APP下载

氢循环泵用涡旋盘成形工艺的研究现状

2022-07-26王永飞吴远刚刘晓明舒悦赵升吨郭怡

精密成形工程 2022年7期
关键词:模锻背压涡旋

王永飞,吴远刚,刘晓明,舒悦,赵升吨,郭怡

氢循环泵用涡旋盘成形工艺的研究现状

王永飞1a,2,吴远刚3,刘晓明2,舒悦2,赵升吨1a,郭怡1b

(1.西安交通大学 a.机械工程学院;b.能源动力与工程学院,西安 710049;2.压缩机技术国家重点实验室(压缩机技术安徽省实验室),合肥 230031;3.航天推进技术研究院,西安 710100)

在“碳达峰、碳中和”背景下,我国氢能及燃料电池汽车产业发展迅速。作为典型的多层、薄壁杯类复杂件,涡旋盘是氢燃料电池系统用涡旋式氢循环泵的核心零件,其性能的优劣对氢燃料电池汽车的氢循系统性能有着极其重要的影响。主要综述了国内外涡旋盘的成形工艺,包括数控铣削、液态压铸、液态模锻、固态热锻、粉末冶金成形等,并分析探讨了不同成形工艺的优缺点;在此基础上,结合笔者的研究经历着重介绍了一种具有“高效短流程”特点的一模四件涡旋盘零件半固态多向挤压成形新工艺,设计了相应的成形模具,并详细介绍了适用于该工艺的模具浇道系统。

涡旋盘;液态压铸;固态热锻;半固态成形

氢能与燃料电池被认为是全球未来能源战略的重要组成部分和能源技术革命的重要方向,美国、日本、德国等发达国家已将氢能规划上升到国家能源战略高度[1-2]。在我国的《能源技术革命创新行动计划(2016—2030年)》中,“氢能与燃料电池技术”被列为能源技术革命创新行动中的重点任务,也在《国家创新驱动发展战略纲要》中被列为国家的战略任务。在“碳达峰、碳中和”背景下,我国氢能及燃料电池汽车产业发展迅速[3]。图1为燃料电池汽车氢循环系统应用的示意图,氢循环泵是燃料电池系统的关键设备,而涡旋氢循环泵因其高效低噪的独特优点,成为车用燃料电池系统氢循环泵的首选[4-5]。

图1 燃料电池汽车氢循环系统应用示意图

涡旋氢循环泵是涡旋压缩机应用的一个新领域,是一种借助容积变化来实现气体压缩的流体机械[6]。图2为涡旋氢循环泵结构示意图,主要包括涡旋盘(动盘、静盘)、曲轴等。工作时,气体通过吸气口进入吸气室,吸气室的气体再通过啮合涡旋盘的吸气口进入压缩腔,气体被压缩以后通过涡旋盘的排气口进入压缩机后部的背压腔,再通过开设在背压腔上的排气口排出[7-8]。

图2 涡旋氢循环泵结构示意图

作为典型的多层、薄壁杯类复杂件,涡旋盘是涡旋氢循环泵的核心零件,对氢燃料电池汽车的氢循系统性能有着极其重要的影响。同时,随着氢燃料电池汽车技术及相关基础设计设施的持续发展,对涡旋盘零件高性能、高可靠性与功能高效化等要求不断提高[9-10]。因此,只有不断开展涡旋盘构件高性能精确成形制造新工艺的研究才能解决上述问题。

1 传统涡旋盘成形工艺

1.1 整体铣削加工

涡旋盘的整体铣削加工主要是指采用数控加工中心进行多次铣削从而将毛坯加工成需要的涡旋盘零件,主要分为2个阶段:第1阶段为涡旋型线轮廓的粗加工和涡旋盘底面的粗精加工;第2阶段为涡旋型线的精加工,主要保证涡旋型线的轮廓度及涡旋齿的表面粗糙度[11-14]。图3为涡旋盘整体铣削加工过程示意图。该工艺具有一体成形、工艺流程短等优势,但在数控加工过程中存在大量材料切削浪费的现象。

1.2 固态热锻成形

涡旋盘热锻成形工艺主要是先将加热到一定温度的铝合金圆柱坯料放入预热到设定温度的金属凹模内,再通过压力机使金属坯料以一定的速度充填金属凹模型腔,从而成形出涡旋盘制件[15-16]。与整体铣削加工工艺相比,该工艺的优势是材料切削量少、力学性能好。目前国内已经具备一定的生产铝合金涡旋盘的能力,热锻工艺已经发展到了一定程度,但采用该工艺会存在成形载荷大、模具寿命短、生产效率低及成本高等缺点[17-18]。此外,在锻造过程中,由于设备、工艺等因素极易产生充填不满及表面凹坑等缺陷(如图4所示)[19]。

1.3 液态模锻成形

涡旋盘液态模锻成形工艺[20-21]是一种介于铸造和锻造之间的工艺,该工艺主要是以一定量的熔融金属液作为原料,将其浇注到预先涂有润滑剂的涡旋盘液态模锻模具(如图5所示)的模腔内,然后合模,对金属液施加压力,实现金属液的充填流动,使金属液在压力下结晶并发生少量的塑性变形,最终获得少铸造缺陷的涡旋盘制件[22-23]。该工艺具有可进行T6热处理、凝固组织细微及力学性能好的优势,但存在成形件毛刺多、成形后需要后续切断加工、易产生偏析、有拔模斜度、生产效率低、同压铸相比模具寿命短等缺点[24-26]。

图3 涡旋盘数控铣削加工制造示意图

图4 液态压铸工艺成形铝合金涡旋盘缺陷图

图5 涡旋盘液态模锻模具实物

1.4 液态压铸成形

液态压铸即“液态压力铸造”,是指液态金属在高压作用下,以较高的速度充填到模具型腔中,并在压力作用下凝固而获得所需铸件的一种特种铸造技术[27-28]。图6为国内三基公司利用压铸工艺成形铝合金涡旋盘时所采用的压铸机设备与铸造出的涡旋盘制件宏观形貌[29]。液态压铸具有高压和高速充填模具型腔的两大特点,能够满足成形复杂薄壁零件的要求,但采用压铸成形涡旋盘的缺点如下:(1)在压铸过程中,金属液的充型速度很快,易形成气孔、缩孔等铸造缺陷[30];(2)压铸模具结构相对复杂,且制造周期长,高温也会导致压铸机和模具的维护成本偏高[31]。

图6 液态压铸成形涡旋盘示意图

1.5 粉末冶金成形

粉末冶金成形工艺主要是先将细化到一定程度的铝粉和硅粉按照合适的比例混合均匀,再压制成形获得冷坯,随后将冷坯放置在加热炉中烧结得到预烧结体,接着对上述预烧结体进行模锻变形以获得近终形毛坯料,最后利用机加方式对该近终形毛坯料进行精加工,得到最终产品[32-35]。图7为涡旋盘粉末冶金成形过程中的压力机、压制冷坯及粉末冶金涡旋盘制件示意图。采用该工艺成形的涡旋盘能够适用于多种材料体系,但涡旋盘零件形状较为复杂,导致零件的各个部位密度分布不均匀,所以成形质量较差[36]。

图7 粉末冶金成形涡旋盘示意图

1.6 背压成形

背压成形工艺主要是在零件成形过程中沿材料流动的反方向施加作用力,以控制不同区域材料的流动行为,最终使材料能够精确充满复杂型腔[37-39]。图8为涡旋背压成形原理示意图,在凸模挤压作用下,通过背压体模具对坯料材料流动行为的限制作用,可有效解决由涡旋壁厚小且分布不均匀而导致的涡旋端面成形高度不一致的问题[40]。利用该工艺成形的涡旋盘制件具有力学性能较好、生产效率高及切削量少等优势,但是其模具结构较复杂[41]。

图8 涡旋盘挤压背压成形工艺原理

2 传统涡旋盘成形工艺分析

传统涡旋盘零件主要是通过整体铣削加工得来,但涡旋盘整体铣削技术存在大量材料切削浪费、金属纤维被切断、零件力学性能降低、铣削过程冗长等缺点。尽管后来又发展出了热锻、液态模锻、液态压铸等工艺,但这些成形工艺分别存在以下明显的不足:(1)采用热锻工艺难以直接成形一些复杂的孔及凸起部位,加工余量大,且锻造能耗损失大,对模具材料要求高,此外,在成形过程中需要的载荷较大;(2)液态模锻成形方法生产效率低,模具寿命短,成形件毛刺多,成形后需要后续切断加工,零件力学性能低,在成形过程中易产生偏析缺陷;(3)采用液态压铸的成形会产生缩松、缩孔等内部缺陷,导致产品力学性能降低,无法满足生产使用要求,此外,铸件不能进行T6热处理;(4)粉末冶金成形技术存在零件密度分布不均的缺点;(5)背压成形工艺存在模具结构复杂的缺点。

3 涡旋盘半固态多向挤压成形新工艺

金属半固态成形(semi-solid metal forming,SSMF)是麻省理工学院Flemings教授及其团队提出的一种新型金属成形方法[42-44]。明显区别于传统铸造成形会产生粗大树枝晶的工艺特点,SSMF是先制备出具有细小、近球状晶粒的半固态材料,再对其进行挤压、模锻、轧制或压铸,从而成形出具有细小、均匀微观组织且性能优异的复杂零件[45-46]。SSMF兼具液态铸造成形的易流动性以及固态塑性成形的优良力学性能,且能实现复杂零件的“近净成形”,被誉为21世纪极具前途的金属加工技术之一[47-50]。

针对涡旋盘传统成形工艺存在的大量材料切削浪费、成形载荷大、模具寿命低、成形质量差、密度分布不均匀及模具结构复杂等缺点,为进一步提高涡旋盘零件的质量和性能,文中提出了先进行电磁搅拌半固态球状晶粒制备,再进行一模四件涡旋盘半固态多向挤压成形的新工艺方案,如图9所示。

图9 一模四件涡旋盘半固态多向挤压成形新工艺方案

如图9所示,一模四件涡旋盘半固态多向挤压成形新工艺的具体工作原理如下:首先,采用如图9a所示的电磁感应熔炼器获得液态熔融金属;接着,控制塞杆上升使一定量的液态熔融金属流入电磁搅拌器;同时,启动电磁搅拌器对液体熔融金属进行电磁搅拌,从而获得被装在不锈钢筒体中的具有球状微观晶粒的半固态浆料;最后,将该半固态浆料快速放入如图9b所示的一模四件挤压模具的型腔内,通过控制压头向上挤压继而成形出涡旋盘零件,并利用如图9c所示的加热炉对成形出的一模四件涡旋盘零件进行热处理,以进一步提高涡旋盘零件的性能。该新工艺具备以下优势:(1)能够实现涡旋盘零件近净成形,材料利用率明显提高;(2)通过一次挤压成形可以成形出4个涡旋盘零件,即能够实现涡旋盘的“一模四件”成形,生产效率明显提高;(3)采用电磁搅拌法制备的半固态球晶材料可直接放入模具型腔中进行涡旋盘成形,省去了传统半固态坯料的二次重熔过程,从而能够缩短工艺流程,节约生产成本;(4)半固态成形的涡旋盘零件致密度高、力学性能好。

4 涡旋盘半固态多向挤压成形模具浇道系统

涡旋盘零件半固态多向挤压成形模具浇道系统如图10所示,其结构可分为直浇道、蔽渣区、横浇道、内浇道、溢流槽、排气槽等。其中直浇道与模具充填压头直接接触,主要负责浆料输送;横浇道采用具有集渣、蔽渣功能的浇道结构形式,以过渡连接内浇道与直浇道,同时对充填半固态浆料的氧化皮等夹杂物具有一定的集渣蔽渣作用;内浇道与铸件直接相连,内浇口横截面积较小,有利于增大半固态材料的充填速度,以便快速完成充型过程。此外,该模具将溢流槽与排气槽设计为一体结构,在半固态浆料充型前期,随着半固态浆料的不断顺序充填,模具型腔内的空气通过溢流槽由排气槽排出;而在充型末期,充填余料充填溢流槽,甚至排气槽,保证涡旋盘零件充型完整。

图10 涡旋盘半固态多向挤压成形模具浇道结构示意图

涡旋盘零件的横浇道及内浇道设计涉及的关键尺寸为横浇道截面积r、横浇道厚度及宽度1、内浇口厚度N及其与铸件连接宽度2,具体计算公式[29,31]如下:

式中:p为压头横截面积,mm2;p为压头运动速度,m/s;r为充型速度,m/s;r为浇道横截面积,mm2;H为铸件最大壁厚,mm;为横浇道厚度,mm;1为横浇道宽度,mm;为铸件直径,mm;2为内浇口连接宽度,mm;N为内浇道厚度,mm。

5 结论

1)传统涡旋盘零件成形工艺主要包括整体铣削、热锻、液态模锻、液态压铸、粉末冶金及背压成形等,其中,整体铣削技术存在大量材料切削浪费、固态锻造的能耗损失大、液体模锻的模具寿命低、液体压铸内部缺陷严重、粉末冶金工序冗长、背压成形的模具结构复杂等缺点。

2)提出了先进行电磁搅拌半固态球状晶粒制备、再进行一模四件涡旋盘半固态多向挤压成形的新工艺方案,并详细介绍了适用于该新工艺的模具浇道系统。该新工艺能够实现涡旋盘类复杂型面件的近净成形,成形零件致密度高、力学性能好,且该工艺具有高效、短流程等特点,具备很好的应用前景。

[1] 邵志刚, 衣宝廉. 氢能与燃料电池发展现状及展望[J]. 中国科学院院刊, 2019, 34(4): 469-477.

SHAO Zhi-gang, YI Bao-lian. Developing Trend and Present Status of Hydrogen Energy and Fuel Cell Development[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(4): 469-477.

[2] 何青, 孟照鑫, 沈轶, 等. “双碳”目标下我国氢能政策分析与思考[J]. 热力发电, 2021, 50(11): 27-36.

HE Qing, MENG Zhao-xin, SHEN Yi, et al. Analysis and Thinking of Hydrogen Energy Policies in China under “Double Carbon” Target[J]. Thermal Power Generation, 2021, 50(11): 27-36.

[3] TIE Da, HUANG Shi-fei, WANG Jing, et al. Hybrid Energy Storage Devices: Advanced Electrode Materials and Matching Principles[J]. Energy Storage Materials, 2019, 21(C): 22-40.

[4] HE Yun-tang, ZHENG Jin-yang, OU Ke-sheng. UN Global Technical Regulation for Hydrogen Fuel Cell Vehicles[J]. China Standardization, 2012(2): 79-81.

[5] SMOLIŃSKI A, HOWANIEC N. Hydrogen Energy, Electrolyzers and Fuel Cells the Future of Modern Energy Sector[J]. International Journal of Hydrogen Energy, 2020, 45(9): 5607.

[6] FENG J M, ZHANG Q Q, HOU T F, et al. Dynamics Characteristics Analysis of the Oil-Free Scroll Hydrogen Recirculating Pump Based on Multibody Dynamics Simulation[J]. International Journal of Hydrogen Energy, 2021, 46(7): 5699-5713.

[7] 江沂. 汽车空调用涡旋压缩机的研究[D]. 武汉: 武汉理工大学, 2006: 1-9.

JIANG Yi. The Research of Scroll Compressor for Vehicle Air-Condition[D]. Wuhan: Wuhan University of Technology, 2006: 1-9.

[8] 李君. 复杂壳体类零件流动控制成形工艺数值模拟及实验研究[D]. 合肥: 合肥工业大学, 2014: 1-10.

LI Jun. Numerical Simulation and Experimental Study on FCF of Complex Structural Parts[D]. Hefei: Hefei Univ­ers­ity of Technology, 2014: 1-10.

[9] 李卫东. “工业4.0”对推进“中国制造2025”的启示[D]. 北京: 外交学院, 2017: 20-26.

LI Wei-dong. Enlightenment of “Industry 4.0” on Promoting “Made in China 2025”[D]. Beijing: China Foreign Affaires University, 2017: 20-26.

[10] 杨合, 李落星, 王渠东, 等. 轻合金成形领域科学技术发展研究[J]. 机械工程学报, 2010, 46(12): 31-42.

YANG He, LI Luo-xing, WANG Qu-dong, et al. Research on the Development of Advanced Forming for Lightw­eight Alloy Materials Area[J]. Journal of Mechanical Engineering, 2010, 46(12): 31-42.

[11] 张文帅, 王建军, 王帅. 变截面涡旋盘薄壁齿高速铣削仿真及实验研究[J]. 精密制造与自动化, 2021(4): 10-14.

ZHANG Wen-shuai, WANG Jian-jun, WANG Shuai. Simulation and Experimental Research on High-Speed Milling of Thin-Walled Teeth of Variable Cross-Section Scroll Disk[J]. Precise Manufacturing & Automation, 2021(4): 10-14.

[12] 张楠楠. 基于小波的变截面涡旋盘铣削加工表面形貌分析[D]. 兰州: 兰州理工大学, 2021: 13-24.

ZHANG Nan-nan. Surface Topography Analysis of Variable Cross-Section Scroll Based on Wavelet[D]. Lanzhou: Lanzhou University of Technology, 2021: 13-24.

[13] 韩晓静. 涡旋盘高速精密铣削切削热理论分析及数值模拟[D]. 兰州: 兰州理工大学, 2017: 1-9.

HAN Xiao-jing. Theoretical Analysis and Numerical Simulation of Cutting Heat in the High Speed Precision Milling Process of Scroll Plate[D]. Lanzhou: Lanzhou University of Technology, 2017: 1-9.

[14] WU Z X, LIU T. A Double Circular Arc Fitting Algorithm For Cnc Machining of Non-Uniform Scroll Components[J]. The International Journal of Advanced Manufacturing Technology, 2019, 104(258): 4485-4495.

[15] JI H C, SONG G, HUANG X M, et al. Precision Hot Forging Forming Experiment and Numerical Simulation of A Railway Wagon Bogie Adapter[J]. The International Journal of Advanced Manufacturing Technology, 2022, 120: 907-925.

[16] WANG Z, WANG J G, YAN R F, et al. Effect of Hot Forging Process Para-Meters and Ce Addition on the Microstructure and Mechanical Properties of an As-Forged AZ80 Alloy[J]. Advanced Engineering Materials, 2020, 11(22): 446-457.

[17] BISWAL S, TRIPATHY S. Effect of Process Variables in Closed Die Hot Forging Process: A Review[M]. Springer: University of Sfax, 2021: 26-33.

[18] PANDYA V A, PM G. Analysis of Die Stress and Forging Force for DIN 1.2714 Die Material during Closed Die Forging of Anchor Shackle[J]. Materials Today: Proceedings, 2021, 45(P6): 4695-4701.

[19] 陈澜. 4032铝合金涡旋盘锻件组织性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2011: 50-57.

CHEN Lan. Research on Microstructure and Mechanical Property of 4032 Aluminum Alloy Scroll[D]. Harbin: Harbin Institute of Technology, 2011: 50-57.

[20] XIN Zhang, HONG Xu, TONG Chen, et al. Forming Properties and Microstructure of Al-Cu Alloy Prepared by Liquid-Die Forging[J]. Journal of Central South University, 2022, 29(1): 60-79.

[21] LIU Wei-feng, CAO Yan-fei, GUO Yi-feng, et al. Solidification Microstructure of Cr4Mo4V Steel Forged in the Semi-Solid State[J]. Journal of Materials Science & Technology, 2020, 38(3): 170-182.

[22] 刘剑峰. 液态模锻涡旋盘工艺优化及偏析行为的研究[D]. 合肥: 合肥工业大学, 2018: 12-16.

LIU Jian-feng. Research on Process Optimization and Segregation Behavior of Liquid Forging Scroll Plate[D]. Hefei: Hefei University of Technology, 2018: 12-16.

[23] 邰鑫, 熊毅. 液态模锻工艺参数对Mg-6Al-1Zn-0.3V镁合金性能的影响[J]. 热加工工艺, 2021, 50(15): 88-90.

TAI Xin, XIONG Yi. Effect of Process Parameters of Liquid Die Forging on Properties of Mg-6Al-1Zn-0.3V Magnesium Alloys[J]. Hot Working Technology, 2021, 50(15): 88-90.

[24] 张新, 陈刚, 李宏伟, 等. 应用于装备轻量化铝合金构件液态模锻成形技术的研究进展[J]. 机械工程材料, 2020, 44(10): 6-11.

ZHANG Xin, CHEN Gang, LI Hong-wei, et al. Research Progress on Liquid Die Forging Technique of Aluminum Alloy Components for Lightweight Equipment[J]. Materials for Mechanical Engineering, 2020, 44(10): 6-11.

[25] SUN Yong-gen, DU Zhi-ming, SU Yan-ni, et al. Effect of Zn/Mg/Cu Additions on Hot Cracking Tendency and Performances of Al-Cu-Mg-Zn Alloys for Liquid Forging[J]. Journal of Wuhan University of Technology (Materials Science), 2020, 35(1): 176-182.

[26] WANG Da-yu, DU Lan-jun, LIU Yong-wang, et al. Effects of Variable-Cavity Liquid Forging on Microstructure and Mechanical Properties of Mg-Zn-Y-Zr Alloy[J]. Materials Characterization, 2019, 151: 96-102.

[27] NIU Guo-dong, JEFF W, LI Jin-ping, et al. The Formation Mechanism of the Chill Fine-Grain Layer with High Supersaturation and Its Influence on the Mechanical Properties of Die Casting Al-7Si-0.5Mg Alloy[J]. Materials Science & Engineering A, 2022, 833: 1-7.

[28] HAGA T, IMAMURA S, FUSE H, et al. Roll Casting and Die Casting of Si-Added Al-Mg Alloy[J]. Materials Science Forum, 2020, 6044: 12-17.

[29] 闫观海. 铝合金A356.2应变诱发半固态挤压成形微观组织演化机制的研究[D]. 西安: 西安交通大学, 2013: 80-85.

YAN Guan-hai. Investigation of Microsturctural Evolution Mechanism of A356.2 Alloy Fabricted by Strain Induced Semisolid Squeeze Process[D]. Xi'an: Xi'an Jiaotong University, 2013: 80-85.

[30] GERTSBERG G, AGHION E, KAYA A A, et al. Advanced Production Process and Properties of Die Cast Magnesium Composites Based on AZ91D and SiC[J]. Journal of Materials Engineering and Performance, 2009, 18(7): 886-892.

[31] 贾志欣, 王子平, 李继强, 等. 基于CAE分析的复杂壳体压铸模具设计[J]. 铸造, 2020, 69(8): 873-877.

JIA Zhi-xin, WANG Zi-ping, LI Ji-qiang, et al. Design of Die Casting Die for Complex Housing Based on CAE Analysis[J]. Foundry, 2020, 69(8): 873-877.

[32] LI Hui-zhong, CHE Yi-xuan, LIANG Xiao-peng, et al. Microstructure and High-Temperature Mechanical Properties of near Net Shaped Ti-45Al-7Nb-0.3W Alloy by Hot Isostatic Pressing Process[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(11): 3006-3015.

[33] ZHOU Yang, YANG Fang, CHEN Cun-guang, et al. Mechanical Property Enhancement of High-Plasticity Powder Metallurgy Titanium with a High Oxygen Concentration[J]. Journal of Alloys and Compounds, 2021, 885: 1-10.

[34] ABIOYE T, ZUHAILAWATI H, AZLAN M, et al. Effects of SiC Additions on the Microstructure, Compressive Strength and Wear Resistance of Sn-Sb-Cu Bearing Alloy Formed via Powder Metallurgy[J]. Journal of Materials Research and Technology, 2020, 9(6): 13196-13205.

[35] 张广庆, 徐楠, 王瑗. 粉末冶金压制成形理论与工艺综述[J]. 热加工工艺, 2017, 46(19): 9-14.

ZHANG Guang-qing, XU Nan, WANG Yuan. Review on Theory and Technology of Powder Metallurgy Pressing Forming[J]. Hot Working Technology, 2017, 46(19): 9-14.

[36] 张福祥, 张治民, 薛勇, 等. 铝-钨粉末合金涡旋定盘热挤压成形工艺研究[J]. 轻合金加工技术, 2015, 43(2): 52-57.

ZHANG Fu-xiang, ZHANG Zhi-min, XUE Yong, et al. Research on the Hot Extrusion Process of Fixed Scroll of Al-W Alloy Powder[J]. Light Alloy Fabrication Technology, 2015, 43(2): 52-57.

[37] 时迎宾, 薛世博, 段园培, 等. 新能源汽车4032铝合金涡旋件背压成形数值模拟与实验研究[J]. 精密成形工程, 2020, 12(5): 88-92.

SHI Ying-bin, XUE Shi-bo, DUAN Yuan-pei, et al. Numerical Simulation and Experimental Study on back Pressure Forming of New Energy Vehicle 4032 Aluminum Alloy Scroll[J]. Journal of Netshape Forming Engineering, 2020, 12(5): 88-92.

[38] 吴进, 王成勇, 何大宏, 等. 背压加载方式对轻量化压缩机涡旋盘成形质量的影响[J]. 塑性工程学报, 2021, 28(1): 77-84.

WU Jin, WANG Cheng-yong, HE Da-hong, et al. Influence of Back Pressure Loading Mode on Forming Quality of Lightweight Compressor Scroll[J]. Journal of Plasticity Engineering, 2021, 28(1): 77-84.

[39] DENG Lei, DAI Wen-lei, WANG Xin-yun, et al. Metal Flow Controlled by Back Pressure in the Forming Process of Rib-Web Parts[J]. The International Journal of Advanced Manufacturing Technology, 2018, 97(5/6/7/8): 1663-1672.

[40] 田野, 薛克敏, 孙大智, 等. 涡旋盘背压成形工艺研究[J]. 机械工程学报, 2015, 51(16): 143-149.

TIAN Ye, XUE Ke-min, SUN Da-zhi, et al. Study on Backpressure Forming Process of Scroll[J]. Journal of Mechanical Engineering, 2015, 51(16): 143-149.

[41] 陈铃, 郑光文, 张雷, 等. 涡旋盘背压成形模具结构分析与研究[J]. 锻压技术, 2012, 37(4): 108-111.

CHEN Ling, ZHENG Guang-wen, ZHANG Lei, et al. Analysis and Research of Scroll Mold Structure with back Pressure Processing[J]. Forging & Stamping Technology, 2012, 37(4): 108-111.

[42] SPENCER D B, MEHRABIAN R, FLEMINGS M C. Rheological Behavior of Sn-15 Pct Pb in the Crystallization Range[J]. Metallurgical Transactions, 1972, 3(7): 1925-1932.

[43] JIANG Ju-fu, WANG Ying, XIAO Guan-fei, et al. Comparison of Microstructural Evolution of 7075 Alum­inum Alloy Fabricated by SIMA and RAP[J]. Journal of Materials Processing Tech, 2016, 238: 361-372.

[44] JIANG Ju-fu, WANG Ying, LIU Jun, et al. Microstructure and Mechanical Properties of AZ61 Magnesium Alloy Parts Achieved by Thixo-Extruding Semisolid Billets Prepared by New SIMA[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(3): 576-585.

[45] WANG Yong-fei, ZHAO Sheng-dun, ZHANG Chen-yang. Microstructural Evolution of Semisolid 6063 Aluminum Alloy Prepared by Recrystallization and Partial Melting Process[J]. Journal of Materials Engineering and Performance, 2017, 26(9): 4354-4363.

[46] WANG Yong-fei, ZHAO Sheng-dun, ZHANG Chen-yang. Grain Refinement of Aluminum Alloy Bar by a Modified RAP Process for Semi-Solid Forming[J]. Materials Transactions, 2017, 58(2): 176-181.

[47] QU W Y, LI D Q, GUO Z P, et al. Using the Phase Field Method to Investigate Micro-Structural Evolution of Semi-Solid 357.0 Slurries[J]. Solid State Phenomena, 2019, 285: 367-372.

[48] GUO Y, WANG Y, ZHAO S. Numerical Simulation and Experimental Analysis of the Semi-Solid Thixotropic Extrusion Forming Process for Producing the Thin-Wall Wrought Aluminum Alloy Mobile Phone Shells[J]. Materials (Basel), 2021, 14(13): 3505.

[49] FAN Ling-ling, ZHOU Ming-yang, ZHANG Y, et al. The Semi-Solid Microstructural Evolution and Coarsening Kinetics of AZ80-0.2Y-0.15Ca Magnesium Alloy[J]. Materials Characterization, 2019, 154: 116-126.

[50] XU Yan, CHEN Chen, JIA Jian-bo, et al. Constitutive Behavior of a SIMA Processed Magnesium Alloy by Employing Repetitive Upsetting-Extrusion (RUE)[J]. Journal of Alloys and Compounds, 2018(748): 694-705.

Research Status of Scroll Forming Process for Hydrogen Circulating Pump

WANG Yong-fei1a,2, WU Yuan-gang3, LIU Xiao-ming2, SHU Yue2, ZHAO Sheng-dun1a, GUO Yi1b

(1. a. School of Mechanical Engineering; b. School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China; 2. State Key Laboratory of Compressor Technology (Anhui Laboratory of Compressor Technology), Hefei 230031, China; 3. Aerospace Propulsion Technology Research Institute, Xi'an 710100, China)

Under the background of “carbon peak and carbon neutral”, the hydrogen and fuel cell vehicle industry has developed rapidly in China. Asa typical multi-layer and thin-walled cup complex part, scroll is the core part for hydrogen circulating pump used in hydrogen fuel cell system, which has a very important effect on the performance of the hydrogen circulating system of fuel cell vehicle. The current forming processes for scroll at home and abroad were summarized, including numerical control milling, casting, liquid die casting, liquid forging, solid hot forging and powder metallurgy forming. The advantages and disadvantages of different forming processes were analyzed and discussed. Combined with the author’s research experience, a new semi-solid multi-directional extrusion forming process for four scroll parts in one die with the characteristics of “high efficiency and short process” was proposed, and the corresponding forming die was designed. Moreover, the die gate system suitable for the new process was introduced.

scroll; liquid die casting; solid hot forging; semi-solid forming

10.3969/j.issn.1674-6457.2022.07.003

TG306

A

1674-6457(2022)07-0019-09

2022–05–08

航天先进制造技术研究联合基金重点项目(U1937203);国家自然科学基金青年项目(52105397);压缩机技术国家重点实验室(压缩机技术安徽省实验室)开放基金(SKL–YSJ202008);陕西省液压技术重点实验室开放基金(YYJS 2022KF06)

王永飞(1988—),男,博士,副教授,主要研究方向为先进塑性精确成形技术及其智能装备。

责任编辑:蒋红晨

猜你喜欢

模锻背压涡旋
简谐与光晶格复合势阱中旋转二维玻色-爱因斯坦凝聚体中的涡旋链*
西南铝ARJ-21飞机用外侧轮毂精密模锻件预锻试模成功
西南铝7×××系合金模锻件通过装机评审
基于热力学涡旋压缩机涡旋盘的结构设计优化
基于PM算法的涡旋电磁波引信超分辨测向方法
涡旋压缩机非对称变壁厚涡旋齿的设计与受力特性分析
万航模锻
02 国内首台单机容量最大的亚临界125MW背压机组并网发电
双背压汽轮机热耗率加权平均计算法及其应用
排气背压对有无EGR重型柴油机油耗的影响