APP下载

电厂热工过程控制中智能PID控制器的应用探讨

2022-07-15

应用能源技术 2022年6期
关键词:热工微分控制算法

李 伟

(晋控电力塔山发电山西有限公司,大同 037000)

0 引 言

从电厂热工过程控制的实践操作来看,一般PID控制器无法应对电厂复杂的动力结构,建构出精准而完善的数学模型,实现对各个动力系统的有效控制,因此在实际应用中具有很大的局限性,无法适应当前日趋复杂的电厂内部结构,因此必须对一般PID控制器进行优化,从而拓宽该技术的应用领域。

一般PID控制器本身的参数整定方法具有局限性,因此无法适应多元化的动力工况,为解决这一问题,必须对PID控制器的性能进行研究[1]。对PID控制器的研究历时已久,很多研究人员在对一般PID控制器的性能进行优化时,逐渐产生规则整定法、闭环搜索法、间接自整定等一些多样化的参数整定方法,但是这些方法普遍都需要遵循较多的运行规则,同时还要对多样化的特征参数进行辨识,因此只适用于一些工况比较简单的电厂,无法应用于复杂的工况过程控制,而部分研究人员通过改进PID算法的方式对PID控制器进行优化,并产生选择性控制算法、非线性控制算法、自适应性控制算法等先进算法,并且综合应用智能控制技术,对学习算法、直觉推理规则、启发式直观判断、专家经验等方法进行有效利用,从而形成智能PID控制器,使电厂热工过程控制水平有显著提升[1]。

1 PID控制原理算法

PID三个字母是比例,积分,微分的英文首字母缩写。可见这三个功能在系统中都起作用,只是负责的功能不同。

PID控制应该算是应用非常广泛的控制算法了。小到控制一个元件的温度,大到控制无人机的飞行姿态和飞行速度等等,都可以使用PID控制[2]。

总的来说,当得到系统的输出后,将输出经过比例,积分,微分3种运算方式,叠加到输入中,从而控制系统的行为,下面用一个简单的实例来说明。

1.1 比例控制算法

先说PID中最简单的比例控制,抛开其他两个不谈。还是用一个经典的例子,假设有一个水缸,最终的控制目的是要保证水缸里的水位永远的维持在1米的高度。假设初试时刻,水缸里的水位是0.2米,那么当前时刻的水位和目标水位之间是存在一个误差的error,且error为0.8。这个时候,假设旁边站着一个人,这个人通过往缸里加水的方式来控制水位。如果单纯的用比例控制算法,就是指加入的水量u和误差error是成正比的。即u=kp*error,假设kp取0.5,那么t=1时(表示第1次加水,也就是第一次对系统施加控制),那么u=0.5*0.8=0.4,所以这一次加入的水量会使水位在0.2的基础上上升0.4,达到0.6。接着,t=2时刻(第2次施加控制),当前水位是0.6,所以error是0.4。u=0.5*0.4=0.2,会使水位再次上升0.2,达到0.8,如此这么循环下去,就是比例控制算法的运行方法,可以看到,最终水位会达到我们需要的1米。但是,单单的比例控制存在着一些不足,其中一点就是稳态误差!

像上述的例子,根据kp取值不同,系统最后都会达到1米,不会有稳态误差。但是,考虑另外一种情况,假设这个水缸在加水的过程中,存在漏水的情况,假设每次加水的过程,都会漏掉0.1米高度的水。仍然假设kp取0.5,那么会存在着某种情况,假设经过几次加水,水缸中的水位到0.8时,水位将不会再变换!!!因为,水位为0.8,则误差error=0.2.所以每次往水缸中加水的量为u=0.5*0.2=0.1.同时,每次加水缸里又会流出去0.1米的水!!!加入的水和流出的水相抵消,水位将不再变化!也就是说,如果目标是1米,但是最后系统达到0.8米的水位就不在变化了,且系统已经达到稳定。由此产生的误差就是稳态误差了。(在实际情况中,这种类似水缸漏水的情况往往更加常见,比如控制汽车运动,摩擦阻力就相当于是“漏水”,控制机械臂、无人机的飞行,各类阻力和消耗都可以理解为本例中的“漏水”),所以,单独的比例控制,在很多时候并不能满足要求。

1.2 积分控制算法

1.3 微分控制算法

换一个另外的例子,考虑刹车情况。平稳的驾驶车辆,当发现前面有红灯时,为了使得行车平稳,基本上提前几十米就放松油门并踩刹车了。当车辆离停车线非常近的时候,则使劲踩刹车,使车辆停下来。整个过程可以看做一个加入微分的控制策略。

微分,说白了在离散情况下,就是error的差值,就是t时刻和t-1时刻error的差,即u=kd*(error(t)-error(t-1)),其中的kd是一个系数项。可以看到,在刹车过程中,因为error是越来越小的,所以这个微分控制项一定是负数,在控制中加入一个负数项,他存在的作用就是为了防止汽车由于刹车不及时而闯过了线。从常识上可以理解,越是靠近停车线,越是应该注意踩刹车,不能让车过线,所以这个微分项的作用,就可以理解为刹车,当车离停车线很近并且车速还很快时,这个微分项的绝对值(实际上是一个负数)就会很大,从而表示应该用力踩刹车才能让车停下来[2]。

切换到上面给水缸加水的例子,就是当发现水缸里的水快要接近1的时候,加入微分项,可以防止给水缸里的水加到超过1米的高度,说白了就是减少控制过程中的震荡。

讲到这里,PID的原理和方法就说完了,剩下的就是实践了。在真正的工程实践中,最难的是如果确定三个项的系数,这就需要大量的实验以及经验来决定了。通过不断的尝试和正确的思考,就能选取合适的系数,实现优良的控制器。

2 电厂热工过程控制中智能PID控制器的应用

电厂热工过程中的温度不比压力、流量、液位被控变量的控制,因为温度传递存在滞后性。其中就涉及到滞后时间这个对象特性,一般有纯滞后、容量滞后。前者一般指工艺段物料传输需要时间引起的,后者一般指被控对象的热交换、物料连续经过多个容器才能建立一个稳定信号需要时间引起的。明了点就是温度的真实值一下子反应不出来要等下才能显示真实值[3]。

在温度闭环控制中,为了解决这个问题就要用PID温度控制器。关键用的还是PID中的D(微分控制),微分控制的作用就是超前控制。假设现在有个物料温度需要控制,想控制在35℃(35℃就是目标值)。PID控制有P、PI、PD、PID等控制,又考虑到被控变量是温度,因此需要选用PID控制。

温度传感器检测到温度,此时得到的温度值会跟目标值(35°)比较得到偏差,然后控制器判断快速做出处理判断发出信号执行器调节温度[3],此时会得到一个新的动态温度稳态值,温度传感器又会把此值信号传送给控制器跟目标值比较得到一个余差,那么需要I积分控制介入,温度控制器处理判断后再次发出信号执行器调节温度,达到新动态稳定后,把新的稳态值传输给控制器跟目标值比较后还是控制不理想需要D微分控制的介入。因此PID参数整定是一个枯燥无味的过程,有时想提高控制质量找到理想的PID三个控制参数值花费不少功夫。

要实现温度控制动态稳定在35°附近,需要进行PID参数整定。先比例后积分,最后用微分。温度控制仪可以自动整定PID,也可以手动整定PID。

3 结束语

总体说来,PID控制器简单易懂,使用中不需精确的系统模型等先决条件,因而成为应用最为广泛的控制器。但是,PID也不是全能的。很重要的一点是因为,PID控制器主要适用于基本上线性,且动态特性不随时间变化的系统,但是对复杂非线性系统和复杂信号追踪,还是有局限性的。

猜你喜欢

热工微分控制算法
多飞行器突防打击一体化微分对策制导律设计
一类带有Slit-strips型积分边值条件的分数阶微分方程及微分包含解的存在性
热工仪表中的自动化控制及其应用
电厂热工控制系统中抗干扰技术运用分析
跟踪微分器的仿真实验分析与研究
基于dSPACE和PLC的控制算法测试系统设计
微分在近似计算中的应用
论如何提升火力发电厂热工自动化水平
基于DCS的过程实时控制平台的研究
卫星姿控系统半物理仿真中转台控制算法的实现