怎样选用合适的方法来求函数的值域
2022-07-20景庆
语数外学习·高中版下旬 2022年6期
景庆
求函数的值域问题的难度一般不大,但具有较强的综合性.解答此类问题,需灵活运用函数的解析式、定义域、性质、图象以及不等式的性质.求函数值域的方法有很多,很多同学在求值域时经常找不到合适的方式.下面结合实例,谈一谈如何根据不同的题型选择合适的方式求解.
一、利用基本不等式
基本不等式:若a、b>0,则a+b≥√ab,当且仅当a=b时等号成立.若函数中含有双变量,或函数式是两个代数式的和、积,则可利用基本不等式来求函数的值域.运用基本不等式求函数的值域,往往要将函数的解析式进行适当的变形,构造出两式的和或积,并使其中之一为定值,再运用基本不等式或其变形式
通过三角换元,将函数值域问题转化三角函数最值问题,利用正弦函数的有界性和单调性即可求得函数的值域.在换元的过程中,要注意确保定义域的等价性.
三、局部换元
局部換元法是解答代数问题的重要方法.对于较为复杂的代数式、函数式,往往可采用局部换元法求解.通常可将根号下的式子、绝对值内部的式子、分式的分子或者分母等用一个新元替换,这样便可将函数式化简,将问题转化为关于新元的值域问题来求解.
可见,求函数的值域,往往要仔细分析、研究函数的解析式,将其进行合理的变形,如将其配凑成两式的和或积,并使其中之一为定值,将某一部分或某个式子用三角函数式、新元替换,再选择与之相应的方法,利用基本不等式、三角函数与函数的性质、图象,即可轻松求得问题的答案.
(作者单位:江苏省常州市金坛第一中学)