10 月~2019 年11 月,分别为:脱磷脂虾油样品1 份,标为1 号。未经精制处理的毛油样品2 份,标为2、3 号。搜集到的代表性南极磷虾油成品样品7 份,分别标为4~10 号。

Antaris Ⅱ傅里叶变换近红外光谱仪,配备液体透射检测模块、RESULT M 样品光谱采集的集成软件以及TQ analyst 数据处理软件 美国赛默飞世尔科技公司。

1.2 实验方法

1.2.1 样品前处理 为提升近红外检测方法的准确度,需扩大待测样品的数量。不同南极磷虾油样品经充分混合后可形成相同均一性的新样品,因此将原始样品按照等比例两两混匀,得到总计50 个磷虾油样品,使各指标含量梯度分布更加均匀。混合后样品于-20 ℃冰箱中密封储存以待后续实验使用。

将于-20 ℃中取出的凝固态南极磷虾油样品置于40 ℃水浴中加热至其成为可流动的液体,将融化后样品分为两部分,分别进行NIR 光谱采集和5 种成分含量的化学值测定。

1.2.2 近红外光谱采集 液体样品采用专用的液体透射检测模块采集光谱图像。参照王楠等利用近红外光谱技术快速测定鱼油中EPA 和DHA 含量的方法对南极磷虾油进行检测[24]。研究仪器开始扫描工作前,开机预热30 min。随后将南极磷虾油样品倒入比色皿中,高度约为比色皿高度的四分之三,要求样品均匀,且无明显气泡存在干扰实验结果,比色皿用擦镜纸擦拭干净确保无样品残留干扰。光谱扫描波数为10000~4000 cm-1,样品扫描次数为4次得平均光谱。共50 个样品,扫描完成后得到的各样品平均光谱数据50 个,用于近红外检测模型的建立及验证。

1.2.3 化学真实值测定 样品光谱采集完成后,依据水产行业标准SC/T 3506-2020《磷虾油》对10 个初始南极磷虾油样品的磷脂、DHA、EPA、虾青素和酸价进行测定,其中磷脂采用GB/T 5537-2008 第一法钼蓝比色法测定;EPA 和DHA 采用GB 5009.168-2016 第二法中水解-提取法测定;虾青素采用SC/T 3053-2019 高效液相色谱法测定;酸价采用GB 5009.229-2016 第二法测定。每个样品平行测试3次,测量结果取算数平均值。

1.2.4 模型建立和验证 建模前,先借助软件TQ Analyst,完成所有样品的原始NIR 图谱数据处理工作。采用PLS 作为建模的化学计量法,分别借助导数与平滑结合的6 种光谱处理技术处理所采集的光谱,确定出最佳处理手段,其中最佳光谱范围由软件TQ analyst 自动推荐。

检验模型的评价参数包括建模相关系数(Correlation coefficient in calibration,RC)、校正残差均方根(Root mean square error of calibration,RMSEC)、误差交互验证相关系数(Correlation coefficient in cross validation,RCV)、交互验证残差均方根(Root mean square error of cross validation,RMSECV)、交叉验证用样品真实值标准差(SD)与RMSECV 的比值(The ratio of the RMSECV to standard deviation of reference data in the validation,RPDCV)、外部验证相关系数(Correlation coefficient in external validation,REV)、外部验证残差均方根(Root mean square error of external prediction,RMSEP)以及外部验证用样品真实值的标准差(SD)与RMSEP 的比值(The ratio of the RMSEP to standard deviation of reference data in the prediction, RPDEV)[25]。

内部验证采取交叉验证模型来进行,校正样品中的每个样品依次作为临时验证样品,除被选中的临时验证样品外的其余样品作为建模样品,构成模型来对临时验证样品进行预测,依次循环完所有样品以得到交叉预测值。在50 个样品中随机抽取10 个样品作为建模的外部验证集,40 个样品作为建模集,并建模过程中会对造成预测模型明显偏差的点位进行剔除。本实验中50 个样品的建模集合验证集的样本数见表1。

2 结果与分析

2.1 南极磷虾油5 种成分含量指标描述性统计

表1为5 种不同成分建模集和验证集的样本数、平均值与标准偏差以及范围。表中数据显示各种成分含量差值较大,建模集中磷脂、EPA、DHA、酸价和虾青素的最大值与最小值的比值分别为3.70、2.77、3.00、20.30 和8.80,验证集中磷脂、EPA、DHA、酸价和虾青素的最大值与最小值的比值分别为3.37、1.64、2.42、4.95 和3.61,符合近红外光谱建模条件中样品含量分布范围广的要求。

表1 磷虾油样品建模集和验证集样品成分含量Table 1 Component content of krill oil samples in calibration set and validation set

2.2 光谱数据

南极磷虾油样品的NIR 原始光谱如图1所示。图谱显示了10000~4000 cm-1范围内所有样品的扫描全光谱。如图所示,所有样品的光谱具有基本相同的特征,表明磷虾油近红外吸收特性在扫描的光谱范围内基本相同。

图1 南极磷虾油样品近红外全光谱Fig.1 NIR spectrum of Antarctic krill oil samples

南极磷虾油作为脂肪类物质在8621 cm-1脂肪烃羰基C-O 伸缩振动的四级倍频、8258 cm-1脂肪烃亚甲基的C-H 伸缩振动的二级倍频、5735 cm-1甲基的C-H 的伸缩振动和5853cm-1脂肪烃端甲基的C-H 振动处具有显著吸收峰;4500 cm-1为O-H的伸缩振动,体现为水的特征峰。

2.3 模型的建立与优化

近红外光谱测量过程中,经常出现光谱偏移或飘移,导数处理可有效地消除基线和其他背景的干扰,分辨重叠峰,提高分辨率和灵敏度,常用的处理方式有光谱的一阶导数处理(first derivation,FD)和二阶导数处理(second derivation,SD)。经一阶导数、二阶导数处理后的近红外光谱见图2 和图3。磷虾油的近红外光谱经导数处理后8000 cm-1范围内的特征吸收峰被消除,特征吸收峰集中在4000~7000 cm-1范围内,缩小了有效光谱范围,提高了模型的计算速度和准确性。

图2 南极磷虾油样品一阶导数处理近红外光谱Fig.2 FD processing NIR of Antarctic krill oil sample

图3 南极磷虾油二阶导数处理近红外光谱Fig.3 SD processing NIR of Antarctic krill oil sample

平滑是最常用的降噪方法,其实质是一种加权平均法,强调中心点的中心作用。通常的平滑方式为两种,Savitzky-Golay 卷积平滑(SG)和Norris 平滑(N)。Savitzky-Golay 卷积平滑可以降低谱图的数据分辨率,并平滑掉小的谱峰。Norris 平滑常用于增加被宽谱带覆盖的尖峰。

对南极磷虾油的磷脂、EPA、DHA、虾青素和酸价5 种指标分别进行FD、FD+SG、FD+N、SD、SD+SG 和SD+N 等6 种单一或复合方式处理,结果如表2~表6所示。

表2 南极磷虾油磷脂近红外光谱不同方式处理预测模型效果比较Table 2 Comparison of the effects of different optimized NIR prediction models for phospholipid in Antarctic krill oil

表6 南极磷虾油虾青素近红外光谱不同处理方式模型结果比较Table 6 Comparison of the effects of different optimized NIR prediction models for astaxanthin in Antarctic krill oil

近红外建模相关系数(RC)、交互验证相关系数(RCV)和外部验证相关系数(REV)值与1 越相近证明模型的精准度越高;定标标准分析误差(RMSECV)、验证标准分析误差(RMSEP)越小,证明模型的拟合度越高,RMSECV 和RMSEP 越接近,证明模型的稳定性越高。

磷虾油中磷脂、EPA、DHA 和酸价四个指标的原始光谱近红外预测模型图见图4,其主要参数RC、REV 和RCV 均大于0.92,其中EPA 和DHA更达到0.97 以上,经处理后四个指标的的模型三类相关系数得到提升,都达到0.95 以上,说明近红外检测方法适用于这四个指标的快速检测,可以得到较好的预测结果。在不同的处理条件下,RMSECV 和RMSEP 也较为接近,说明近红外预测模型预测稳定性较好。

图4 南极磷虾油样品磷脂建模集以及外部验证Fig.4 Antarctic krill oil sample phospholipid modeling set and external verification

虾青素的各种处理方式得到的模型预测结果均不理想,可能的主要原因,一是南极磷虾油产品中虾青素含量较低,普遍低于250 mg/kg,不适合采用近红外检测方法进行定量;二是虾青素在磷虾油中并非单一组分,其主要以虾青素酯形式存在,各类虾青素酯之间存在差异,且含量较低[26-27],在近红外检测条件下无法进行统一定量。

表3 南极磷虾油EPA 近红外光谱不同方式处理预测模型效果比较Table 3 Comparison of the effects of different optimized NIR prediction models for EPA in Antarctic krill oil

表4 南极磷虾油DHA 近红外光谱不同方式处理预测模型效果比较Table 4 Comparison of the effects of different optimized NIR prediction models for DHA in Antarctic krill oil

表5 南极磷虾油酸价近红外光谱不同方式处理预测模型效果比较Table 5 Comparison of the effects of different optimized NIR prediction models for acid value in Antarctic krill oil

经综合比较,磷脂、EPA、DHA 和酸价的最优预测模型的最佳处理方式、主成分因子数及光谱范围如表7所示。

表7 南极磷虾油磷脂、EPA、DHA 和酸价指标最优近红外预测模型参数Table 7 Parameters of optimal NIR prediction model for phospholipid, EPA, DHA and acid value in Antarctic krill oil

磷脂、DHA 和EPA 酸价最佳处理方式略有不同,分别为:FD、FD、SD+N;酸价经处理后,RCV 虽得到改善,但RMSECV 和RMSEP 显著增加,故采用不经处理的模型参数。由于虾青素近红外预测模型效果不好,因此未列在表中。

2.4 最优近红外预测模型指标评价

本文采用偏最小二乘法建立并处理了南极磷虾油中磷脂、EPA、DHA 和酸价的近红外光谱预测模型,确定了最优的模型参数,通过交互验证和外部验证,四种组分的RC、REV 和RCV 三类相关系数,除酸价的RCV 略低为0.917 外,其余均在0.95 以上,并且RMSECV 和RMSEP 值也均较小,并且较为接近,均证明预测模型的准确度和稳定性较好。

除上述指标外,另一个衡量预测模型准确度的重要指标是RPD,当其大于2.5 时,方可表明模型具有较好的预测准确度。如表8 中所示,磷脂、EPA、DHA 和酸价四种指标的RPDEV 和RPDCV 基本满足这一指标要求,仅有酸价的RPDCV 为2.365,略小于2.5,这可能是由于建模样品数量仍然偏少,RESECV 偏大导致,可通过后续的样品量增加来进行改善。

表8 南极磷虾油磷脂、EPA、DHA 和酸价最优近红外预测模型指标描述Table 8 Indicators description of optimal NIR prediction model for phospholipid, EPA, DHA and acid value in Antarctic krill oil

3 结论

本研究为南极磷虾油品质关键指标磷脂、DHA、EPA、酸价的含量近红外模型的构建以及快速检测提供了理论上的依据和数据上的支持,充分验证了近红外快速检测方法在磷虾油品质指标检测中应用的可行性。为进一步提升模型的精确度,可通过扩大对主要磷虾油生产厂家的代表性样品数量与样品指标范围,构建更精准成分预测模型。此外,除本文中涉及到的5 种指标之外,近红外检测方法可能还适用于脂肪酸组成和过氧化值等指标的检测[28-29]。

南极磷虾油产品质量检测包含9 项以上主要指标,采用传统化学检测方法不但需要气相、液相等大型仪器设备的投入,还需要配备检测人员并且消耗大量的检测试剂。按照常规检测机构对全部指标检测的收费标准,每个样品检测至少需要收费千元以上。与传统检测方法相比,近红外快速检测方法无需配备专业的人员,不需消耗试剂,仅需通过简单处理即可完成对南极磷虾油中的主要指标的检测分析,可极大的提高检测效率,降低检测成本,随着近年来便携式近红外设备的不断发展[30],在磷虾油产品生产与流通环节其均可作为有效的检测手段。进一步,通过对于检测方法的持续优化,有望实现磷虾油加工过程中的在线品质监控,对于提高生产效率和提升磷虾油产品品质具有积极作用。

猜你喜欢

酸价青素磷虾
黑芝麻酸价变化规律的探究
磷虾真是“虾无敌”
Effects of astaxanthin against colorectal carcinogenesis by lipopolysaccharide challenge in vitro
日粮添加虾青素对种蛋孵化效果的影响
南极磷虾粉在水产饲料中的应用
6000倍抗氧化能力,“完爆”维C!昶科将天然虾青素研发到极致
虾青素在设施草莓上的应用效果
强大的磷虾
玉米粉对玉米饼酸价的影响初步分析
“美味”的磷虾