近红外在线检测装置参数对苹果糖度模型适用性的影响
2022-08-02刘燕德朱明旺姚金良张剑一景寒松
刘燕德,胡 宣,朱明旺,姚金良,李 斌,廖 军,张剑一,景寒松
(1 华东交通大学 智能机电装备创新研究院, 江西 南昌 330013; 2 江西省光电检测工程技术中心,江西 南昌 330013; 3 华东交通大学 机电与车辆工程学院, 江西 南昌 330013)
我国苹果产量及种植面积在全球占比超50%,但是由于采后自动检测和分级技术不足,导致我国优质果率不足,苹果出口量仅占总产量的10%,亟需水果品质在线检测装置提升我国苹果在国际市场的竞争力。近红外光谱在线检测装置作为一种快速、无损和绿色的检测装备,已应用于检测苹果、草莓、柑橘、梨、西瓜等水果的内部品质[1-4]。近红外光谱在线检测装置的检测速度和积分时间等因素会影响所建立的糖度模型的性能,因此,建立检测速度和积分时间的通用模型非常必要。
学者应用近红外光谱技术对水果内部品质做了很多研究:郭志明等[5]利用近红外透射法建立了苹果腐心病的在线检测系统,其建立的预测模型的相关系数为0.92;Liu等[6]建立了脐橙可溶性固形物含量 (Soluble solid content,SSC)的近红外漫反射在线检测模型,其预测相关系数为0.90;李龙等[7]利用近红外光谱技术搭建了苹果在线无损检测装备,并对苹果SSC建立了预测模型,其相关系数达到0.949,预测集均方根误差为0.449;韩东海等[8]和刘新鑫等[9]使用近红外透射光谱结合波段筛选方法对苹果的2种病害进行判别,其判别模型准确率达到95.7%;Xu等[10]研究比较了单点和双点检测对苹果SSC在线检测精度的影响,使用双分支光纤的系统证明了卓越的鲁棒性,而使用单分支光纤的系统证明了卓越的准确性,其预测集决定系数达到0.63。以上学者进行的研究都未考虑在线检测速度和积分时间对模型的影响,所建立的模型的性能较低。崔丰娟等[11]研究了近红外光谱在线采集装置的移动速度对所建立的模型性能的影响,基于2种运动速度建立了混合运动速度模型,其预测集相关系数为0.94,均方根误差为0.289;Sun等[12]利用近红外动态在线检测装备,研究了装置不同运动速度对建立的翠冠梨糖度预测模型的影响,结果发现,当运动速度为0.5 m/s时,所建立的糖度模型的性能较好。以上学者探究了检测速度的因素,但是没有涉及对积分时间的研究。本文应用近红外光谱在线检测系统采集不同检测速度和积分时间的苹果光谱数据,建立不同检测速度和积分时间的苹果糖度通用模型。
1 材料与方法
1.1 试验材料
试验使用的苹果样品品种为‘红富士’,共计180个,订购于山东烟台某果园,苹果直径为75~85 mm,到货后,用湿巾将苹果表面灰尘擦除,置于环境温度为25 ℃的室内保存24 h后采集苹果的试验光谱,经Kennard-Stone(K-S)算法分类后,其中,建模集样本光谱135个,用于建立SSC模型,预测集样本光谱45个,用于对建立的模型性能进行评判。
1.2 试验装置与光谱采集
本文采用的近红外光谱采集装置是由本研究前期自主研发的动态在线漫透射检测装置[13],如图1所示,光源为2排卤素灯,1排5个,共计10个,卤素灯的参数为12 V、100 W,为漫透射方式采集光谱信息提供光源。苹果放在果杯上,经链条传输至暗箱中,由卤素灯照亮经过的苹果,透过苹果内部的光被光纤接收并通过光谱仪传输至电脑,光谱仪的波长为 350~1 150 nm,通过配套的光谱采集软件调节样品的积分时间。光谱采集前装置预热30 min,通过转动检测速度旋钮调节果杯的移动速度,从而调节苹果的检测速度。试验分为5组,5组的检测速度和积分时间分别为:第 1 组 0.3 m/s、100 ms,第 2 组 0.5 m/s、70 ms,第 3 组 0.5 m/s、100 ms,第4 组 0.5 m/s、120 ms,第 5 组 0.5 m/s、150 ms。每个样品在赤道部位采集4次光谱,分布在4个面上,取其平均光谱作为该样品的试验光谱。
图1 近红外漫透射在线检测装置Fig.1 Device of near-infrared diffuse transmittance online detection
1.3 SSC测定
苹果样品的SSC采用折射式数字糖度仪(PR-101a,日本)测量,用水果刀切下4个面光谱采集部位的部分果肉,将果肉挤出果汁,滴在糖度仪的测量位置,测量苹果此面的糖度值,取4个面的平均糖度值作为该苹果样品的糖度值。
1.4 数据处理
首先应用K-S算法将采集到的苹果样本进行分类,使用Unscrambler软件导入采集到的光谱数据,建立苹果的SSC模型,模型的性能采用预测集相关系数(RP)和均方根误差值(RMSEP)进行评判。
2 结果与分析
2.1 苹果SSC测量结果分析
对180个苹果样品分别使用K-S算法进行建模集与预测集的分类,其中建模集135个,预测集45个,苹果的SSC测量值如表1所示。建模集的SSC 含量范围较广,为 9.05~16.40°Brix,大于预测集的 SSC 含量范围,9.65~14.85°Brix,可以对苹果糖度模型取得较好的预测效果。
表1 苹果SSC统计结果Table 1 Statistical results of apple SSC
2.2 不同检测速度和积分时间下光谱特性分析
2.2.1 不同检测速度和积分时间的光谱对比 取180个样品中具有代表性的苹果样本,比较2种检测速度的光谱,如图2所示。0.3 m/s采集到的光谱能量较强;2种检测速度采集到的光谱波形基本相同,波峰位于640、710、和 800 nm 处,波谷位于675、755 nm 处。在 710 nm 处的波峰主要与C—H和O—H键的倍频伸缩振动有关[14-15],在800 nm处的波峰主要与C—H键及N—H键的二级倍频吸收有关[16-17]。0.3 m/s检测速度下样品的能量光谱高于0.5 m/s,造成此现象的原因是0.3 m/s的检测速度下,样品的曝光时间长,透过样品的光能量较多,探测器接受的能量光谱值较高。
图2 不同检测速度下的苹果近红外光谱Fig.2 Near-infrared spectra of apples at different detection speeds
取与图2相同的苹果样品,在4种积分时间下的光谱如图3所示。整体光谱能量强弱关系是150 ms > 120 ms > 100 ms > 70 ms,4 种积分时间所采集到的光谱波形基本相同,在640、710、800 nm附近存在波峰,波谷位于675、755 nm附近,积分时间越长,光谱的能量值越高。
图3 不同积分时间下的苹果近红外光谱Fig.3 Near-infrared spectra of apples with different integration time
2.2.2 不同检测速度和积分时间的光路分析 光线在苹果内部传输路径如图4所示。在0.3 m/s检测速度下,样品在光源下的曝光时间长,获得充足光线的同时也带入许多杂散光,导致下方光纤接收到的信息含有许多无用信息;在0.5 m/s检测速度下,传输速度加大导致携带苹果内部品质信息的光线传输到果杯壁上,没有被果杯下的光纤探头接收。对于不同的积分时间,短积分时间导致较少的光线进入苹果内部,光纤探头获取的光谱信息量不足,从而导致获取的苹果内部品质信息不足;长积分时间时进入苹果内部的光线较多,同时光纤探头接收的苹果内部品质信息已经饱和,更多地获取了杂散光的信息[18]。以上因素都会导致所建立的苹果SSC预测模型性能变差。
图4 光线在苹果内部传输路径图Fig.4 Light transmission path in apple
2.3 单一检测速度和积分时间建立模型的适用性
2.3.1 检测速度与积分时间相同时建模集与预测集 使用偏最小二乘法 (Partial least squares,PLS)建立苹果糖度预测模型,为防止模型过拟合或欠拟合,潜变量的数量 (Latent variables, LVs)设定为1~20。5组检测速度和积分时间建立的苹果糖度PLS模型结果如表2所示,建模集与预测集检测速度与积分时间相同时苹果SSC散点图如图5所示。结果表明:积分时间在100~150 ms时,建模集和预测集模型的相关系数(RC、RP)都在0.85以上,且预测集均方根误差(RMSEP)较小,模型精度较高;积分时间为70 ms时,建立的模型精度较低,积分时间对苹果糖度模型存在阈值,下面只研究100~150 ms积分时间提高模型精度的方法。
图5 建模集与预测集的检测速度与积分时间相同时苹果SSC散点图Fig.5 Scatter diagram of apple SSC under the same detection speed and integration time of modeling set and prediction set
2.3.2 检测速度与积分时间不同时建模集与预测集 由表2可以看出,当检测速度为0.5 m/s、积分时间为100 ms时,建立的苹果SSC模型性能最好,RP为0.921,RMSEP为0.451。选取检测速度为0.5 m/s、积分时间为 100 ms组中的建模集作为建模集与预测集检测速度与积分时间不同时模型的建模集,分别对其他组别的预测集进行预测,其结果如表3所示,其预测模型散点图如图6所示。结果表明:当建模集与预测集检测速度与积分时间不同时,RMSEP较建模集与预测集检测速度与积分时间相同时大,预测效果较差。在实际的水果在线检测线上,需建立在一定检测速度和积分时间范围内均适用的模型,因此下面将研究如何提高苹果糖度模型在不同检测速度和积分时间下的适用性。
图6 检测速度0.5 m/s、积分时间100 ms预测其他试验组苹果SSC预测值与实际值散点图Fig.6 Scatter diagram of predicted value and actual value of apple SSC for other experimental groups predicted by detection speed of 0.5m/s and integration time of 100 ms
表2 5组检测速度和积分时间建模结果1)Table 2 Modeling results of five groups of detection speed and integration time
表3 检测速度0.5 m/s、积分时间100 ms时预测其他检测速度和积分时间模型的结果1)Table 3 Prediction results of other detection speeds and integration time models with detection speed of 0.5 m/s and integration time of 100 ms
2.4 混合检测速度和积分时间建立模型的适用性
在“2.3”4组试验组中的建模集中,使用K-S算法共选取135个具有代表性的样本光谱作为混合检测速度与积分时间预测模型的建模集,分别对各试验组进行预测,预测结果如表4所示,其预测模型散点图如图7所示。结果表明:混合检测速度和积分时间建立的预测模型拟合效果较好,模型性能较优,相对于单一速度和积分时间作为建模集建立的预测模型,RP明显提高,RMSEP明显减小,模型稳定性明显提高,能在一定检测速度和积分时间范围内,对苹果SSC达到更好的预测,满足不同环境下苹果糖度在线检测的要求。
表4 混合检测速度和积分时间预测模型预测结果1)Table 4 Prediction results of prediction model with mixed detection speed and integration time
图7 混合检测速度和积分时间预测模型苹果SSC预测值与实际值散点图Fig.7 Scatter diagram of predicted value and actual value of apple SSC of prediction model with mixed detection speed and integration time
3 结论
本文研究了不同检测速度和积分时间对苹果SSC预测模型的影响,预测模型中建模集和预测集的检测速度和积分时间相同时的预测效果优于建模集与预测集的检测速度和积分时间不同时。为满足在线检测的需要,预测模型应在一定的检测速度和积分时间范围内,保持良好的预测性能,为此建立了混合检测速度和积分时间模型;相对于单一检测速度和积分时间作为建模集建立的预测模型,RP由0.877提高至0.919,RMSEP由0.570减小至0.477,对苹果SSC达到更好的预测效果,满足了不同环境下苹果糖度在线检测的要求。