电解海水阴极析氢非贵金属电催化剂研究进展
2022-07-14张晗明张少飞孙金峰
张晗明 张少飞 孙金峰
摘要:氫能具有高能量密度、绿色可持续的优点,是人类社会的理想能源。电解海水制氢是未来氢能产业的战略方向,其中阴极析氢催化剂的活性和稳定性对电解海水制氢的发展至关重要。贵金属铂虽具备优异的析氢催化性能,但价格昂贵、资源有限,限制了其大规模应用。因此,对非贵金属催化剂的研究备受关注。从析氢反应原理入手,介绍了过电位、塔菲尔斜率、法拉第效率、比活性和质量活性等评价催化性能的几个重要参数,综述分析了多种非贵金属催化剂作为电解海水制氢阴极催化剂的研究现状,指出了目前电解海水制氢面临的问题,认为未来非贵金属催化剂规模化电解海水阴极析氢研究应从以下几方面开展:1)设计高活性和稳定性的非贵金属催化剂;2)优化非贵金属催化剂的制备工艺;3)利用先进测试表征手段辅助构建反应模型;4)深化理论计算机理方面的研究。
关键词:氢能;电解海水;氢析出反应;非贵金属催化剂;氢吸附自由能;电子结构;异质原子
中图分类号:O643.36文献标识码:A
DOI:10.7535/hbkd.2022yx03013
Review of nonprecious metal electrocatalysts in cathode hydrogen generation by seawater electrocatalysis
ZHANG Hanming ZHANG Shaofei SUN Jinfeng
(1.School of Materials Science and Engineering,Hebei University of Science and Technology,Shijiazhuang,Hebei 050018,China;2.Hebei Key Laboratory of Flexible Functional Materials,Shijiazhuang,Hebei 050018,China)
Abstract:Hydrogen energy has the advantages of high energy density,green and sustainability,which make it an ideal energy source for human society.Hydrogen generation by seawater electrocatalysis becomes the strategic direction of hydrogen energy industry in the future.The activity and stability of cathode hydrogen evolution catalyst are vital to this hydrogen energy strategy.Although the precious metal Pt-based electrocatalysts have shown excellent catalytic performance on hydrogen evolution,the high price and scarce resources limit their large-scale application.Therefore,nonprecious metal electrocatalysts have attracted much research attention.Starting from the principle of hydrogen evolution reaction,important parameters of overpotential,Tafel slope,Faraday efficiency,specific activity and mass activity,etc.were introduced to evaluate catalytic performances.The review summarized recent progress on multiple nonprecious metal electrocatalysts for cathode hydrogen generation by seawater electrocatalysis,and the problems of current research was clarified.Additionally,the future research of nonprecious metal electrocatalysts in cathode for large-scale hydrogen generation by seawater electrocatalysis was prospected from the following aspects:1) Designing nonprecious metal catalysts with high activity and stability;2) Optimizing production and preparation process of nonprecious metal catalyst;3) Using advanced test and characterization to construct reaction models;4) Deepening theoretical calculation for the mechanism research.
Keywords: hydrogen energy;seawater electrocatalysis;hydrogen evolution reaction;nonprecious metal catalyst;hydrogen adsorption free energy;electronic structure;heteroatom
随着当今社会对化石能源需求的日益增长,温室效应、环境污染以及能源危机等问题日渐凸显,探索新型清洁能源代替传统化石能源迫在眉睫。氢能,因具有高能量密度、高热值、绿色清洁、可持续等优点,被认为是人类社会的理想能源[1]。氢,可以作为绿色燃料直接燃烧放热,也可以用于氢燃料电池发电。此外,氢气在石化、电子、冶金、食品等领域也有着重要的用途。氢能的开发利用已经受到世界各国的重视[1-2]。国际能源署在《能源技术展望2020》中预测,未来50年全球对氢能源的需求量将增至现在的5倍。2020年中国发布的《新时代的中国能源发展》白皮书中也提出了加速发展绿氢制取、储运和应用等氢能产业链技术装备,促进氢能燃料电池技术链、氢燃料电池汽车产业链的发展。国家十四五规划纲要中进一步强调了加速氢能产业发展,要在2030年前碳排放达峰,2060年前实现碳中和。目前,商用氢气96%以上來自化石燃料,制氢的同时会伴有大量CO排放,被称为灰氢。电解水制氢过程为零碳排放,产生的氢为绿氢,是规模化制氢的潜在方案。但是,电解水技术大多依赖纯水,而淡水资源仅占全球总水量的3.5%,淡水资源紧缺是继全球气候变暖之后的世界第二大环境问题。广阔无垠的海水占全球总水量的96%以上,利用电解海水制氢有助于减缓对淡水资源的消耗。因此,电解海水制氢是未来氢能产业规模化、低成本发展的战略方向[3]。
电解海水电解槽中阳极发生氧析出反应(OER),阴极发生氢析出反应(HER)。较早的研究工作主要集中在制备高效、高选择性的阳极OER催化剂,抑制析氯竞争反应(ClER)[4-8]。但一些因素导致电解海水制氢的成本很大:一是目前阴极析氢反应依然依赖贵金属Pt基催化剂;二是海水中的钙离子和镁离子易形成Ca(OH)和Mg(OH)沉淀,沉积在电极表面,覆盖活性位点,导致催化剂失活[9];三是海水中高浓度的氯离子(~0.5 mol/L)对阴极催化剂具有很强的腐蚀作用,会使催化剂发生降解[10]。因此,开发高效、稳定、廉价的阴极HER催化剂对电解海水制氢的发展至关重要。近年来,许多科研人员致力于稳定、廉价非贵金属催化剂的研究,通过增大催化剂比表面积[11]、提高金属价态形成磷化物、硫化物[12]、释放阴离子以排斥氯离子[13]等方法,或采用较稳定的单原子、合金,或在催化剂表面覆盖碳层、MnO和CrO保护层等手段,提高非贵金属催化剂的抗腐蚀性能[9]。在此基础上,人们对非贵金属电解海水析氢催化剂在提升活性和稳定性方面的研究也取得了进展,对其析氢机理也进行了深入探讨,有望替代贵金属Pt基催化剂[11,14-15]。
1析氢反应机理及相关参数
1.1析氢反应机理
1.2催化剂的性能参数
1.2.1过电位
1.2.2塔菲尔斜率
1.2.3法拉第效率
法拉第效率指外电路提供的电荷变成氢气分子的效率,即实际氢析出量与理论氢析出量的比值。实际氢析出量可以通过气驱水法或气相色谱检测获得,理论氢析出量可由法拉第定律计算反应中的电量而得。理想催化剂的法拉第效率为100%,但是副反应的存在会造成一定的损失。
1.2.4比活性和质量活性
1.2.5稳定性
除了催化活性,催化剂的长循环稳定性也是实际应用中非常重要的一个参数。通常有2种稳定性测试:加速循环伏安法和计时电位法或计时安培法。加速循环伏安法通过比较循环伏安测试前后线性扫描伏安曲线中过电位的变化情况,衡量催化剂的稳定性;计时电位法或计时安培法是固定电流或电压,通过一段时间后根据电流或电压变化情况判断稳定性的好坏。
2非贵金属催化剂的研究现状
近年来,电解海水制氢领域已经受到国内外研究工作者的广泛关注,许多文献报道了非贵金属作为阴极析氢催化剂的研究工作,并对其催化机理进行了较为深入的研究[3, 10, 11, 14, 23-24]。科研人员通过在非贵金属钼、钴、镍、铁及铜中引入异质原子,如磷、氮、氧、碳、硫、硒原子等非金属原子或其他非贵金属原子,形成非贵金属磷化物、氮化物、氧化物/氢氧化物、碳化物、硫族化物以及非贵金属单原子、复合催化剂[25-50]。异质原子的引入不但能提高非贵金属催化剂的稳定性和抗腐蚀性,还能调节活性中心原子的电子结构,使其d带中心的能级靠近反应费米能级,从而调节氢吸附自由能使其接近0,增强非贵金属催化剂的催化活性。
2.1非贵金属磷化物
在多种非贵金属催化剂中,非贵金属磷化物具备优异的导电性和结构稳定性,同时大半径的磷原子溶入金属晶体结构会导致晶体表面存在较多不饱和原子,提高其本征催化活性。因此,非贵金属磷化物在电解海水阴极析氢方面展现出巨大的应用潜力[51]。催化过程中,非贵金属磷化物中金属和P位点可分别作为质子和氢氧根的吸附位点,加速析氢反应动力学。基于以上优点,非贵金属磷化物作为理想的海水阴极析氢催化剂近年来备受关注,人们研发出双金属磷化物、磷化物异质结和元素掺杂的磷化物等高效电解海水阴极析氢催化剂。
2.1.1双金属磷化物
2.1.2磷化物异质结
2.1.3元素掺杂
2.2非贵金属氮化物
非贵金属氮化物中较小原子半径的氮原子溶入金属晶体的间隙中,使得晶体结构中的原子排布更紧密,导电性更高、抗腐蚀性更强;加之氮原子与金属原子的协同作用,可调节过渡金属d带中心,提高催化活性,因而使得非贵金属氮化物也成为具有发展前景的电解海水阴极析氢催化剂[52]。近年来,大量研究者致力于研发性能优异的非贵金属氮化物,如碳包覆氮化物、贫氮中氮富氮氮化物、双金属氮化物。
2.2.1碳包覆氮化物
2.2.2贫氮中氮富氮氮化物
2.2.3双金属氮化物
2.3非贵金属氧化物/氢氧化物
非贵金属氧化物/氢氧化物因廉价易得、本征活性高,已成为最有潜力的电解水析氢非贵金属催化剂之一[54-55]。但是,非贵金属氧化物/氢氧化物导电性差,在电解海水阴极析氢反应中的催化性能仍然不是很理想。因此,科研工作者采用合金化、元素掺杂等策略来提高催化剂的电子传输能力和阴极析氢的催化活性。
2.3.1双金属氧化物/氢氧化物
2.3.2元素掺杂
2.4非贵金属硫族化物
非贵金属硫族化物资源丰富、结构特殊、催化活性优异,是一类应用广泛的电解水析氢催化剂[57],硫族化物在催化过程中会放出含硫的多原子阴离子,排斥氯负离子,提高抗腐蚀性[13]。元素掺杂硫族化物和硫族化物異质结在催化电解海水阴极析氢领域具有很好的发展前景。
2.4.1元素掺杂硫族化物
2.4.2硫族化物异质结
2.5非贵金属单原子催化剂
为了充分利用非贵金属,降低成本,增强催化活性,科研人员研发了非贵金属单原子催化剂,并广泛应用于各种电催化领域[58-59]。非贵金属单原子通常与非金属原子(N,S等)配位,稳定金属单原子的同时,还实现了金属中心电子结构的调控,提高催化活性。近年来,非贵金属单原子催化剂已经应用于催化电解海水阴极析氢反应,如N-配位单原子和N,S-配位单原子催化剂都取得了令人惊喜的结果。
2.5.1N-配位单原子
2.5.2N,S-配位单原子
2.6其他非贵金属催化剂
除上述几种催化剂外,其他非贵金属催化剂,如混合型金属化合物异质结、杂化催化剂,也被广泛应用于电解海水阴极析氢。通过不同化合物之间的电子相互作用,可调节其电子结构,优化析氢催化性能。
2.6.1混合型金属化合物异质结
2.6.2杂化催化剂
3问题与展望
氢能产业是国家的重大战略发展方向,也是实现碳达峰、碳中和宏伟目标的重要举措。电解海水制氢是规模化制氢的潜在方案。目前,制约电解海水制氢产业发展的瓶颈是电解能耗过高、催化活性不高、催化剂稳定性差等问题。因此,降低制氢成本、提高催化剂活性和稳定性是发展电解海水制氢的关键。近年来,一些研究人员致力于开发廉价、高效、稳定的电解海水阴极析氢非贵金属催化剂,但非贵金属催化剂自身的催化性能较低、稳定性较差。通过在非贵金属催化剂中引入异质原子,可显著提高其性能及稳定性。一方面,异质原子的引入可提高非贵金属催化剂的稳定性和抗腐蚀性;另一方面,异质原子能调节活性中心原子的电子结构,增强催化活性。其中,非贵金属磷化物、氮化物、氧化物/氢氧化物、碳化物、硫族化物、非贵金属单原子、合金以及多种复合催化剂已经广泛应用于电解海水阴极析氢的研究,并取得了令人惊喜的成果。但是,当前电解海水制氢仍处于研究阶段,还存在一些亟待解决的问题。
3.1电解海水制氢面临的问题
1)大部分研究工作均没有考虑大电流析氢反应时的能耗问题,法拉第效率也多是小电流下的测试结果[28,49-50]。而电解海水制氢规模化的要求是工作电流>1 A/cm,能耗小于4.4 kW·h /m(H)。
2)催化剂活性和稳定性距离工业电解水制氢标准还存在很大差距。研究工作中析氢电流密度大部分小于1 A/cm,测试时间大多几十小时。电流密度超过1 A/cm [28,34]时测试达到上千小时[13,38]的报道屈指可数。而工业电解海水电流密度高达1 A/cm,要求电极工作2 000 h性能衰减要小于5%。
3)目前非贵金属电解海水阴极析氢催化剂的制备工序较复杂,多数需要经过多步工艺制得。此外,催化剂的制备仅限于实验毫克或克级的研究,不能满足催化剂大规模批量生产的要求。
4)催化剂的抗腐蚀机理以及抗腐蚀性与催化活性之间的关系仍有待研究,催化剂的晶体结构、金属价态以及负离子种类与抗腐蚀性和催化活性之间的作用机制仍需探明。
5)海水体系中析氢机理的研究需考虑海水体系的影响。目前,对于电解海水析氢催化机理的研究大多没有考虑海水体系中氯离子、镁离子等对催化机理的影响。电解水制氢通常采用碱性或酸性的纯水体系,其催化活性高于电解海水的性能。由此可见,氯离子、镁离子等对催化反应中涉及的反应底物和中间体(水分子、氢离子、氢氧根离子等)之间的静电作用力,其对催化反应机理的影响也需深入研究。
3.2电解海水制氢研究展望
加速氢能产业革命,推动电解海水制氢的发展仍然任重道远,迫切需要研发新型、高效、稳定的非贵金属催化剂。未来,对电解海水析氢研究的重点可概括为以下几方面。
1)设计高活性和稳定性的非贵金属催化剂
综合利用电子工程、缺陷工程、界面工程等策略,调节原子轨道能级、电子结构,增强催化剂本征活性与自身稳定性,利用纳米工程构筑纳米多孔结构,增加活性位点,加速物质传输,最终通过降低产氢能耗,实现大电流密度下超长时间的持续工作。
2)优化非贵金属催化剂的制备工艺
尽量采用简便易行的操作工艺规模化生产非贵金属催化剂,使用简单的仪器设备、廉价易得的原料、温和的反应条件,避免使用高温、高压工艺和强腐蚀、易致毒及易致爆等危险化学品。同时,控制制备工艺过程中废气、废液、废固的产生和排放,保护操作人员的生命安全,保护环境,实现催化剂的大规模量产。
3)利用先进测试表征手段辅助构建反应模型
利用先进原位测试表征技术和常规表征手段,检测反应过程中活性位点的反应历程、价态和结构变化,检测不同类型催化剂的腐蚀情况和电解液中杂质离子的变化情况,确定催化反应过程和腐蚀过程,构建催化剂模型和电解液模型。
4)深化理论计算机理研究
利用理论计算深入探究海水环境中的析氢反应机理、抗腐蚀机理及电解液对催化反应的影响机制。计算催化剂模型中活性中心反应中间体和产物的吸/脱附能力,确定析氢反应机理与构效关系;计算催化剂模型的腐蚀能垒,确定腐蚀机理;优化催化剂组分及结构;根据电解液模型中杂质离子的变化及迁移情况,确定其对催化反应的影响机制,指导电解海水析氢非贵金属催化剂的研发工作,推动电解海水制氢工业的发展。
此外,沿海地区可充分利用风能、太阳能、潮汐能等优势,内陆盐湖地区可利用风能、太阳能和地热能,通过研发实现可再生能源电解海水制氢,提高电解海水制氢的经济性。
参考文献/References:
[1]PAREEK A,DOM R,GUPTA J,et al.Insights into renewable hydrogen energy:recent advances and prospects[J].Materials Science for Energy Technologies,2020,3:319-327.
[2]HIRSCHER M,AUTREY T,ORIMO S I.Hydrogen energy[J].Chem Phys Chem,2019,20(10):1157-1167.
[3]DRESP S,DIONIGI F,KLINGENHOF M,et al.Direct electrolytic splitting of seawater:opportunities and challenges[J].ACS Energy Letters,2019,4(4):933-942.
[4]JADHAV A R,KUMAR A,LEE J,et al.Stable complete seawater electrolysis by using interfacial chloride ion blocking layer on catalyst surface[J].Journal of Materials Chemistry A,2020,8(46):24501-24514.
[5]YU Luo,WU Libo,MCELHENNY B,et al.Ultrafast room-temperature synthesis of porous S-doped Ni/Fe (oxy)hydroxide electrodes for oxygen evolution catalysis in seawater splitting[J].Energy & Environmental Science,2020,13(10):3439-3446.
[6]VOS J G,KOPER M T M.Measurement of competition between oxygen evolution and chlorine evolution using rotating ring-disk electrode voltammetry[J].Journal of Electroanalytical Chemistry,2018,819:260-268.
[7]EXNER K S,ANTON J,JACOB T,et al.Controlling selectivity in the chlorine evolution reaction over RuO-based catalysts[J].Angewandte Chemie-International Edition,2014,53(41):11032-11035.
[8]CUI Baihua,HU Zheng,LIU Chang,et al.Heterogeneous lamellar-edged Fe-Ni(OH)/NiS nanoarray for efficient and stable seawater oxidation[J].Nano Research,2021,14(4):1149-1155.
[9]TONG Wenming,FORSTER M,DIONIGI F,et al.Electrolysis of low-grade and saline surface water[J].Nature Energy,2020,5(5):367-377.
[10]申雪然,馮彩虹,代政,等.电解海水制氢的研究进展[J].化工新型材料,2021,49(12):55-60.SHEN Xueran,FENG Caihong,DAI Zheng,et al.Progress on hydrogen generation by splitting seawater[J].New Chemical Materials,2021,49(12):55-60.
[11]WANG Cheng,SHANG Hongyuan,JIN Liujun,et al.Advances in hydrogen production from electrocatalytic seawater splitting[J].Nanoscale,2021,13(17):7897-7912.
[12]JIN Huanyu,LIU Xin,VASILEFF A,et al.Single-crystal nitrogen-rich two-dimensional MoN nanosheets for efficient and stable seawater splitting[J].ACS Nano,2018,12(12):12761-12769.
[13]KUANG Yun,KENNEY M J,MENG Yongtao,et al.Solar-driven,highly sustained splitting of seawater into hydrogen and oxygen fuels[J].Proceedings of the National Academy of Sciences of the United States of America,2019,116(14):6624-6629.
[14]LIU Guangbo,XU Yingshuang,YANG Teng,et al.Recent advances in electrocatalysts for seawater splitting[J/OL].Nano Materials Science[2020-12-19].https://www.sciencedirect.com/science/article/pii/S2589965120300659.
[15]MOHAMMED-IBRAHIM J,MOUSSAB H.Recent advances on hydrogen production through seawater electrolysis[J].Materials Science for Energy Technologies,2020,3:780-807.
[16]DAFFT E G,BOHNENKAMP K,ENGELL H J.Investigations of the hydrogen evolution kinetics and hydrogen absorption by iron electrodes during cathodic polarization[J].Corrosion Science,1979,19(7):591-612.
[17]CARNEIRO-NETO E B,LOPES M C,PEREIRA E C.Simulation of interfacial pH changes during hydrogen evolution reaction[J].Journal of Electroanalytical Chemistry,2016,765:92-99.
[18]CHENG Y F,NIU L.Mechanism for Hydrogen evolution reaction on pipeline steel in near-neutral pH solution[J].Electrochemistry Communications,2007,9(4):558-562.
[19]PARSONS R.The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen[J].Transactions of the Faraday Society,1958,54:1053-1063.
[20]NRSKOV J K,BLIGAARD T,LOGADOTTIR A,et al.Trends in the exchange current for hydrogen evolution[J].Journal of the Electrochemical Society,2005,152(3):J23-J29.
[21]MORALES-GUIO C G,STERN L A,HU Xile.Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution[J].Chemical Society Reviews,2014,43(18):6555-6569.
[22]MCCRORY C C L,JUNG S,PETERS J C,et al.Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction[J].Journal of the American Chemical Society,2013,135(45):16977-16987.
[23]KHATUN S,HIRANI H,ROY P.Seawater electrocatalysis:activity and selectivity[J].Journal of Materials Chemistry A,2021,9(1):74-86.
[24]D’AMORE-DOMENEC R,LEO T J.Sustainable hydrogen production from offshore marine renewable farms:techno-energetic insight on seawater electrolysis technologies[J].ACS Sustainable Chemistry & Engineering,2019,7(9):8006-8022.
[25]MA Yuanyuan,WU Caixia,FENG Xiaojia,et al.Highly efficient hydrogen evolution from seawater by a low-cost and stable CoMoP@C electrocatalyst superior to Pt/C[J].Energy & Environmental Science,2017,10(3):788-798.
[26]LYU Qingliang,HAN Jianxin,TAN Xueling,et al.Featherlike NiCoP holey nanoarrys for efficient and stable seawater splitting[J].ACS Applied Energy Materials,2019,2(5):3910-3917.
[27]WANG Hui,SHI Xin,JI Shan,et al.Tailoring hollow structure within NiCoP nanowire arrays via nanoscale Kirkendall diffusion to enhance hydrogen evolution reaction[J].Nanotechnology,2020,31(42):5404-5411.
[28]WU Libo,YU Luo,ZHANG Fanghao,et al.Heterogeneous bimetallic phosphide N2P-FeP as an efficient bifunctional catalyst for water/seawater splitting[J].Advanced Functional Materials,2021,31(1):6484-6495.
[29]LIU Dong,AI Haoqiang,CHEN Mingpeng,et al.Multi-phase heterostructure of CoNiP/CoP for enhanced Hydrogen evolution under alkaline and seawater conditions by promoting HO dissociation[J].Small,2021,17(17):7557-7566.
[30]LIU Guangbo,WANG Min,XU Yingshuang,et al.Porous CoP/Co2P heterostructure for efficient hydrogen evolution and application in magnesium/seawater battery[J].Journal of Power Sources,2021,486:9351-9358.
[31]LIN Yan,SUN Kaian,CHEN Xiaomeng,et al.High-precision regulation synthesis of Fe-doped Co2P nanorod bundles as efficient electrocatalysts for hydrogen evolution in all-pH range and seawater[J].Journal of Energy Chemistry,2021,55:92-101.
[32]WANG Ni,HE Xin,CHEN Yunjian,et al.S and Co Co-doped CuP nanowires self-supported on Cu foam as an efficient hydrogen evolution electrocatalyst in artificial seawater[J].Journal of Porous Materials,2021,28(3):763-771.
[33]MIAO Jun,LANG Zhongling,ZHANG Xinyu,et al.Polyoxometalate-derived hexagonal molybdenum nitrides (MXenes) supported by boron,nitrogen codoped carbon nanotubes for efficient electrochemical hydrogen evolution from seawater[J].Advanced Functional Materials,2019,29(8):5893-5901.
[34]YU Luo,ZHU Qing,SONG Shaowei,et al.Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis[J].Nature Communications,2019,10(1):5106-5115.
[35]JIN Huanyu,WANG Xuesi,TANG Cheng,et al.Stable and highly efficient hydrogen evolution from seawater enabled by an unsaturated nickel surface nitride[J].Advanced Materials,2021,33(13):7508-7515.
[36]LU Xunyu,PAN Jian,LOVELL E,et al.A sea-change:Manganese doped nickel/nickel oxide electrocatalysts for hydrogen generation from seawater[J].Energy & Environmental Science,2018,11(7):1898-1910.
[37]DUAN Shuo,LIU Zhen,ZHUO Haihua,et al.Hydrochloric acid corrosion induced bifunctional free-standing NiFe hydroxide nanosheets towards high-performance alkaline seawater splitting[J].Nanoscale,2020,12(42):21743-21749.
[38]WANG Xiaohu,LING Yu,WU Bin,et al.Doping modification,defects construction,and surface engineering:Design of cost-effective high-performance electrocatalysts and their application in alkaline seawater splitting[J].Nano Energy,2021,87:6160-6172.
[39]ZHAO Mengxuan,YANG Mingyang,HUANG Weijie,et al.Synergism on electronic structures and active edges of metallic vanadium disulfide nanosheets via Co doping for efficient hydrogen evolution reaction in seawater[J].Chem Cat Chem,2021,13(9):2138-2144.
[40]ZHAO Yongqiang,JIN Bo,ZHENG Yao,et al.Charge state manipulation of cobalt selenide catalyst for overall seawater electrolysis[J].Advanced Energy Materials,2018,8(29):1926-1934.
[41]LI Youcai,WU Xiaoyu,WANG Jiepeng,et al.Sandwich structured NiS-MoS-NiS@Ni foam electrode as a stable bifunctional electrocatalyst for highly sustained overall seawater splitting[J].Electrochimica Acta,2021,390:8833-8844.
[42]SABHAPATHY P,SHOWN I,SABBAH A,et al.Electronic structure modulation of isolated Co-N4 electrocatalyst by Sulfur for improved pH-universal hydrogen evolution reaction[J].Nano Energy,2021,80:5544-5554.
[43]ZANG Wenjie,SUN Tao,YANG Tong,et al.Efficient hydrogen evolution of oxidized Ni-Ndefective sites for alkaline freshwater and seawater electrolysis[J].Advanced Materials,2021,33(8):846-853.
[44]GOLGOVICI F,PUMNEA A,PETICA A,et al.Ni-Mo alloy nanostructures as cathodic materials for Hydrogen evolution reaction during seawater electrolysis[J].Chemical Papers,2018,72(8):1889-1903.
[45]LIU Tingting,LIU Heng,WU Xiuju,et al.Molybdenum carbide/phosphide hybrid nanoparticles embedded P,N co-doped carbon nanofibers for highly efficient hydrogen production in acidic,alkaline solution and seawater[J].Electrochimica Acta,2018,281:710-716.
[46]WU Xianhong,ZHOU Si,WANG Zhiyu,et al.Engineering multifunctional collaborative catalytic interface enabling efficient hydrogen evolution in all pH range and seawater[J].Advanced Energy Materials,2019,9(34).DOI:10.1002/aenm.201901333.
[47]HUANG Yongchao,HU Lei,LIU Ran,et al.Nitrogen treatment generates tunable nanohybridization of Ni5P4 nanosheets with nickel hydr(oxy)oxides for efficient hydrogen production in alkaline,seawater and acidic media[J].Applied Catalysis B:Environmental,2019,251:181-194.
[48]WANG Zhenguo,XU Wangqiong,YU Ke,et al.2D heterogeneous vanadium compound interfacial modulation enhanced synergistic catalytic hydrogen evolution for full pH range seawater splitting[J].Nanoscale,2020,12(10):6176-6187.
[49]YU Luo,WU Libo,SONG Shaowei,et al.Hydrogen generation from seawater electrolysis over a sandwich-like NiCoN|NiP|NiCoN microsheet array catalyst[J].ACS Energy Letters,2020,5(8):2681-2689.
[50]HAO Weiju,FAN Jinli,XU Xia,et al.Sulfur doped FeO nanosheet arrays supported on nickel foam for efficient alkaline seawater splitting[J].Dalton Transactions,2021,50(38):13312-13319.
[51]WANG Yang,KONG Biao,ZHAO Dongyuan,et al.Strategies for developing transition metal phosphides as heterogeneous electrocatalysts for water splitting[J].NanoToday,2017,15:26-55.
[52]WANG Hao,LI Jianmin,LI Ke,et al.Transition metal nitrides for electrochemical energy applications[J].Chemical Society Reviews,2021,50(2):1354-1390.
[53]WANG Boran,LU Mengjie,CHEN Duo,et al.NiFeN@C microsheet arrays on Ni foam as an efficient and durable electrocatalyst for electrolytic splitting of alkaline seawater[J].Journal of Materials Chemistry A,2021,9(23):13562-13569.
[54]JIN Yanshuo,PEI Kangshen.Nanoflower-like metallic conductive MoO as a high-performance non-precious metal electrocatalyst for the hydrogen evolution reaction[J].Journal of Materials Chemistry A,2015,3(40):20080-20085.
[55]SHU Chang,KANG Shuai,JIN Yanshuo,et al.Bifunctional porous non-precious metal WO hexahedral networks as an electrocatalyst for full water splitting[J].Journal of Materials Chemistry A,2017,5(20):9655-9660.
[56]YANG Ping,JIN Congcong,REN Menglei,et al.Facile synthesis of bimetallic-based CoMoO/MoO/CoP oxidized/phosphide nanorod arrays electroplated with FeOOH for efficient overall seawater splitting[J].Cryst Eng Comm,2021,23(38):6778-6791.
[57]HUANG Jingbin,JIANG Yan,AN Tianyun,et al.Increasing the active sites and intrinsic activity of transition metal chalcogenide electrocatalysts for enhanced water splitting[J].Journal of Materials Chemistry A,2020,8(48):25465-25498.
[58]ZHU Chengzhou,SHI Qiurong,FENG Shuo,et al.Single-atom catalysts for electrochemical water splitting[J].ACS Energy Letters,2018,3(7):1713-1721.
[59]SUN Jianfei,XU Qinqin,QI Jianlei,et al.Isolated single atoms anchored on N-doped carbon materials as a highly efficient catalyst for electrochemical and organic reactions[J].ACS Sustainable Chemistry & Engineering,2020,8(39):14630-14656.
[60]NSANZIMANA J M V,PENG Y,MIAO Mao,et al.An earth-abundant tungsten-nickel alloy electrocatalyst for superior hydrogen evolution[J].ACS Applied Nano Materials,2018,1(3):1228-1235.
[61]WANG Xueqin,SU Ren,ASLAN H,et al.Tweaking the composition of NiMoZn alloy electrocatalyst for enhanced hydrogen evolution reaction performance[J].Nano Energy,2015,12:9-18.
[62]WEXLER R B,MARTIREZ J M P,RAPPE A M.Active role of phosphorus in the hydrogen evolving activity of nickel phosphide (0001) surfaces[J].ACS Catalysis,2017,7(11):7718-7725.
[63]ZHAO Yongqiang,JIN Bo,VASILEFF A,et al.Interfacial nickel nitride/sulfide as a bifunctional electrode for highly efficient overall water/seawater electrolysis[J].Journal of Materials Chemistry A,2019,7(14):8117-8121.