APP下载

南秦岭烂木沟金矿床地球化学特征与矿床成因研究

2022-07-19王晓虎郭涛李效壮廖华张文高赵新科贾凤仪曹林杰

地质力学学报 2022年3期
关键词:黄铁矿同位素金矿

王晓虎郭 涛李效壮廖 华张文高赵新科贾凤仪曹林杰

1.中国地质科学院地质力学研究所,北京 100081;

2.自然资源部古地磁与古构造重建重点实验室,北京 100081;

3.陕西地矿第一地质队有限公司, 陕西 安康 725099

0 引言

秦岭造山带是中国重要的地理及地质分界,是华北板块和扬子板块之间的汇聚带,也是一个巨型多金属成矿带。张国伟等(1995a,1995b,1997)将秦岭造山带划分为华北板块南缘、秦岭微板块和扬子板块北缘三大陆壳单元,研究区南秦岭构造带属于秦岭微板块,北以商丹缝合带为界,南至勉略缝合带(图1)。近年来,在陕西省安康市北部石泉、汉阴和旬阳一带古生代地层中,发现了金矿床(点)60余处,西起石泉县羊坪湾,东至旬阳市烂木沟,显现出一条具有巨大潜力的金成矿带。不少学者通过该金成矿带及其西段羊坪湾、黄龙、长沟、鹿鸣等矿床研究认为金矿体赋存于下志留统梅子垭组,梅子垭组为金的矿源层提供了成矿的物质基础,成矿流体多来源,中低温成矿(李会民,1997;王民良,2007;李福让等,2009;杨龙伟等,2018),成矿受安康北部脆-韧性剪切带控制,剪切带是金矿形成的导矿、运矿、容矿构造,带内的S2面理与金富集成矿密切相关(冯明伸和杨建东,1994;王民良,2007;张康,2012;樊培贺,2015;韩珂等,2015,2017,2018;杨宏宇等,2015;高雅宁等,2016;杨兴科等,2016;贾凤仪等,2016;张康等,2020)。已有的研究主要在矿带的西段,而且对矿床成因主要有两种不同视角的认识,一种强调沉积-改造作用,认为成矿物质来自原始矿源层,后期经历了花岗斑岩脉改造或变质作用改造成矿(李会民,1997;李福让等,2009;王瑞廷等,2013);另一种强调不同尺度构造变形对成矿的控制作用,认为后期成矿热液充填于韧性剪切带S2面理叠加富集成矿(杨兴科等,2016;韩珂等,2018)。作为一条延伸上百千米的成矿带,矿带东段的研究仅阐述了烂木沟矿区地质特征、控矿条件及控矿因素、找矿方向等(焦金荣,2013;沙亚洲等,2013;王鹏等,2018)。矿带东段的成矿作用特征以及矿带东、西段成矿作用有何异同等尚未得到揭示。由此,文章通过烂木沟金矿床地质特征和地球化学特征分析,并对比矿带西段矿床的地球化学特征,探讨南秦岭构造带烂木沟金矿床成因,提出矿床成因类型,为矿带找矿预测提供参考。

图1 南秦岭石泉—旬阳一带地质构造略图(据冯明伸和杨建东,1994;张国伟等,2001;杨兴科等,2016;韩珂等,2020修改)Fig.1 Geologic sketch of the Shiquan-Xunyang area in the South Qinling Belt (modified from Feng and Yang, 1994; Zhang et al., 2001; Yang et al., 2016; Han et al., 2020)

1 区域地质概况

南秦岭构造带,夹持在商丹和勉略缝合带之间,构造带内发育的礼县-山阳断裂、镇安-板岩镇断裂、舟曲-江口断裂、迭部-武都断裂、公馆-十堰断裂等,构成了区内构造的基本格架(张国伟等,2001;图1)。早古生代伸展裂陷阶段,勉略洋打开,南秦岭从扬子板块裂解 (Dong and Santosh, 2016),晚古生代为稳定台盆—台地沉积阶段(刘宝珺和徐效松,1994;徐通,2016),中生代沿勉略带进入俯冲—碰撞阶段,勉略带内黑沟峡变质双峰式火山岩的Sm-Nd等时线年龄为242±21Ma,代表火山岩的变质年龄,指示俯冲碰撞的时间为早—中三叠世(李曙光等,1996;徐通,2016;Dong and Santosh, 2016);在晚三叠世,随着勉略洋的闭合,进入碰撞造山后调整阶段。由于造山隆升,深部构造热衰减,勉略带内发生晚造山期伸展垮塌作用,形成勉县、青峰等一系列伸展断陷盆地,同时沿勉略缝合带南侧发育巨大碰撞挤压、向外的逆冲推覆构造和前陆冲断褶皱,产生了前陆断褶带前缘的前陆盆地(T3—J1-2),标志板块俯冲碰撞造山过程到了最后完成阶段,晚侏罗世进入陆内造山构造演化阶段(张国伟等,2019)。

南秦岭构造带地质构造复杂,断裂构造多期次叠加。局部地区见前震旦或老的基底岩系,盖层主要包括震旦系陆缘裂谷沉积-火山沉积岩系、下古生界寒武系—奥陶系—志留系和上古生界泥盆系—石炭系—二叠系,部分地区有至下三叠统的连续沉积,整体属陆缘海-边缘海沉积环境,其上即为陆相沉积地层(张国伟等,2001)。

石泉-旬阳金矿化带位于南秦岭构造带的中部,扬子板块北缘巴山弧形构造带东侧,呈北西—南东向展布,出露基底地层由中元古代耀岭河群、郧西群的火山岩系组成,盖层由寒武系—志留系的碎屑-化学沉积岩系组成,地层普遍遭受变质作用,以中低绿片岩相为主(图1)。

矿带整体位于石泉-神河推覆构造带中(冯明伸和杨建东,1994;杨兴科等,2016;图1a),矿带已探明数处规模不等的金矿床或矿化点。其中,较大的矿床有长沟、羊坪湾、黄龙、金斗坡、八庙沟、石板沟、鹿鸣等,金矿主要赋存在区内广泛出露的早古生代地层中。烂木沟矿床即产于该矿带的东段(图1b)。

2 矿床地质特征

矿区及外围地层主要呈北西西向展布,出露有泥盆系大枫沟组 (D2d)、志留系梅子垭组(S1m)、志留系大贵坪组(S1d)以及奥陶系二道桥组(Oer)。二道桥组由黑云母石英片岩、碳酸盐岩、炭硅质岩、酸性-基性变质火山岩等组成,底部往往为含炭石英岩、炭质千枚岩、炭质片岩或灰白色石英岩,其上与大贵坪组整合接触。大贵坪组由黑色含炭石英岩、炭质片岩、含炭千枚岩夹少量细晶白云岩或细晶灰岩透镜体组成,与上覆梅子垭组整合接触。梅子垭组由二云石英片岩、含石榴石千枚岩夹变质粉砂岩、深灰色绢云千枚岩,含炭千枚岩夹石英砂岩、变质细砂-粉砂岩、细晶灰岩组成,与上覆大枫沟组断层接触或被其超覆。大枫沟组由陆源碎屑岩、泥质岩和碳酸盐岩组成。

区域性的断裂和褶皱构造展布方向总体上与地层一致,断裂倾向北,倾角为65°~75°,局部发育闪长玢岩脉(图2a)。矿区范围内断裂和褶皱构造发育。断裂走向北西西,倾向北北东,倾角一般是50°~80°。矿区层间褶皱较为发育,轴面北北东倾和南倾均有,倾角为65°左右。黑虎庙脆-韧性剪切带为主要控矿构造,剪切带长约9.6 km,宽度30~80 m,总体走向北西西,倾向北北东,倾角约70°(图3)。从剪切带向两侧,岩石变形变质逐渐减弱,说明应变集中且强烈的区域有利成矿。剪切带沿走向呈舒缓波状,在烂木沟以东逐渐收缩变窄呈线状(图2b)。黑虎庙剪切带不仅在空间上控制着矿化蚀变带的展布,而且还控制着围岩蚀变的空间分带。矿区岩石普遍经历了区域动力变质作用,剪切带内多见片岩,石英定向拉长,黄铁矿呈条带状分布,平行于片理产状。

矿区范围内未见岩浆岩出露,区域上仅出露少量闪长玢岩脉(图2)。

图2 烂木沟金矿地质图(据杨增济等,1990修改)Fig.2 Geologic map of the Lanmugou gold deposit (modified from Yang et al., 1990)

矿区内矿体主要有3条,分别为Ⅰ、Ⅱ、Ⅲ号矿体,产于剪切带内的蚀变黑云母石英片岩或石英黑云母片岩中,矿体总体呈南东东—北西西向展布,呈层状、似层状产出,具膨胀收缩、分枝复合现象。矿体产状与地层产状基本一致,一般走向90°~110°,倾向北北东,倾角65°~75°。矿体平均厚度0.94~2.9 m,矿床Au平均品位2.48 g/t(图4)。

图4 烂木沟金矿31号勘探线剖面图Fig.4 Profile of No.31 exploration line in the Lanmugou gold deposit

矿石构造有片状构造、带状构造和浸染状构造,结构主要有变晶结构、交代结构和粒状结构。矿石矿物有黄铁矿、磁黄铁矿、黄铜矿、钛铁矿、闪锌矿、方铅矿等,脉石矿物主要有黑云母、石英、绿泥石、钠长石、方解石等。金以自然金和粒间金形式存在,石英是金的主要载体矿物,分布于石英的粒间,或包裹于石英中或分布于岩石裂隙及空隙中。与金矿成矿有关的蚀变矿物有黑云母、绿帘石、硬绿泥石、石榴子石、阳起石、透闪石、矽线石等。

3 矿床地球化学特征

3.1 采样地点及测试方法

样品采自烂木沟矿区烂木沟剖面、庙沟剖面,研究过程中对矿石黄铁矿和地层中的黄铁矿进行了识别(图5),并在挑样过程进行区别。采样位置见图3。

图5 烂木沟矿区地层中黄铁矿及矿石中黄铁矿和石英Fig.5 Pyrite and quartz in the ores and pyrites from the strata in the Lanmugou mining area

将野外采集的岩(矿)石样品送至河北廊坊中铁物探勘查有限公司挑选单矿物,单矿物纯度可达99%以上。单矿物微量稀土元素分析在国家地质实验测试中心完成,采用等离子质谱仪(PE300D)进行测试,检测的方法和依据为DZ/T0223-2001。

氢、氧、硫、铅同位素测试均由核工业北京地质研究院分析测试研究中心完成。用于分析测试氢氧同位素的石英样品主要采自矿区围岩中的石英脉。测试前先要清洗样品、去吸附水和次生包体。氢同位素分析采用爆裂法从样品中提取原生流体包裹体中的水,然后用锌置换水中的氢并送至质谱仪分析测试,精度为±2‰;氧同位素分析采用BrF5法,精度±0.2‰。所用仪器为MAT-253 EM型质谱仪,以V-SMOW为标准。硫同位素分析中,将硫化物样品以氧化亚铜作氧化剂制备测试样品,分析检测方法和依据为DZ/T0184.14-1997《硫化物中硫同位素组成的测定》,仪器型号为Delta v plus质谱仪,采用V-CDT国际标准,分析精度±0.2‰。铅同位素测试用ISOPROBE-T型号热表面电离质谱仪分析,检测方法和依据为DZ/T0184.12-1997《岩石、矿物中微量铅的同位素组成的测定》,精度为±0.2‰。

Re-Os同位素测年在国家地质实验测试中心完成,测试用的是TJA X-series型电感耦合等离子体质谱仪(ICP-MS),分析测试方法详见相关文献杜安道等(1994,2001)。

3.2 矿物稀土、微量元素地球化学特征

此次测试黄铁矿样品稀土、微量元素含量及比值如表1所示。从表1可知,地层中黄铁矿ΣREE含量低,为2.16×10-6~22.90×10-6,矿石中黄铁矿ΣREE高于地层中黄铁矿,为4.04×10-6~51.74×10-6。地层样品中黄铁矿w(Co)较低,在67.60×10-6~208.00×10-6,波动较大,w(Ni) 略高于w(Co),为108.00×10-6~585.00×10-6。

表1 烂木沟金矿岩(矿)石黄铁矿微量、稀土元素含量及特征值(WB/×10-6)Table 1 Contents and characteristic values of the trace and rare earth elements of pyrite in the rocks(ores) from the Lanmugou gold deposit(WB/×10-6)

3.3 同位素地球化学特征

3.3.1 硫同位素

硫同位素测试结果(表2)显示,矿石中黄铁矿的δ34S值介于9.9‰~12.9‰,均值为11.27‰;地层中的黄铁矿δ34S值介于14.4‰~20.7‰,均值为16.97‰;李福让等(2009)在羊坪湾金矿床测得磁黄铁矿且黄铁矿δ34S值介于7.5‰~11.7‰,均值为9.76‰。

表2 石泉—旬阳金矿带中矿床矿石及地层中黄铁矿硫同位素组成Table 2 Sulfur isotopic compositions of pyrites and pyrrhotite in the ores, deposits and strata from the Shiquan-Xunyang gold ore belt

3.3.2 铅同位素

烂木沟金矿区铅同位素测试结果见表3。由表可知,烂木沟金矿床矿石中硫化物206Pb/204Pb=18.560~20.206,207Pb/204Pb=15.668~15.708,208Pb/204Pb=38.257~38.860;地层中硫化物的206Pb/204Pb值为18.502~20.086,207Pb/204Pb值为15.644~15.788,208Pb/204Pb的值为38.475~38.907。铅同位素参数由Geokit软件(路远发,2004)计算所得。

表3 烂木沟金矿床黄铁矿中铅同位素组成及特征Table 3 Lead isotopic compositions in pyrites from the Lanmugou gold deposit

3.3.3 氢氧同位素

烂木沟矿区矿石中石英氢氧同位素组成见表4,石英的δ18OV-SMOW值为13.5‰~15.9‰,平均值为14.7‰,换算成流体的δ18O水值介于0.5‰~2.9‰,平均值为1.7‰,δDV-SMOW值为-77.8‰~-71.3‰,平均值为-74.55‰。由于烂木沟矿床研究尚处初步阶段,流体包裹体测温还未进行,文内换算中用到的均一温度根据王鹏等(2018)在矿带西段羊坪湾矿床测得的结果,按石英流体包裹体测温数据均值200.8 ℃计算,测温区间为160~260 ℃。李福让等(2009)在羊坪湾金矿床测得δ18O水值介于2.96‰~5.03‰(δ18O水值取原文平均值),平均值为4.28‰,δDV-SMOW值为-86‰~-66‰,平均值为-76.8‰。

表4 石泉—旬阳金矿带金矿床及旬阳地区志留系地层的氢氧同位素组成Table 4 Hydrogen and oxygen isotopic compositions in the Shiquan-Xunyang gold ore belt and the Silurian in the Xunyang area

3.3.4 Re-Os同位素

此次对烂木沟金矿矿石中黄铁矿进行Re、Os同位素测试,结果见表5。采用ISOPLOT程序将测试数据进行计算,所得5个点等时线年龄为202±13Ma,初始187Os/188Os为2.9±1.1(图6a),序号1~4点等时线年龄202±12 Ma,初始187Os/188Os为3.08±0.68(图6b)。由于测试对象为黄铁矿,矿物本身Re、Os含量低,造成等时线误差较大。

图6 烂木沟金矿矿石中的黄铁矿Re-Os等时线年龄Fig.6 Re-Os isochron ages for pyrites from the Lanmugou gold deposit

表5 烂木沟金矿矿石中的黄铁矿Re-Os同位素Table 5 Re-Os isotopic compositions in pyrites from the Lanmugou gold deposit

4 讨论

4.1 成矿物质来源

矿区地层中黄铁矿与矿石中黄铁矿的微量元素含量变化趋势总体一致,但Co/Ni比值相差较大。Co和Ni是黄铁矿中常见的微量元素,常以类质同象的形式替代黄铁矿中的Fe,利用黄铁矿Co、Ni元素含量及相关比值来探讨其形成环境和矿床成因。研究表明,内生和外生条件下形成的黄铁矿具有不同的 Co/Ni 值,其中与火山成因有关的黄铁矿其比值一般>1,通常5~50,平均为8.7;热液成因的黄铁矿 1

图7 烂木沟金矿床矿石和地层中黄铁矿稀土元素配分图Fig.7 REE distribution of pyrite in ores and strata from the Lanmugou gold deposit

硫是大多数矿床中最重要的成矿元素之一,硫来源的研究可以为流体和物质来源提供重要信息。因为在热液成矿作用中存在同位素的分馏效应,使得热液形成的硫化物δ34S值一般不等于热液δ34SΣS值,所以在判断硫源时,必须依据硫化物沉淀期间热液的总硫同位素组成 (δ34SΣS)(Ohmoto and Rye, 1997)。烂木沟金矿床的硫化物以黄铁矿为主(90%以上),指示其主成矿期成矿流体具低氧逸度,且溶液中以某一种含硫原子团(H2S或SO2-4)为主,这些金属硫化物的δ34S基本上反映了热液的δ34SΣS, 因此, 成矿热液的δ34SΣS可以近似等于硫化物的δ34S。 从硫同位素看,烂木沟金矿硫同位素组成稳定,指示了矿石硫源的均一性,说明该矿床硫的来源较为均一。矿石δ34S值虽低于地层硫,但总体上显示一定的亲缘性。从图8看,矿石黄铁矿中的δ34S值在沉积岩区、变质岩区范围内。同时,矿带西段羊坪湾矿床S同位素与矿带东段烂木沟矿床S同位素较为接近。

图8 石泉-旬阳金矿带硫同位素分布图(据韩吟文等,2003修)Fig.8 Sulfur isotopic distribution in the Shiquan-Xunyang gold deposit belt (modified from Han et al., 2003)

在206Pb/204Pb-207Pb/204Pb和206Pb/204Pb-208Pb/204Pb图(图9)上,矿石铅与地层铅组成一致,且铅同位素的组成范围较宽,数据集中在造山带线附近及其与上地壳线之间,并更接近于造山带线,表明了铅的来源为混合来源。朱炳泉等(1998)研究发现通过207Pb/204P和208Pb/204Pb的变化能够反映源区的变化,并且根据不同成因类型矿石铅的资料和已知成因矿石铅资料,提出不同成因类型的矿石矿物Δβ-Δγ图解。 依据样品208Pb/204Pb和207Pb/204Pb相对于同时代地幔的208Pb/204Pb和207Pb/204Pb的偏差值Δβ和Δγ,做出烂木沟金矿黄铁矿Pb同位素和地层岩石中Pb同位素的Δβ-Δγ图解(图10),数据点均落入上地壳与地幔混合的俯冲带铅范围内。结合铅同位素构造模式图(图9)和Δβ-Δγ成因分类图解(图10),认为铅源具有壳、幔混合特征。

图9 烂木沟金矿黄铁矿铅同位素构造模式图(据 Zartman and Doe, 1981修改)Fig.9 Lead isotopic diagram of pyrites from the Lanmugou gold deposit (modified from Zartman and Doe, 1981)

图10 烂木沟金矿铅同位素Δβ-Δγ成因分类图解(据朱炳泉等,1998修改)Fig.10 Δβ-Δγ genetic classification diagram of lead isotope in the Lanmugou gold deposit (modified from Zhu et al., 1998)

结合区内地层中有一套未划分的中基性火山岩系,以及微量、稀土元素,S、Pb同位素和187Os/188Os初始值信息,推断烂木沟金矿成矿物质主要来源于地层,更可能来自地层中的火山岩夹层。

4.2 成矿流体来源及属性

烂木沟金矿石英的δD值为-77.8‰~-71.3‰,δ18O水的值为0.5‰~2.9‰,在δ18O-δD关系图上(图11),矿区成矿流体的H-O同位素组成落在岩浆水和变质水附近,并且在雨水线与沉积岩区中间位置,与区域上硅质岩和地层中脉石英相比,局部较为接近,表明烂木沟金矿成矿流体具有多属性,由于矿区地层为变质岩系,且含中基性火山岩夹层,由此推断成矿流体主要源自建造水,后经历区域变质作用及大气降水的加入,在流体萃取火山岩层成矿物质的过程中,具备了岩浆水和变质水的属性,显示了混合源的特征,就成矿流体属性而言,总体应属变质流体。与羊坪湾金矿同位素对比,羊坪湾金矿流体更接近变质水与岩浆水。

图11 石泉-旬阳金矿带成矿流体及旬阳地区地层流体δ18O-δD图解(据Taylor, 1997;陈岳龙等,2005修改)Fig.11 δ18O-δD diagram of ore-forming fluids in the Shiquan-Xunyang gold belt and fluids of strata in the Xunyang area(modified from Taylor, 1997 and Chen et al., 2005)

4.3 成矿时代及矿床成因分析

烂木沟矿区位于南秦岭石泉-神河构造岩片,矿体赋存于脆-韧性剪切带内,说明烂木沟金矿床成矿与中—晚三叠世秦岭碰撞造山密切相关。文中获得烂木沟金矿黄铁矿Re-Os同位素的等时线年龄202±12 Ma,与同一矿带西段的羊坪湾金矿床黄铁矿Rb-Sr同位素年龄208±0.88 Ma(高怀雄等,2016)较一致,说明该等时线年龄较为可信,烂木沟金矿形成于晚三叠世末期—早侏罗世早期。

从秦岭造山带地质演化历史分析,推覆构造主体形成于236~213 Ma(朱华平和付静茹,2004),韧性剪切作用即发育于此期间,之后进入后碰撞调整阶段,表现为勉略带发生伸展垮塌作用(~200 Ma;Dong and Santosh, 2016),形成勉县、青峰等一系列早侏罗世伸展断陷盆地(Dong et al., 2011; 张国伟等,2019)。因此,金矿形成于秦岭碰撞造山背景下的伸展阶段。

石泉-旬阳金矿化带西段金矿床的研究表明,脆-韧性剪切带至少存在3期构造变形,金矿的形成与第2期(S2)构造变形密切相关,矿体产状受S2构造面理控制,成矿流体充填于早期形成的脆-韧性剪切带面理,矿物沉淀富集(高雅宁等,2016;杨兴科等,2016;韩珂等,2018,2020),金成矿作用滞后于剪切作用过程。同时,注意到韧性剪切与成矿时代在误差范围内较为接近,推断成矿是在韧性剪切带持续演化过程中形成。剪切构造变形过程中,剪切带在不同构造层次上同时表现出不同的变形特征,成矿元素从深部韧性(超韧性)剪切变形域中活化迁出,沿剪切带向上迁移到中、浅层次的脆韧性、脆性变形域中沉淀富集(陈柏林等,1999;刘贵,2020),构造热事件与成矿事件属于同一演化过程的产物,只是矿质的沉淀时间要略晚于深层次的韧性变形,而与赋矿部位的脆韧性变形几乎是同步的(王义天等,2004;刘贵,2020)。因此,推断烂木沟金矿成矿过程中,俯冲碰撞挤压引起地层的区域变质脱水及大气降水补充是形成成矿流体的关键,流体萃取火山岩中的成矿物质形成成矿流体上升,在碰撞后的伸展阶段,上升的成矿流体到达脆-韧性剪切带中,利用了剪切带片理,矿物沉淀富集,形成烂木沟金矿床,成矿类型为造山型金矿床。

5 结论

(1)获得烂木沟金矿矿石中黄铁矿Re-Os同位素年龄为202±12 Ma,结合区域构造演化历史和金矿成矿特征,推断烂木沟金矿形成于晚三叠世末期—早侏罗世早期。

(2)成矿流体来源于建造水和大气降水,在区域变质和流体萃取成矿物质的过程中,具备了岩浆水和变质水的属性,总体应属变质流体;成矿物质来源于地层中基性火山岩夹层。

(3)烂木沟金矿是在早古生代含金背景较高的地层基础上,经挤压变形和区域变质作用,流体萃取中基性火山岩系的成矿物质,之后沿韧性剪切带向上运移,并在晚三叠世末期—早侏罗世早期秦岭造山带碰撞后的伸展阶段,充填于脆-韧性剪切带片理中,富集成矿,成矿类型为造山型金矿床。

猜你喜欢

黄铁矿同位素金矿
磁黄铁矿多型矿物学特征与分选行为差异
天然、改性和合成黄铁矿在废水处理中的应用
中国十大金矿排名
加纳Amanforom矿区Ⅲ号隐伏金矿带的发现与评价
Premier金矿公司简介
西岭金矿——中国最大单体金矿
黄铁矿的吸附性能研究现状及进展
黄铁矿主微量元素及晶胞参数研究内容和意义
《同位素》变更为双月刊暨创刊30周年征文通知
《同位素》(季刊)2015年征订通知