APP下载

改性热固性树脂研究进展及其在钻井液领域应用前景

2022-04-29孙金声朱跃成白英睿吕开河许成元郝惠军雷少飞

关键词:阻燃性环氧树脂钻井液

孙金声, 朱跃成, 白英睿, 吕开河, 许成元, 郝惠军, 雷少飞, 刘 凡

(1.中国石油大学(华东)石油工程学院,山东青岛 266580; 2.中国石油集团工程技术研究院有限公司,北京 102206; 3.西南石油大学石油与天然气工程学院,四川成都 610500)

热固性树脂材料是具有三维交联网状结构且不溶不熔的高分子材料,这种体型结构赋予其良好的耐热性能、耐压性能以及优异的力学性能[1]。常用的热固性树脂有环氧树脂、酚醛树脂、聚氨酯树脂以及不饱和聚酯树脂等[2-5]。多数未经改性的热固性树脂在固化形成交联网络结构后存在质脆和阻燃性能较差的缺点[6]。热固性树脂及其改性材料已在钻井液领域如降滤失[7]和堵漏[8]等方面具有一定应用。近年来随着钻井深度不断增加,常规处理剂难以解决井壁失稳、钻井液恶性漏失等问题[9]。笔者介绍几种常见热固性树脂的改性研究进展,结合钻井液固壁剂、降滤失剂、防漏剂、堵漏剂的研究现状和不同类型改性热固性树脂的自身特性,展望改性热固性树脂在井壁强化、降滤失和防漏堵漏领域的应用前景。

1 改性热固性树脂材料研究进展

1.1 改性环氧树脂

1909年环氧树脂由Priles Chajew发现,被定义为包含一个以上环氧基团的低相对分子质量预聚物,可使用多种固化剂通过固化反应进行固化,其性能取决于所使用的环氧树脂类型和固化剂的具体组合[10-13]。由于其优异的机械性能、对多种基材的高黏合性以及良好的耐热性和耐化学性,目前环氧树脂作为黏合剂、高性能涂料和封装材料被广泛应用于各个领域[2,14-16]。

1.1.1 阻燃改性机制及其材料特性

环氧树脂容易燃烧并释放大量有毒气体和热量,这限制了其在需要其阻燃性和热稳定性的领域的使用[17]。目前已经开发了一些方法来获得环氧树脂复合材料的优异阻燃性能,第一种方法是优化环氧树脂配方法[18-19],环氧树脂的种类和固化剂的化学结构决定材料整体的阻燃性能,但这种方式往往需要改进加工工艺,因此成本较高。第二种方法是使用添加剂作为阻燃剂,通常用于增强复合材料阻燃性能的两种阻燃剂:纳米混合型阻燃剂[20]和膨胀型阻燃剂(IFR)[21]。常见的纳米混合型阻燃剂如纳米黏土(蒙脱石和高岭石)和其他碳材料(碳纳米管和石墨烯),是基于它们的几何阻碍效应来提高阻燃性能;典型的膨胀型阻燃剂包括酸源(形成碳的脱水催化剂)、碳源(碳化剂)和气源(发泡剂),IFR是基于化学反应产生协同效应以提高材料的抗温和阻燃性能[22]。

1.1.2 基于纳米混合型阻燃剂的改性环氧树脂

纳米混合型阻燃剂增强环氧树脂的核心在于优选填料种类,使其增强阻燃性能的同时不降低材料的其他性能。Akhtar等[23]合成一种表面改性的氧化铝-石墨烯杂化填料并将其添加到环氧树脂基体中,填料表面的改性有助于在填料和环氧树脂基体之间形成界面,进一步形成三维导热网络,有效增强其热稳定性。近年来,六方氮化硼(BN)因其高导热性和优异的热稳定性而被认为是最有前途的纳米型阻燃材料[24]。Xiao等[25]采用一种简便、环保的方法制备了一种具有核壳结构的空心氮化硼微球(BNMB),将其分散到环氧树脂中制备了EP/BNMB复合材料。这种隔离结构在环氧树脂中提供了一个有效的导热网络。此外,由于骨架的高导热性和物理阻隔效应,复合材料的热稳定性得到显著提高。空心BNMB及EP/BNMB复合材料合成过程[25]见图1。

图1 空心BNMB及EP/BNMB复合材料合成示意图Fig.1 Synthetic schematic diagram of hollow BNMB and EP/BNMB composite materials

1.1.3 基于膨胀型阻燃剂的改性环氧树脂

聚磷酸铵(APP)作为一种高效酸剂和发泡剂已被用于IFR中以改善聚合物复合材料的阻燃性能,在此基础上寻找合适的碳化剂成为EP阻燃改性的重点[26]。Kim等[22]采用4,4’-二氨基二苯基甲烷(DDM)作为碳化剂,有助于形成交联结构和致密碳质炭结构,使得改性环氧树脂的力学性能和阻燃性能得到显著改善。Tan等[27]以APP为基础,通过与二乙烯三胺进行阳离子交换,成功制备了一种基于APP的有机-无机杂化物DETA-APP。在一定温度下,环氧基被DETA-APP中的-NH-或-NH2打开,产生羟基和叔氨基,新形成的羟基可以进一步与另一个环氧基反应。因此可获得具有叔氨基和醚键的交联网络,从而强化其结构强度。DETA-APP阻燃剂合成及其效果[27]见图2。

图2 DETA-APP阻燃剂合成及其效果Fig.2 Synthesis of DETA-APP flame retardant and its effects

综上所述,通过添加物理分散的纳米混合型阻燃剂在环氧树脂材料内部或表面中形成导热骨架,可使热稳定性显著增强,也可以通过化学结合的方式与环氧树脂分子链段交联成网,在高温下通过一系列化学反应产生协同效应是材料的耐热性能大幅提升。这种通过使用添加剂增强的改性环氧树脂对于研发耐高温防漏堵漏剂具有一定的指导意义。

1.2 改性酚醛树脂

酚醛树脂由Baekeland[28]于1909年发明,是由酚类和醛类在一定温度下通过酸或碱催化合成的缩聚物[29]。由于其成本低、耐热和耐化学性和阻燃性等优点,被广泛用于塑料、涂料和黏合剂[30-32]的生产,成为机械、建筑和航空航天领域不可缺少的高分子材料[3]。但未改性酚醛树脂分子结构中的酚羟基和亚甲基很容易被氧化,当酚醛树脂使用温度超过250 ℃时,会发生剧烈的热分解,影响其耐热性和抗氧化性[33]。

1.2.1 改性机制及其合成工艺

为了改善酚醛树脂脆性、易老化、耐热性和阻燃性差的问题,研究人员选择了多种改性剂对酚醛树脂的分子结构进行改性[34]。但是不同工艺生产的酚醛树脂具有不同的分子结构和性能,这些工艺可分为原位聚合改性法和预聚合改性法两大类。为了区分这两种改性方法,将在合成稳定的树脂结构前加入改性剂的方法称为原位聚合改性法,预先对树脂原料进行改性以改变树脂结构的方法称为预聚合改性法[35],具体区别见图3。

图3 原位聚合改性法和预聚合改性法示意图Fig.3 Schematic diagram of in-situ polymerization modification method and pre-polymerization modification method

1.2.2 原位聚合改性酚醛树脂

将阻燃元素氮引入酚醛树脂分子结构中最常用的方法是用含胺化合物对酚醛树脂进行改性。

Thiruvengadam等[36]使用酚醛树脂和尼龙6通过溶液共混制备了一种疏水性聚合物,该聚合物共混物的分解温度约为400 ℃。高月静等[37]用共聚法和共混法制备了三元尼龙改性酚醛树脂,结果表明共聚法优于共混法,这是因为在共聚反应过程中,甲醛与尼龙分子中的酰胺基反应形成羟甲基酰胺,可增强尼龙和酚醛树脂的结合。Jiang等[38]采用共聚法合成一种自愈合微胶囊的壳体,将三聚氰胺与酚醛树脂原位聚合进行改性得到三聚氰胺酚醛树脂(MPF),以改善材料的力学和热稳定性能,同时在缩聚过程中将海藻酸钠(SA)引入MPF中,与MPF形成复合壳体结构。SA的黏附性和降解性可以控制反应缩聚速率,降低甲醛的毒性,提高微胶囊的热稳定性。改性过程和相关机制[38]见图4。

图4 微胶囊改性过程及机制示意图Fig.4 Schematic diagram of modification process and mechanism of microcapsules

1.2.3 预聚合改性酚醛树脂

在预改性苯酚的合成过程中,改性剂可以通过与苯酚的酚羟基或活性中心发生醚化和酯化反应来对苯酚进行改性[35]。Du等[39]通过4-羟基苯基硼酸与甲醛之间的加成缩合反应合成了一种含硅和硼的可加成固化的杂化酚醛树脂,然后与乙烯基三甲氧基硅烷酯化,这一反应可以减少苯酚中的酚羟基,从而更好地解决由酚羟基引起的耐水性较差的问题。合成过程[39]见图5。

图5 含硼硅酚醛树脂(BSN)的合成路线Fig.5 Synthetic route of boron-containing silicon phenolic resin(BSN)

固化后的酚醛树脂本身较脆,但通过原位聚合或预聚合引入特定的阻燃元素或官能团,在增强热稳定性的同时,一些特定的官能团还能能赋予改性酚醛树脂自愈合的特性,这为研发具有自愈合特性的抗高温降滤失剂提供了新的思路。

1.3 改性聚氨酯树脂

聚氨酯的分子链段是由异氰酸酯和多元醇反应形成重复的聚氨酯键连接而成[4]。多元醇和异氰酸酯都决定了产品的最终性质,二者之间的结构-性能关系在理解和设计聚氨酯产品中起着至关重要的作用[40]。如图6所示,多元醇和异氰酸酯充当着聚氨酯分子链段中的软段和硬段,多元醇往往具有更长的链长,因此提供了聚氨酯的柔性,硬段由异氰酸酯控制,异氰酸酯分子链长较短,因此表现出更高的结晶度,宏观上呈现出非常坚硬的特性[4]。这种硬段和软段的结合使聚氨酯具有极为丰富的特性,从而被广泛应用。

图6 聚氨酯分子链段的软段和硬段Fig.6 Soft segment and hard segment of polyurethane molecular chain segment

1.3.1 泡沫类聚氨酯

泡沫类聚氨酯的主要特征是具有多孔性,因此相对密度小。根据所用原料不同和配方变化,可制成软质和硬质聚氨酯泡沫塑料。软质聚氨酯泡沫(FPUF)是一种具有热塑性线性结构的聚合物材料[41],硬质聚氨酯泡沫(RPUF)具有闭孔率高、低密度和导热系数低等特点,从而使其具有抗压、轻质、耐水以及保温隔热等性能,被广泛地应用在运输管道和建筑墙体保温等领域[42]。但RPUF阻燃性能较差,严重限制其应用。

Yang等[43]采用一种新型的含磷有机硅化合物(PCOC)对不同聚合度的聚磷酸铵(APP)进行改性,将所得产物应用于阻燃硬质聚氨酯泡沫塑料(RPUF)的制备,相比未改性的APP其具有更强的碳化能力和更好的阻燃性能。但APP与聚氨酯分子链段之间相容性差,单纯添加APP或改性APP增强阻燃性能有限,因此Yang等[44]以甲基丙烯酸缩水甘油酯和聚氨酯为壳材料,采用原位聚合法制备了微胶囊化聚磷酸铵(GMAAPP)和微胶囊化膨胀石墨(PUEG),将包覆型阻燃剂进一步应用于RPUF复合材料的制备。由于阻燃剂颗粒与RPUF基体之间的相容性增强,RPUF复合材料的致密性、结构强度与防火安全性均大幅增强。相关改性及合成过程[44]见图7。

图7 GMAAPP 和PUEG 合成及改性RPUF 过程Fig.7 GMAAPP and PUEG synthesis and modified RPUF process diagram

1.3.2 压敏类聚氨酯

聚氨酯压敏胶(PSA)是一类具有对压力有敏感性的胶黏剂。聚氨酯分子组成和结构的改变可调控压敏胶的润湿性和弹性等性能。分子链上的极性基团可与其他材料形成氢键,提高分子间和分子内的交联度,使聚氨酯具有更高的抗剪切性、耐高温性和耐水性[45]。胡连伟等[46]在水性聚氨酯的分子链上嫁接端羟基氢化液态聚异戊二烯橡胶,再将其制备成压敏胶,实验发现液态橡胶用量为7.5%时,产品可耐150 ℃高温。Xu等[47]以天然松香为原料,成功制备了聚氨酯/聚硅氧烷压敏胶黏剂,固化工艺及制备流程见图8。实验发现,随着松香含量的增加,PSA的耐热性有所提高,且松香的增黏作用提高了PSA的环黏力和剥离强度,这有望促进低含量松香PSA在高温高压下含水环境中的应用。

图8 紫外光固化工艺制备压敏聚氨酯Fig.8 Preparation of pressure-sensitive polyurethane by UV curing process

1.3.3 自愈合聚氨酯

自愈合聚氨酯材料[48]是一种可以主动或者在外界条件刺激下被动修复损伤,重新恢复其功能性的材料。根据自愈机制,自愈材料大致可以分为外在和内在两种类型[49-50]。外在型自愈材料由于修复剂耗尽会表现出单次愈合的缺点[51],而内在型自愈材料可通过动态可逆共价键和非共价相互作用(如氢键)实现重复修复[52]。常见自愈合作用有金属-配体相互作用、π-π相互作用、Diels-Alder反应、主客体相互作用、硼酸盐键、二硫键交换,因此内在自愈材料具有极为广阔的应用前景[53]。

Liu等[54]通过调节和控制主链中动态苯酚氨基甲酸酯键的含量,获得具有优异自愈合性能的改性聚氨酯树脂,其在另一研究中结合主链中的动态苯酚氨基甲酸酯键和Fe3+邻苯二酚配位键,通过两个步骤制备了具有理想热驱动自愈性能的新型超支化水性聚氨酯(FTWPU)[55]。在120 ℃下FTWPU表现出良好的自愈能力,可逆的苯酚氨基甲酸酯键和金属配位键是FTWPU膜愈合过程中的主要因素。Xie等[56]合成了有双动态交联网络的自愈合聚氨酯,它含有一种四重氢键的物理交联和Diels-Alder(D-A)键的共价交联。由于四重氢键和D-A键的动态特性,合成的聚氨酯具有91.2%的热诱导愈合效率和极强的形状记忆特性,相关机制[56]见图9。

图9 基于四重氢键的物理交联和Diels-Alder 键的共价交联聚氨酯的形状记忆机制Fig.9 Shape memory mechanism of physical crosslinking based on quadruple hydrogen bonds and covalently crosslinked polyurethane based on Diels-Alder bonds

综上所述,通过不同方式改性,可获得具有优异热稳定性的泡沫聚氨酯、具有防漏性能的压敏类聚氨酯和具有自愈合特性的聚氨酯,这对于继续改性聚氨酯和井壁强化、降低钻井液滤失、防漏堵漏等问题的解决具有重要的指导作用。

1.4 改性不饱和聚酯树脂

不饱和聚酯树脂(UPR)[57]是由不饱和二元酸(马来酸酐)、饱和的二元酸、二元醇经缩聚反应而生成,由于树脂分子链中含有不饱和双键,因此可以与含双键的单体,如苯乙烯、甲基苯乙烯等发生共聚反应生成三维立体结构,形成不溶的热固性塑料,在交通、建筑以及石油化工方面有广泛的应用[5]。由于不饱和聚酯一般存在着韧性差、容易燃烧、收缩率大等缺点,从而限制了其应用范围。为了扩大不饱和聚酯树脂应用范围,需要对不饱和聚酯进行改性,以提高UPR的性能。

1.4.1 阻燃类不饱和聚酯树脂

为克服不饱和聚酯的易燃性,一些学者将阻燃官能团[58]引入UP预聚物的分子主链中以制备本征型阻燃剂UP。李毅等[59]采用自制的磷腈单体六(烯丙氧基)环三磷腈(HACP)对不饱和聚酯树脂进行阻燃改性,HACP单体中的不饱和键可以与不饱和聚酯树脂中的两种不饱和键发生固化反应,增大二者之间的相容性,同时其中的含磷化合物燃烧时会形成PO·,而PO·能进一步与火焰中的H·和HO·结合,从而有效中断燃烧的链锁反应。Zhao等[60]设计并合成了一种同时含有席夫碱和螺环二磷酸盐结构的聚合阻燃剂PPISP,且随着PPISP用量的增加,改性不饱和聚酯在燃烧时表面形成的网络结构越致密。这种致密的网络结构有助于形成保护性碳层,从而增强其阻燃性,相关结构及其热学性能[60]见图10。

图10 含有席夫碱和螺环二磷酸盐结构的PPISP微观结构和热学性能Fig.10 Microstructure and thermal properties of PPISP containing Schiff base and spiro diphosphate structure

1.4.2 不饱和聚酯树脂混凝土

不饱和聚酯树脂混凝土(UPC)[61]是用不饱和聚酯树脂(UP)和一定比例的粗骨料、细骨料、填料合成的复合混凝土,与普通黏合剂相比,同等强度下UPC的用量更少。但是不饱和聚酯树脂的抗变形能力较弱,导致材料整体韧性较差。

图11 光学显微镜下LNBR改性UP微观图Fig.11 Microscopic image of LNBR modified UP under an optical microscope

Yang等[62]采用液体丁腈橡胶(LNBR)对UP进行改性,并将其用于混凝土。光学显微镜下结构图见图11。LNBR和UP可以相互交叉,形成一个复杂的网络体,可以有效地改善UPC的弯曲性能,当混合物受到外力时,固化后的混合物提供了混合物的整体刚度,而较软的LNBR则提供了混合物变形的能力。Sousa等[63]通过纳米Al2O3和ZrO2粒子对UP进行改性,开发出力学性能增强的不饱和聚酯复合材料,实验发现,纳米填料含量及其树脂基体中的分散程度是影响纳米复合材料韧性的基本因素。

由于不饱和聚酯树脂的分子链段中含有大量的不饱和双键,这使其与用于增强阻燃或结构强度的含有双键的单体可以十分方便地通过共聚形成三维立体网络,无论是阻燃方向的改性还是改性后与其他材料复配形成不饱和树脂混凝土,都对研发新型抗高温防漏堵漏剂提供了很好的思路。

综上所述,通过添加物理分散的纳米混合材料或者化学结合的膨胀型阻燃材料对环氧树脂的阻燃性能进行增强,可使其具有应用于高温环境的潜力;通过原位聚合或者预聚合引入阻燃元素或官能团改性酚醛树脂,使其脆性改善的同时,提高其热稳定性,并赋予其自愈合的特性;由于聚氨酯具有本身硬段和软段相结合的特点,使其改性方向极为丰富,主要有泡沫类聚氨酯、压敏类聚氨酯和自愈合聚氨3种改性类型;不饱和聚酯阻燃方向的改性和改性后复配其他材料形成的树脂混凝土,为提升其热稳定性和材料整体结构强度提供了解决方案,因此在高温高压环境中具有广阔的应用前景。

2 改性热固性树脂材料在钻井液领域应用展望

随着世界能源需求的不断增加,钻井深度不断增加,地层条件越来越复杂,对钻井液处理剂的综合性能等提出了更高的要求。热固性树脂材料在经改性后,因其自身种类的丰富性,能够适应不同地层温度、压力,在钻井液领域具有广阔的应用前景。

2.1 固壁剂

2.1.1 钻井液固壁剂研究现状

井壁失稳主要是由于在钻井过程当中,泥页岩井壁无法阻止自由水进入,从而造成井壁水化膨胀导致失稳情况发生[64]。固壁材料主要通过延缓水分子进入地层从而起到稳定井壁的效果,同时增加矿物之间相互胶结能力,使得黏土矿物在钻井液中长时间浸泡后仍然不容易分散。常用的固壁剂见表1。

表1 常见固壁剂及其作用机制

2.1.2 改性热固性树脂固壁剂研究展望

结合自愈合机制与化学包被类固壁剂作用机制,研发一种自愈合树脂固壁材料具有极大的应用潜力。具有理想热驱动自愈性能的新型超支化水性聚氨酯(FTWPU)中具有动态苯酚氨基甲酸酯键和Fe3+邻苯二酚配位键,使得FTWPU在高温下表现出良好的自愈能力。FTWPU型自愈合聚氨酯固壁机制示意图见图12,在压差的作用下,自愈合聚氨酯粒子进入弱胶结地层表面的缝隙充填堆积,同时,由于地层岩石带负电,自愈合聚氨酯中的Fe3+在静电作用下吸附于岩石表面,一段时间后,井壁表面的聚氨酯粒子堆积体经过分子链段中可逆的苯酚氨基甲酸酯键和金属配位键作用进一步愈合成膜,形成整体树脂层并多点吸附在井壁岩石表面,既降低了井壁岩石的水化膨胀,又提高了弱胶结地层的承压强度。

图12 FTWPU型自愈合聚氨酯固壁机制示意图Fig.12 Schematic diagram of wall fixing mechanism of FTWPU self-healing polyurethane

2.2 降滤失剂

2.2.1 钻井液降滤失剂研究现状

在钻井过程中,钻井液的滤液侵入地层会引起泥页岩水化膨胀,严重时导致井壁不稳定和各种井下复杂情况,钻遇产层时还会造成油气层损害。在钻井液中加入降滤失剂,就是要通过在井壁上形成低渗透率、柔韧、薄而致密的滤饼,尽可能降低钻井液的滤失量。常规水基钻井液降滤失剂以人工合成和改性天然材料为主,近年来降滤失剂的相关研究进展见表2。

表2 降滤失剂相关进展及其应用效果

2.2.2 改性热固性树脂降滤失剂研究展望

结合降滤失剂作用机制与三聚氰胺改性酚醛树脂性能特点,可将其应用于高温地层钻井液滤失问题的处理。可以采用原位聚合法合成一种三聚氰胺改性酚醛树脂,并通过缩聚反应引入海藻酸钠分子链段(图13)。三聚氰胺分子链段中的—NH2与酚醛树脂中的—OH可与地层岩石形成氢键而紧密吸附在井壁上,海藻酸钠分子链段中的羧钠基通过水化使黏土颗粒表面水化膜变厚,黏土颗粒表面ζ电位绝对值升高,负电量增加,阻止了黏土颗粒之间因碰撞而聚结成大颗粒,形成致密的滤饼,有效降低了钻井液的滤失量。

图13 改性酚醛树脂降滤失机制示意图Fig.13 Schematic diagram of fluid loss reduction mechanism of modified phenolic resin

2.3 防漏剂

2.3.1 钻井液防漏剂研究现状

防漏材料通常以随钻的方式进入地层微裂缝中以封堵渗透层,提高其承压能力。工程上常用的防漏材料是传统刚性材料和纤维材料,但是由于其与地层裂缝较差的配伍性,很容易出现封门现象。聚合物类防漏材料具有良好的自适应性能,与裂缝尺寸匹配较好,但强度较低,抗温性能不足,不易解堵。树脂类材料抗高温能力强,承压能力强,与地层配伍性好,应用潜力大。相关研究进展见表3。

表3 防漏材料相关进展及其作用机制

2.3.2 改性热固性树脂防漏剂研究展望

结合防漏材料作用机制与压敏类聚氨酯黏附机制,研发一种配伍性好、黏附能力强、抗高温能力强、承压能力强且便于解堵的压敏类聚氨酯防漏材料成为可能。如图14(c)所示的压敏类聚氨酯分子链段是由三丙烯酸1,1,1-三羟甲基丙烷三丙烯酸酯(TMPTA)作为交联剂连接松香与含有氨基和聚醚集团的硅氧烷改性聚氨酯而成。聚醚集团的引入可以增强整体分子链段的亲水性,使其稳定存在于钻井液体系中,便于随钻使用,含有-NH2的硅氧烷分子链段连接到聚氨酯上,既可以改善材料的抗温性能,又可以通过氢键吸附增强材料的黏附性能和抗剪切性能。而松香加入可改善聚氨酯材料的流变性,其中含有的羧基官能团能够形成强有力的氢键,使材料获得更强的黏附性和机械性能,且亲油的松香更便于后期油溶解堵。如图14(b)所示,改性聚氨酯压敏胶在地层温度作用下,更易黏附于地层岩石微裂缝中;在压差作用下,既避免压敏胶内部气泡的产生,又在一定程度上提高其黏结强度。此类聚氨酯压敏胶完全黏附成膜后,可提高地层承压能力,有效防止钻井液漏失。

2.4 堵漏剂

2.4.1 钻井液堵漏剂研究现状

井漏是指钻井液在钻井过程中大量漏进地层的现象,井漏问题是钻井工程中最普遍最常见且十分棘手的技术难题,不仅大量钻井液被消耗,大大增加钻井周期,如未及时处理还可能引发井塌、井喷、卡钻等一系列复杂情况,严重制约了油气田勘探开发进程[78]。堵漏材料是堵漏技术的基础和关键,国内外学者相继研发了桥接类、聚合物凝胶类、吸液(水、油)膨胀类、绒囊流体类以及智能型等多种类型堵漏材料,并探究了不同类型堵漏材料对裂缝的堵漏机制。相关进展见表4。裂缝(缝洞)性地层恶性井漏是最常见且最难以治理的钻井工程复杂事故之一,目前采用水泥、凝胶或复合堵漏材料可在一定程度上解决裂缝性地层的井漏难题,但是上述材料处理恶性井漏的一次堵漏成功率普遍较低,缺乏高效堵漏材料[79]。

图14 聚氨酯压敏胶防漏机制示意图Fig.14 Schematic diagram of leak-proof mechanism of polyurethane pressure-sensitive adhesive

表4 堵漏材料相关研究进展及其作用机制

2.4.2 改性热固性树脂堵漏剂研究展望

图15 不饱和聚酯混凝土堵漏机制示意图Fig.15 Schematic diagram of unsaturated polyester concrete leakage plugging mechanism

针对裂缝性地层漏失通道大、常规堵漏材料堵漏效率低等问题,立足“刚性材料架桥+柔性材料固化充填”思路,结合不饱和聚酯混凝土(UPC)固化前变形能力强、固化后强度高等应用特点,可以预见其在裂缝性地层恶性漏失堵漏领域具有广阔的应用前景。使用黏弹性较好的丁腈橡胶对不饱和聚酯进行改性,橡胶分子链段与不饱和聚酯分子链段之间相互交叉,形成复杂的整体网络,在改善材料整体的变形能力的同时,也在一定程度上增强其力学性能和抗温性能。如图15所示,将丁腈橡胶改性的不饱和聚酯与刚性骨料按一定比例混合,在地层压差的作用下UPC进入裂缝,固化后的不饱和聚酯在地层温度的作用下发挥“挂阻”作用,使刚性骨料更易发生滞留形成架桥,不饱和聚酯则通过“升温变形+挤压充填”挤入裂缝空间和刚性骨料架桥之间的小孔道内。一段时间后形成的整体混凝土结构,封堵漏失通道,提高裂缝性地层的承压能力。

3 结束语

(1)热固性树脂由于具有三维体型网络结构,具有优异的结构强度和热稳定性,在建筑、医疗、航空航天与机械制造等领域已有广泛应用。

(2)热固性树脂种类丰富,固化前含有大量活性基团,具有许多性能优异的改性种类。环氧树脂通过添加物理分散的纳米混合材料或者化学结合的膨胀型阻燃材料对阻燃性能进行增强;酚醛树脂可通过原位聚合或者预聚合改性引入阻燃元素或官能团,使其脆性和热稳定性得到大幅改善;聚氨酯树脂可通过对本身硬段和软段不同侧重的改性,得到泡沫类聚氨酯、压敏类聚氨酯和自愈合聚氨等种类丰富的改性产品;不饱和聚酯树脂可通过不饱和双键引入阻燃官能团,得到的改性树脂还可与其他材料复配形成具有一定变形能力且强度较高的不饱和聚酯树脂混凝土。

(3)改性后的热固性树脂应用前景广阔。自愈合聚氨酯作为固壁剂可通过分子链段中可逆的苯酚氨基甲酸酯键和金属配位键作用愈合成膜,形成整体树脂层并多点吸附在井壁岩石表面,降低井壁岩石的水化膨胀,提高弱胶结地层的承压强度;海藻酸钠改性三聚氰胺酚醛树脂作为降滤失剂可通过形成黏连的三维网络结构与黏土颗粒一起形成形成高强度、致密的滤饼,降低钻井液的滤失量;压敏类聚氨酯作为防漏剂可在地层温度作用下黏附于地层岩石微裂缝中,完全黏附成膜后,可提高地层承压能力,有效防止钻井液漏失;不饱和聚酯混凝土作为堵漏剂可通过刚性材料架桥、柔性材料固化充填的方式形成整体混凝土结构,封堵漏失通道,提高裂缝性地层的承压能力。

(4)目前改性热固性树脂材料在钻井液领域的应用仍处于室内研究阶段,未来可针对不同钻遇地层进行不同方向的改性,形成钻井液用改性热固性树脂处理剂体系,推动钻井液处理剂向高性能低成本的方向发展。

猜你喜欢

阻燃性环氧树脂钻井液
变电站组合电器用胶粘剂的制备与性能研究
纳米材料在水基钻井液中的应用
环氧树脂基复合材料加筋板结构吸湿行为研究
分析钻井液设计对钻井工程和地质录井的影响
纳米B4C(BN)/环氧树脂复合材料制备及性能研究
2027 年全球环氧树脂复材规模将达242 亿美元
有机盐钻井液在阳108H1-1井的研究与应用
浅谈废旧输送带的应用
低压电缆品质的探究
新型油基钻井液体系的研究