APP下载

埋深对深部煤层气储层物性及开发效果的影响
——以鄂尔多斯盆地东南缘延川南区块为例

2022-05-20赵景辉

油气地质与采收率 2022年3期
关键词:产气气量反射率

赵景辉

(中国石化华东油气分公司勘探开发研究院,江苏南京 210000)

中国深部煤层气资源丰富,埋深为1 000~2 000 m 的深部煤层气资源量达22.5×1012m3[1-2],占埋深2 000 m 以浅煤层气资源量的75%以上。目前针对埋深对储层物性及含气量影响的研究较多,陈刚等针对鄂尔多斯盆地深部煤层气的含气量随埋深的变化规律进行了研究,认为含气量随埋深增加而先增大后减小,含气量在埋深为900~1 600 m 处达到峰值[3],申建认为该峰值是地层压力和地层温度耦合作用共同导致的[4];李松等认为煤储层渗透率随埋深增加而降低,主要是由于储层应力状态发生了变化[5],鞠玮等提出了以应力状态转换为主要指标的深部煤层气临界深度预测方法[6];汪岗等研究了深部煤层孔隙压缩系数,认为孔隙压缩系数随着埋深增加而不断变化,并非恒定值,为定量评价渗透率随埋深变化提供了方法[7]。整体来看,目前研究埋深对煤层镜质组反射率、煤层气组分、解吸效率等参数的影响较少,需要进一步深入。许多学者对深部煤层气的富集高产控制因素进行了研究,部分学者认为富集区就是煤层气开发有利区。顾娇杨等研究了鄂东缘临兴区块深部煤层气成藏富集规律,认为该区煤层气含气饱和度较高,是开发的有利区[8];然而陆小霞等分析认为储层渗透率低、沟通含水层、压裂效果差等是沁水盆地南部1 000 m 以深储层开发效果较差的主要原因[9];陈贞龙等对延川南深部煤层气藏进行了研究认为水动力控气、物性控产[10],明确区分了富集和高产的不同主控因素;高丽军等认为鄂东缘临兴区块深部煤层虽然含气饱和度高,但储层物性较差,导致煤层气井见气快、排水降压难、产量上升慢[11],揭示了富集区不一定是高产区,对于富集高产区需要同时对含气量和物性进行综合评价,即煤层气富集仅仅是高产的必要条件而非充分条件。但针对深部煤层气资源潜力评价方法有待进一步完善,为此以埋深对煤层气储层物性的影响分析为基础,分别探讨了埋深对煤层气富集和高产的影响,为深部煤层气储层富集高产区定量评价提供了有效方法。

1 基本地质条件

延川南区块位于鄂尔多斯盆地东南缘,构造上处于晋西挠褶带与渭北隆起的交汇处,整体为倾向西北的单斜构造[12]。区内最大水平主应力方向为北东向,主要发育北东向断层和褶皱。

延川南区块主力煤层气储层为2#煤层,埋深为800~1 600 m,厚度为3.1~4.8 m,中底部发育厚度为0.1~1 m 的夹矸。2#煤层含气量差异较大,为3.5~35.7 m3/t,含气量低值区主要受断层、陷落柱等影响,保存条件较差。煤层气储层渗透率一般小于0.5 mD,孔隙度一般小于6%,属于低孔、低渗透储层。2#煤层储层压力为2.8~13.2 MPa,压力系数为0.8~0.97,为欠压储层。水型以氯化钙和碳酸氢钠型为主,氯化钙型矿化度为11 400~80 450 mg/L,pH值为4.0~6.9;碳酸氢钠型矿化度为2 170~7 970 mg/L,pH值为6.9~8.3。

2 实验样品制备及方法

2.1 实验样品

实验样品均来自延川南区块参数井钻井取心,含气量、工业组分、最大镜质组反射率(Romax)、吸附时间等参数均采用取心样品进行测试。样品基本参数如表1 所示,埋深为832.10~1 497.18 m,平均为1 027.93 m。最大镜质组反射率为1.59%~3.22%,属于中、高煤阶煤。水分含量为0.36%~3.75%,灰分含量为5.75%~35.97%,挥发分含量为8.39%~20.36%,固定碳含量为52.95%~85.19%。

2.2 实验方法

实验样品镜质组反射率测试严格按照煤的镜质体反射率显微镜测定方法[13]进行。煤层气组分采用开始产气后的产出气进行分析化验,其操作过程严格按照煤层气的取样和组分分析方法[14]进行。实验样品含气量严格按照煤层气含量测定方法[15]要求进行测试;各参数井储层渗透率采用注入压降试井的方法进行测试。

3 实验结果分析

3.1 埋深对最大镜质组反射率的影响

研究区最大镜质组反射率随埋深增加而增加(图1a),表明埋深较大的区域古地温也较高。以50 m 为间隔,求取埋深和对应最大镜质组反射率的平均值[16](图1b),得到埋深和对应最大镜质组反射率间的经验公式为:

图1 埋深对最大镜质组反射率的影响Fig. 1 Effect of burial depth on maximum vitrinite reflectance

采用BARKER 等[17]提出的地质温度计算方法计算煤层温度为:

将(1)和(2)式联立可得:

根据(3)式计算得到埋深为800~1 600 m 煤层气储层的古地温约为197.2~233.3 ℃,表明该区域在成煤区受到高温热液烘烤,使煤岩成熟度增加,利于煤层气大量生成。

3.2 埋深对煤层气组分的影响

研究区煤层气组分主要为CH4,CO2,N2和相对较重的烃气(C2+),其中CH4含量大于94%,C2+含量很低(小于0.1%),为干气或特干气,这表明研究区煤层气为热成因气[18];非烃气体以CO2为主,N2极少,这主要是由于CO2吸附能力较强,在煤层中保存较好[19]。由图2 可知,CH4含量随埋深增加而降低,在埋深为1 400 m 时,CH4含量降低至近94%,这主要是由于随着埋深增加,储层温度升高,煤层吸附能力降低;N2含量随埋深增加而增加,但整体较低,最高值仍然小于0.1%;CO2含量随埋深增加而增加,但埋深大于1 200 m 后CO2含量增加幅度极小,基本保持不变;C2+含量也随埋深增加而增加,但整体较低,峰值含量小于0.1%。

图2 埋深对煤层气组分的影响Fig. 2 Effect of burial depth on coalbed methane components

3.3 埋深对储层含气性的影响

煤层气储层含气性采用含气量和临储比来表征,含气量表征含气量绝对值大小[20],临储比表征含气饱和度大小[21]。研究区煤层气储层含气量随埋深增加持续增加,这主要是由于随埋深增加,煤岩变质程度增加(图3a),生烃量大幅增加,因此含气量整体上增加。研究区临储比随埋深增加而降低(图3b),这表明虽然解吸压力和储层压力均随埋深增加而增加,但解吸压力增加速度小于储层压力增加速度,这主要是由于随着埋深增大,煤层气储层温度不断升高,吸附能力持续下降,导致储层压力相同增幅条件下吸附的气量持续减少,进而导致解吸压力增幅降低。

图3 埋深对煤层气储层含气性的影响Fig. 3 Effect of burial depth on gas-bearing capacity of coalbed methane reservoirs

3.4 埋深对储层渗透率的影响

通过现场试井获取研究区各参数井2#煤层渗透率,研究区储层渗透率随埋深增加呈负指数降低,其经验公式为:

煤层埋深越大,储层渗透率越低,埋深为800 m时,储层渗透率约为0.4~0.5 mD,渗透率相对较高;而当埋深达1 500 m 左右时,储层渗透率降低至0.1 mD 附近(图4)。这主要是由于埋深增加,储层上覆应力增加,导致煤岩承受的有效应力增加,裂缝闭合导致储层渗透率降低,因此,埋深大于1 500 m 储层原始渗透率较低,不利于煤层气开发。

图4 埋深对煤层气储层渗透率的影响Fig. 4 Effect of burial depth on permeability of coalbed methane reservoirs

3.5 埋深对储层解吸扩散效率的影响

吸附时间是指通过取心测试含气量时,解吸气体体积达到总解吸气量的63.2%时所用的时间,吸附时间可以表征煤层气解吸扩散效率的快慢,吸附时间越长,解吸效率越低,吸附时间越短,解吸效率越高。由图5可知,整体上,吸附时间随埋深增加而降低,即埋深越大,解吸效率越高,这是深部煤层气开发的有利因素。

图5 埋深对吸附时间的影响Fig. 5 Relationship between burial depth and adsorption time

4 煤层气储层富集高产能力及定量评价

随着埋深增加,研究区煤层气储层最大镜质组反射率持续增加,表明古地温持续增加。煤层气组分分析结果表明研究区煤层气为热成因气,因此生气能力随着埋深(古地温)增加持续增加,进而导致研究区含气量随埋深增加而持续增加,形成了研究区以埋深为主要控制因素的煤层气富集模式。由于含气量是煤层气井高产的资源基础,一般情况下,含气量越高产量越高,但富集并不一定能够高产,因为煤层气必须通过解吸、扩散、渗流才能够产出,研究区煤层气储层渗透率随埋深增加而降低,表明随着埋深增加,煤层气渗流能力持续下降;吸附时间随埋深增加而降低,表明埋深越大,解吸、扩散效率有升高趋势。因此,采用含气量、渗透率和吸附时间3个参数对研究区煤层气富集高产能力进行预测,定义产气指数表达式为:

根据(5)式计算研究区煤层气储层产气指数,结果(图6)表明单井累积产气量随产气指数增加而增加,二者具有良好相关性。(5)式提出的产气指数能够有效地表征煤层气储层的富集高产能力,产气指数越高,单井产气量越高。研究区埋深对产气指数的影响分析结果(图7)表明,随埋深增加产气指数先增加后降低,产气指数在埋深为1 100 m 附近达到最高,因此埋深约为1 100 m 处的(图6)储层是研究区富集高产的最有利开发区。

图6 产气指数与单井累积产气量关系Fig. 6 Relationship between gas production index and cumulative gas production of single well

图7 产气指数与埋深关系Fig. 7 Relationship between gas production index and burial depth

5 结论

鄂尔多斯盆地东南缘延川南区块煤层气储层的最大镜质组反射率随着埋深增加而增加,表明古地温随埋深增加持续增加,再加上高温热液烘烤,利于煤层气大量生成,进而导致研究区CH4含量随埋深增加而增加;而N2,CO2和C2+含量也均随埋深增加而增加。虽然煤层气储层含气量随着埋深增加持续增加,但临储比随埋深增加而降低,表明随着埋深增加,解吸压力增加速度小于储层压力增加速度。煤层气储层渗透率随埋深增加呈负指数降低,当埋深达1 500 m 左右时,储层渗透率降低至0.1 mD 附近;吸附时间随埋深增加而降低,即埋深越大解吸效率越高,这是深部煤层气开发的有利因素。基于含气量、渗透率和吸附时间3 个参数计算的产气指数能够有效对研究区煤层气富集高产区进行预测,产气指数与单井产气量具有良好的相关关系;随埋深增加产气指数先增加后降低,产气指数在埋深为1 100 m 附近达到最高,是研究区富集高产的最有利开发区。

符号解释

G——储层含气量,m3/t;

H——埋深,m;

I——产气指数,(mD·m3)/(t·d);

K——储层渗透率,mD;

t——吸附时间,d;

Ro——镜质组反射率,%;

T——煤层气储层温度,℃。

猜你喜欢

产气气量反射率
利用镜质组反射率鉴定兰炭与煤粉互混样的方法解析
中红外波段超广角抗反射微纳结构的研究
商品条码印制质量检测参数
——缺陷度的算法研究
车灯反射腔真空镀铝反射率研究
做人要有气量,交友要有雅量
冷却液溢出问题研究
气量可以学习吗
王旦的气量
沼液絮凝上清液预处理对甜高粱秸秆厌氧发酵特性的影响
我国首次海域可燃冰试采结束并关井