APP下载

秸秆分解对两种类型土壤无机氮和氧化亚氮排放的影响

2022-04-21张学林吴梅何堂庆张晨曦田明慧李晓立侯小畔郝晓峰杨青华李潮海

中国农业科学 2022年4期
关键词:黑土无机氮肥

张学林,吴梅,何堂庆,张晨曦,田明慧,李晓立,侯小畔,郝晓峰,杨青华,李潮海

秸秆分解对两种类型土壤无机氮和氧化亚氮排放的影响

张学林,吴梅,何堂庆,张晨曦,田明慧,李晓立,侯小畔,郝晓峰,杨青华,李潮海

河南农业大学农学院/省部共建小麦玉米作物学国家重点实验室/2011河南粮食作物协同创新中心,郑州 450002

【】明确作物秸秆分解对土壤无机氮和氧化亚氮(N2O)排放的影响,为不同土壤类型采用合理的氮肥用量,促进秸秆分解、增加土壤可利用养分、减少N2O等温室气体排放提供理论依据。室内采用尼龙网袋法,设置秸秆类型(小麦和玉米)、土壤类型(潮土和砂姜黑土)和氮肥用量(N0:0,N1:180 kg N·hm-2,N2:360 kg N·hm-2)三因素培养试验,并设置无秸秆无氮肥为对照(CK),测定了土壤无机氮含量、N2O和CO2排放通量以及土壤酶活性等参数。与CK相比,添加作物秸秆的N0处理土壤无机氮含量显著降低,每添加1 g小麦或玉米秸秆平均减少0.8 mg或0.4 mg土壤无机氮。与潮土相比,不同氮肥用量条件下砂姜黑土添加小麦秸秆后土壤无机氮含量降低16%,而添加玉米秸秆后增加41%。与添加小麦秸秆相比,潮土和砂姜黑土添加玉米秸秆后无机氮含量分别增加111%和252%。两种土壤添加小麦或玉米秸秆均促进N2O和CO2排放。与CK相比,添加小麦秸秆和玉米秸秆的N0处理土壤N2O排放累积量分别增加70%和47%;CO2排放累积量增加346%和154%;全球变暖潜力增加53%和71%。与潮土相比,砂姜黑土添加小麦秸秆和玉米秸秆后N2O排放通量降低38%和61%,N2O排放累积量降低12%和51%,CO2排放累积量降低28%和16%。与潮土相比,砂姜黑土添加小麦秸秆的全球变暖潜力增加13%,而添加玉米秸秆却降低44%。与添加小麦秸秆相比,潮土和砂姜黑土添加玉米秸秆后N2O排放累积量分别增加88%和6%;CO2排放累积量降低21%和6%。不同氮肥用量和土壤类型条件下添加玉米秸秆的全球变暖潜力比小麦秸秆高91%。与N0和N2处理相比,砂姜黑土添加小麦秸秆或玉米秸秆的同时配施适量氮肥(N1)降低N2O排放量以及全球变暖潜力。与CK相比,两种土壤类型添加小麦或玉米秸秆后土壤蔗糖酶活性增加,而过氧化氢酶和氧气含量降低。与添加小麦秸秆相比,两种土壤添加玉米秸秆后脲酶、蔗糖酶、过氧化氢酶活性降低。与潮土相比,砂姜黑土添加作物秸秆后脲酶、过氧化氢酶活性降低,氧气含量增加;而过氧化氢酶活性和氧气含量均与N2O排放通量呈显著负相关。小麦和玉米秸秆分解均降低土壤无机氮含量、促进温室气体排放。玉米秸秆分解过程中土壤无机氮含量和N2O排放量均高于小麦秸秆;潮土添加小麦或玉米秸秆的N2O排放量高于砂姜黑土;砂姜黑土添加小麦或玉米秸秆并配施适量氮肥不会增加土壤N2O排放和全球变暖潜力。生产上秸秆还田应综合考虑秸秆类型、土壤类型和氮肥用量。

秸秆;潮土;砂姜黑土;温室气体;氮素矿化;全球变暖潜力

0 引言

【研究意义】氧化亚氮(N2O)作为重要的温室气体,其排放量不断增加是导致全球变暖这一生态环境问题的根源[1-2]。农田是该温室气体的重要排放源,其排放通量受土壤类型、氮肥用量、秸秆类型等因素的影响[3-5]。秸秆分解一方面释放出作物生长需要的大量可利用性养分;另一方面通过影响微生物活动,调控N2O排放[6-8]。研究不同土壤类型条件下作物秸秆分解对土壤可利用性氮素供应和温室气体排放的影响,对于采取合理的秸秆还田管理措施提高土壤养分含量、减少温室气体排放,实现农业可持续发展具有重要意义。【前人研究进展】大田试验和室内培养研究表明,不同秸秆类型对土壤N2O排放的影响存在差异[9-12]。一些研究认为秸秆分解增加土壤N2O的排放[13-15],但YANG等[10]的研究结果则相反。BASCHE等[16]采用Meta分析发现,40%的作物秸秆分解过程中降低N2O排放,而60%的秸秆分解促进N2O排放。秸秆类型对N2O排放的影响主要与秸秆品质有关[9,14,17]。普遍认为低C/N比的作物秸秆促进N2O排放[18-19],而高C/N比的作物秸秆抑制N2O排放[20-21];然而,也有研究认为高C/N比作物秸秆增加氧气(O2)消耗,促进N2O排放[22]。秸秆分解过程中受氮肥用量[23-24]和土壤类型[12,22,25]的影响,N2O排放特征不同。普遍认为秸秆分解过程中增施氮肥促进土壤氮素矿化,形成更多的矿物氮[9,26-27],增加N2O排放量[12,23];而SHAN等[11]采用Meta分析发现,添加氮肥后秸秆分解抑制N2O的排放;WU等[8]也认为增施氮肥不影响土壤N2O的排放。土壤通透性对土壤硝化和反硝化作用以及 N2O 在土壤中的扩散速率影响较大,且显著影响土壤有机质的分解速率[6,25,28]。STEHFEST等[29]发现,以黏粒为主的土壤N2O排放量是砂质土壤的1.5倍,细质土壤比粗质土壤产生更多的N2O排放量[30-32]。徐华等[33]也认为,壤质土壤排放的N2O高于砂质和黏质土壤,主要是由于细质土壤中较小的颗粒尺寸增加了缺氧微位,反硝化产生的N2O排放量更多[31];而重质地土壤N2O排放量高于轻质地土壤,是由重质地土壤较强的保水能力所致。【本研究切入点】前人研究了秸秆分解过程中氮肥用量对N2O排放的影响,而关于土壤类型对N2O排放影响方面的研究相对较少,秸秆分解过程中不同土壤类型之间影响N2O排放的机制也不清楚,对这些管理措施的交互作用鲜有报道。【拟解决的关键问题】室内培养条件下,选用小麦和玉米两种特性不同的秸秆,分析秸秆类型、土壤类型和氮肥用量三因素对土壤可利用性氮素、温室气体排放的影响,以期为不同氮肥用量和土壤类型制定合理的秸秆还田措施,为农田培肥减排绿色生产提供技术支撑。

1 材料与方法

1.1 土壤和作物秸秆收集

室内培养试验选用黄淮海两种代表性土壤类型:潮土(Fluvo-aquic soil,AS)和砂姜黑土(Shajiang black soil,LS)。潮土取自河南农业大学毛庄农场农田0-20 cm土层(113.59 E,34.86 N);砂姜黑土取自驻马店西平县二郎乡张尧村0-20 cm土层(114.02E,33.38N)。土壤风干过2 mm筛后测定其基本理化特性(表1),土壤质地采用湿筛法分析潮土(AS)和砂姜黑土(LS)砂粒、粉粒和黏粒比重。2015年6月和10月于小麦和玉米成熟期收集其秸秆,秸秆主要由茎和叶组成,60 ℃烘干至恒重后切成1 cm段用于培养试验,并测定其基本理化特性(表1)。其中AS土壤pH显著高于LS;两种土壤质地的砂粒和粉粒差异较大。小麦秸秆中碳、氮、可溶性糖含量均低于玉米秸秆,但其C/N比显著高于玉米秸秆(表1)。

1.2 试验设计和室内培养

本试验为秸秆类型(小麦和玉米)、土壤类型(潮土和砂姜黑土)、氮肥用量(N0:0,N1:180 kg N·hm-2,N2:360 kg N·hm-2)三因素试验设计,并设不添加作物秸秆和氮肥为对照(CK),氮肥选用尿素,所有处理均重复4次。

表1 两种土壤类型或秸秆类型之间基本参数的比较

*,**和***表示两种土壤类型性状之间或两种秸秆类型性状之间在0.05,0.01和0.001水平的差异显著性。下同

*, ** and*** indicated the significant difference of soil properties between two soil types or residue characteristics between two residue types at 0.05, 0.01 and 0.001 levels, respectively. The same as below

2015年12月采用尼龙网分解袋+培养瓶法于室内培养箱进行培养试验[34]。具体做法为:选用容积为1 L的广口培养瓶,先在培养瓶底部平铺100 g过筛风干土,后将装有 10 g小麦或玉米秸秆的分解袋(规格为 10 cm×10 cm,网孔1 mm2)放入培养瓶内;再在分解袋上部添加土400 g。根据培养瓶容积和土壤重量,计算出培养瓶内土壤容重 1.2 g·cm-3条件下的装土高度,进而调整分解袋与土壤在培养瓶内的紧实度。基于每个培养瓶装土量为500 g,按照每公顷土壤2 000 000 kg,计算出每个氮肥处理每个培养瓶内的氮肥使用量。将装有样品的培养瓶在培养箱内预处理7 d,使所有培养瓶内土壤水分保持在田间持水量的 60%左右,后把定量尿素溶于蒸馏水,均匀喷洒于培养土壤的表层;CK处理添加相同体积的蒸馏水。试验期间培养箱内温度设定为20℃左右,根据需要每2—3天采用称重法调控土壤含水量。秸秆分解试验持续 180 d,7次破坏性取样,共计392个培养瓶。

1.3 气体采集及样品测定

施肥后第1、2、3、4、5、6、30、60、90、120、150和180天采集土壤N2O气体。采样时间一般为上午8:00—11:00,抽气时间点分别为密封前的0 min (即C0)和密封后30 min (即Ct),每次取样25 mL,并记录培养箱内的温度。所抽气体样品用日本岛津气相色谱仪GC-2010 测定N2O的浓度,N2O气体排放通量计算公式为:

N2O flux (mg·m-2·h-1)= {(Ct − C0)×3.2×V/A×[1/0.0821×(273 + T)]}×28×60/30/1000式中,C0为试验开始0时的气体浓度,Ct为培养30 min时的气体浓度,V为培养瓶土壤上部体积,A为培养瓶底部面积,T为培养箱内温度。

采用H3860 B红外气体分析仪(中国北京华和天地有限公司)分别于施肥后0、30、60、90、120、150和180 d (间隔30 d)测定培养瓶内土壤CO2排放通量,计算公式为:

CO2(mg·kg-1·h-1) = (W2-W1)×V×M×1000/(ms×t)

式中,W1为试验开始0 时的气体浓度(mg·L-1),W2为培养30 min 时的气体浓度(mg·L-1),V为容量瓶的总体积(mL),M为CO2的原子量(44.0 g·mol-1),ms为土壤重量(g),t为30 min。

以100 年时间尺度为计,计算全球变暖潜力(Global Warming Potential, GWP),即以CO2作为参考气体(CO2的GWP值为1),1 kg N2O的变暖潜力是 1 kg CO2的298倍[21],其全球变暖潜力计算公式为:

GWP = TCO2+ TN2O×298

式中,GWP表示全球变暖潜力(kg CO2-e·hm-2),即二氧化碳和氧化亚氮排放量的总CO2当量;TCO2表示CO2累积排放量;TN2O表示N2O的累积排放量。

于施肥后0、30、60、90、120、150和180 d 进行破坏性取样,用50 mL 2 mol·L-1KCL浸提并流动分析仪(Skalar autoanalyzer SANPlus,荷兰)测定土壤硝态氮(NO3--N)、铵态氮(NH4+-N)含量,计算无机氮(NO3--N+NH4+-N)含量;同时测定秸秆可溶性糖含量、土壤酶活性等参数。其中土壤O2含量采用Pyro Science FireSting O2(德国)公司光纤式氧气测量仪测定。土壤和作物秸秆全碳采用重铬酸钾-硫酸外加热法测定,全氮采用凯氏定氮法,全磷采用钼锑抗比色法测定,蒽酮比色法测定小麦和玉米秸秆中可溶性糖含量,土壤pH采用1﹕5水土比测定,土壤速效氮、速效磷、脲酶、过氧化氢酶、蛋白酶和蔗糖酶等采用文献[35-36]中方法测定。

1.4 统计分析

采用GLM-ANOVA分析秸秆类型、土壤类型和氮肥用量对土壤无机氮含量、N2O排放通量、CO2排放通量、N2O排放累积量、CO2排放累积量、全球变暖潜力、秸秆可溶性糖、土壤脲酶、过氧化氢酶、蛋白酶、蔗糖酶和O2含量的影响,并采用Duncan比较处理之间的差异性;采用paired -T test比较两种土壤类型和两种秸秆类型之间的差异性;采用Pearson correlation 分析N2O排放通量与其他参数的相关性。所有数据均采用SPSS 19.0软件进行分析,并采用Sigmaplot 12.5进行作图。

2 结果

2.1 秸秆类型、土壤类型和氮肥用量对土壤无机氮的影响

试验培养期间,土壤NO3--N(图1-A,1-B,1-C,1-D)、NH4+-N (图1-E,1-F)和无机氮(图1-I,1-J,1-K,1-L)含量均呈增加趋势,但添加玉米秸秆的土壤NH4+-N含量(图1-G,1-H)呈先升高后降低趋势。与CK相比,潮土和砂姜黑土添加小麦秸秆的N0处理无机氮含量分别减少9.56和22.69 mg·kg-1,添加玉米秸秆的N0处理分别减少11.67和2.98 mg·kg-1(表2),由此计算出500 g潮土和砂姜黑土中添加10 g小麦秸秆后的减少量分别为4.78和11.35 mg;添加10 g玉米秸秆的无机氮减少量为5.84和1.49 mg,说明两种土壤类型每分解1 g小麦秸秆消耗无机氮量为0.5—1.1 mg,分解1 g玉米秸秆的消耗量为0.1—0.6 mg,据此可为秸秆还田补施氮肥提供依据。与潮土相比,不同氮肥用量条件下砂姜黑土添加小麦秸秆后无机氮含量均值降低16%,而添加玉米秸秆后增加41%,说明不同氮肥用量条件下潮土添加小麦秸秆能够分解释放更多的无机氮,而玉米秸秆更适宜在砂姜黑土中施用。与添加小麦秸秆相比,潮土和砂姜黑土添加玉米秸秆后无机氮含量分别增加111%和252%,说明不同氮肥条件下玉米秸秆比小麦秸秆分解释放出更多的无机氮。

表2 秸秆类型、土壤类型和氮肥用量对土壤无机氮、温室气体排放和全球变暖潜力的影响

均值后不同字母表示处理间<0.05水平的差异显著性。Tr:处理;INN:无机氮。下同

Different letters in the same column indicate a significant difference among treatments at<0.05 level. Tr: Treatment; INN: Inorganic N. The same as below

图1 小麦和玉米秸秆分解过程中土壤NO3--N (A,B,C,D)、NH4+-N (E,F,G,H)和无机氮含量(I,J,K,L)动态变化

2.2 秸秆类型、土壤类型和氮肥用量对土壤N2O、CO2排放通量和全球变暖潜力的影响

试验培养期间,小麦秸秆和玉米秸秆分解过程中土壤N2O排放通量最大值均出现在施肥后第1—4天(图2),后逐渐下降。与CK相比,添加小麦秸秆和玉米秸秆的N0处理土壤N2O排放通量分别平均增加254%和13%,累积量增加70%和47%(表2),说明秸秆还田增加土壤N2O排放通量和累积量。与潮土相比,不同氮肥用量条件下砂姜黑土添加小麦秸秆后N2O排放通量和排放累积量分别降低38%和12%,添加玉米秸秆则分别降低61%和 51%,说明潮土添加小麦秸秆或玉米秸秆后均比砂姜黑土排放更多的N2O。与小麦秸秆相比,不同氮肥用量条件下潮土添加玉米秸秆后N2O排放累积量增加88%,而砂姜黑土增加6%,说明不同土壤添加玉米秸秆比小麦秸秆释放更多的N2O温室气体。

图2 小麦和玉米秸秆分解过程中土壤N2O排放通量动态变化

秸秆类型、土壤类型和氮肥量显著影响土壤CO2排放通量和累积量(表2,图3)。与CK相比,N0处理添加小麦秸秆和玉米秸秆后土壤CO2排放累积量分别增加346%和154%,说明秸秆还田促进土壤CO2排放。与潮土相比,不同氮肥用量条件下砂姜黑土添加小麦秸秆和玉米秸秆的CO2排放累积量分别降低28%和16%,说明小麦秸秆和玉米秸秆均在潮土排放更多的CO2。与小麦秸秆相比,不同氮肥用量条件下潮土添加玉米秸秆后CO2排放累积量降低21%,在砂姜黑土中降低6%,说明不同土壤类型添加玉米秸秆分解释放的CO2比添加小麦秸秆少。

与CK相比,N0处理添加小麦秸秆和玉米秸秆后全球变暖潜力分别增加53%和71%(表2)。与潮土相比,不同氮肥用量条件下砂姜黑土添加小麦秸秆的全球变暖潜力增加13%,而添加玉米秸秆却降低44%。说明小麦秸秆在砂姜黑土上对全球变暖的贡献高于玉米秸秆,而在潮土上的贡献低于玉米秸秆。与小麦秸秆相比,不同氮肥用量和土壤类型条件下添加玉米秸秆的全球变暖潜力提高91%。与N0和N2相比,砂姜黑土添加小麦秸秆或玉米秸秆的N1处理N2O排放累积量均降低,其中添加小麦秸秆后的全球变暖潜力降低6%和14%,添加玉米秸秆后的潜力降低4%和11%,说明砂姜黑土添加小麦秸秆或玉米秸秆的同时配施适量氮肥能够减弱N2O温室气体排放量及其全球变暖潜力。

2.3 秸秆类型、土壤类型和氮肥用量对秸秆可溶性糖和土壤特性的影响

与N0相比,潮土和砂姜黑土两个氮肥处理(N1和N2)的小麦秸秆可溶性糖含量均值分别增加7%和4%,而玉米秸秆的可溶性糖含量分别降低12%和5%(表3)。说明小麦秸秆分解过程中从土壤中固持部分碳素,而玉米秸秆分解释放出大量碳素。与小麦秸秆相比,不同氮肥用量条件下潮土添加的玉米秸秆的可溶性糖含量提高49%,而砂姜黑土的提高40%。与N0相比,增施氮肥降低土壤脲酶、过氧化氢酶活性。与CK相比,潮土和砂姜黑土添加小麦秸秆的N0处理脲酶活性分别增加9%和26%,而添加玉米秸秆后活性降低。不同氮肥用量条件下,潮土添加小麦秸秆土壤脲酶活性均值比添加玉米秸秆提高38%,而在砂姜黑土则提高50%。

图3 小麦和玉米秸秆分解过程中土壤CO2排放通量动态变化

与CK相比,潮土N0处理添加小麦秸秆和玉米秸秆后土壤蔗糖酶活性分别增加13%和8%,砂姜黑土酶活性分别增加34%和5%,而过氧化氢酶和氧气含量均降低(表3和图4)。与小麦秸秆相比,潮土添加玉米秸秆后土壤脲酶、蛋白酶和蔗糖酶活性分别降低38%、15%和71%,而砂姜黑土的脲酶、过氧化氢酶和蔗糖酶分别降低50%、15%和82%。与潮土相比,砂姜黑土添加小麦秸秆后脲酶、过氧化氢酶和蛋白酶分别降低68%、9%和19%,蔗糖酶和氧气分别增加16%和10%;而添加玉米秸秆后脲酶、过氧化氢酶和蔗糖酶活性分别降低74%、21%和27%,氧气含量增加4%。潮土中部分土壤转化酶活性高于砂姜黑土(表3),说明添加秸秆对不同土壤类型氮素转运过程的调控作用不同,其中对潮土氮素转化的促进作用强于砂姜黑土,这可能是潮土释放更多N2O的缘故。潮土中CO2排放量显著高于砂姜黑土(表2),说明潮土中微生物生长更快、活性更强,微生物呼吸产生的厌氧微粒体与秸秆分解增加微生物生长和活性碳底物的供应均促进氧的消耗,产生临时厌氧微粒体,同时导致土壤O2含量降低(图4)。

2.4 土壤N2O和CO2排放通量与其他参数之间的相关性

土壤N2O排放通量与土壤无机氮(小麦秸秆砂姜黑土除外)、过氧化氢酶(小麦秸秆潮土除外)、蔗糖酶(玉米秸秆潮土除外)、土壤氧气(小麦秸秆潮土除外)含量均显著相关(表4)。潮土和砂姜黑土添加小麦秸秆的CO2排放通量与脲酶、过氧化氢酶、蔗糖酶和氧气含量均显著相关。

表3 秸秆类型、土壤类型和氮肥用量对秸秆可溶性糖含量、土壤酶活性和O2含量的影响

图4 小麦和玉米秸秆分解过程中土壤O2含量动态变化

表4 土壤N2O和CO2排放累积量与土壤无机氮、酶活性及其他参数的相关性

*,**和***表示0.05,0.01和0.001水平的显著相关性

*, ** and*** indicated the significant correlations at 0.05, 0.01 and 0.001 levels, respectively

3 讨论

3.1 秸秆分解对土壤无机氮和温室气体排放的影响

夏志敏等[37]采用室内培养发现,玉米秸秆分解过程中土壤矿化氮减少、微生物固持氮素时间延长、土壤微生物生物量氮增加。本研究发现每分解1 g小麦秸秆平均消耗土壤0.8 mg无机氮,而1 g玉米秸秆消耗0.4 mg无机氮,按照黄淮海地区小麦秸秆全量还田8 000 kg·hm-2,需要补充的氮肥用量为6.4 kg·hm-2;而玉米秸秆全量还田9 000 kg·hm-2,需要补充的氮肥用量为3.6 kg N·hm-2。这为依据秸秆还田量配施适宜的氮肥用量、防止秸秆分解初期生长作物脱肥提供了参考。

秸秆分解过程中土壤无机氮含量降低,而N2O排放量增加,一方面是秸秆分解为土壤微生物提供了丰富的碳源[15,37],促进微生物生长、增强微生物活性,土壤微生物固持氮素量增加,降低了土壤无机氮含量;另一方面土壤N2O排放量与土壤有效氮和氮素转化过程显著相关[14,23-24],秸秆分解释放的小分子态有机氮,经过土壤矿化形成的土壤无机氮,为N2O排放提供了充足的底物,也是无机氮含量降低、N2O排放量增加的主要原因[37]。此外,秸秆分解消耗了大量的氧气,形成厌氧微环境,也有利于反硝化过程和N2O排放[22]。本研究发现作物秸秆分解过程中土壤氧气含量降低,且氧气含量与N2O排放量呈显著负相关,说明秸秆分解形成的厌氧环境是促进N2O排放的重要原因。

不同作物秸秆分解过程中土壤N2O排放的差异,主要是由于秸秆品质如C/N比、秸秆可溶性糖含量等的差异所致[18-21]。BAGGS等[13]和LIN等[14]大田研究发现,土壤N2O排放量与秸秆C/N比呈显著负相关;低C/N比的作物秸秆往往分解得更快,增加土壤微生物生物量,促进净氮矿化,增加无机氮和N2O排放量[18-19]。MUHAMMAD等[15]室内培养研究认为,玉米秸秆分解增加N2O排放主要是土壤矿质态氮增加的缘故。高C/N比的作物秸秆,特别是含有高度不稳定性碳的秸秆,会促进土壤微生物生长,导致微生物氮素需求增加,减少N2O的排放[20-21]。YANG等[10]研究认为,高C/N比的玫瑰渣分解降低N2O排放,主要是玫瑰渣分解过程中土壤微生物消耗了大量氧气,形成的厌氧环境抑制了氮素自养硝化作用。这可能是本研究中C/N比较低的玉米秸秆具有较高的土壤有效氮和N2O排放量,而C/N比较高的小麦秸秆土壤有效氮和N2O排放量较低的原因[8,38-39]。另外,微生物介导的土壤氮素转化过程(如矿化、反硝化和微生物固持)需要秸秆有机碳作为能量底物[9,14,17],玉米秸秆易分解的可溶性糖含量比小麦秸秆高,这些易分解的碳水化合物有效促进了反硝化过程[2,8,26],也是添加玉米秸秆后土壤N2O排放量较高的原因。

3.2 土壤类型和氮肥用量互作条件下秸秆分解对温室气体排放的影响

普遍认为,随氮肥用量增加延长了秸秆中氮的矿化周期,增加了矿质氮的有效性和土壤N2O排放量[12-13,27];然而也有研究认为单一施用作物秸秆增加N2O排放,而作物秸秆与氮肥相结合则显著减少N2O排放,其原因是土壤反硝化速率在很大程度上取决于有机碳的有效性[11],作物秸秆和氮肥交互作用下土壤溶解有机碳含量下降,N2O排放受到抑制[9,24]。本研究发现砂姜黑土添加小麦或玉米秸秆后配施适量氮肥,能够降低土壤N2O排放量和全球变暖潜力(表2),这一结果对于特定的土壤类型采用适宜的氮肥管理措施,有效减少秸秆分解过程中温室气体排放和增温潜势具有重要意义。

不同土壤类型由于质地如砂粒、粉粒和黏粒所占比例以及土壤O2有效性等特性的差异,显著影响N2O的排放量[22]。本研究表明不同氮肥用量条件下潮土添加小麦或玉米秸秆后N2O排放量均高于砂姜黑土,但其土壤氧气含量均低于砂姜黑土,可能是潮土氧气含量低所形成的厌氧环境促进了土壤反硝化[38,40],产生更多的N2O的重要原因[14,23-24]。所有这些表明,秸秆在不同土壤类型分解过程中对氧气的消耗、形成的厌氧环境是促进N2O排放的根源。生产上应据此采取合理的管理措施,形成适宜的有氧环境,减少温室气体排放量。

由于本试验仅仅是室内培养的结果,还不能完全反映大田条件下秸秆分解的实际情况。秸秆还田作为保护性农业的重要措施,其在生产上的作用越来越受到重视,未来应该重点开展以下的研究工作:一是利用室内培养与大田试验相结合的优势,探讨秸秆还田培肥地力和调控温室气体排放的机制。室内培养具有研究条件可控、外界因素影响小、研究结果接近最佳状态等特点,缺点是研究结果与生产实际存在差距;大田试验由于自然因素和人为影响变化复杂,试验结果再现性差[34,41]。室内培养与大田试验相结合是明确机制的最佳策略。二是研究秸秆因素的同时,结合土壤类型、种植制度、施肥和灌溉等因素对温室气体排放的影响,分析不同因素作用下的综合效果[42-43]。通过开展不同生态类型区秸秆还田与栽培管理等措施交互作用下的长期定量研究,制定合理的秸秆还田管理技术体系,实现培肥减排绿色生产。

4 结论

小麦秸秆和玉米秸秆分解过程中消耗土壤无机氮,其中潮土和砂姜黑土每分解1 g小麦秸秆消耗约0.8 mg无机氮,分解玉米秸秆需消耗0.4 mg的无机氮。小麦和玉米秸秆的分解均促进土壤N2O和CO2的排放量;潮土添加小麦或玉米秸秆后N2O或CO2的排放量均比砂姜黑土高。两种土壤类型添加玉米秸秆比小麦秸秆排放更多的N2O气体,但CO2排放量小于小麦秸秆。增施氮肥促进土壤N2O排放和全球变暖潜力,但砂姜黑土添加小麦或玉米秸秆并配施适量氮肥能够降低N2O排放量和全球变暖潜力。生产上为了平衡土壤可利用性氮素供应和温室气体排放,秸秆还田时应要综合考虑秸秆类型、土壤类型和氮肥用量。

[1] FRENEY J R, DENMEAD O T, SIMPSON J R. Soil as a source or sink for atmospheric nitrous oxide. Nature, 1978, 273: 530-532. doi: 10.1038/273530a0.

[2] CHEN H H, LI X C, HU F, SHI W. Soil nitrous oxide emissions following crop residue addition: a meta-analysis.Global Change Biology, 2013, 19(10): 2956-2964. doi: org/10.1111/gcb.12274.

[3] HARRION R, WEBB J. A review of the effect of N fertilizer type on gaseous emissions. Advances in Agronomy, 2001, 73: 65-108. doi: 10.1016/S0065-2113(01)73005-2.

[4] LI X G, JIA B, LV J T, MA Q J, KUZYAKOV Y, LI F M. Nitrogen fertilization decreases the decomposition of soil organic matter and plant residues in planted soils. Soil Biology and Biochemistry, 2017, 112: 47-55. doi: org/10.1016/j.soilbio.2017.04.018.

[5] WEI T, ZHANG P, WANG K, DING R X, YANG B P, NIE J F, JIA Z K, HAN Q F. Effects of wheat straw incorporation on the availability of soil nutrients and enzyme activities in semiarid areas. PLoS One, 2015, 10(4): e0120994. doi: 10.1371/ journal.pone.0120994.

[6] 李廷亮, 王宇峰, 王嘉豪, 栗丽, 谢钧宇, 李丽娜, 黄晓磊, 谢英荷. 我国主要粮食作物秸秆还田养分资源量及其对小麦化肥减施的启示. 中国农业科学, 2020, 53(23): 4835-4854. doi: 10.3864/j.issn. 0578-1752.2020.23.010.

LI T L, WANG Y F, WANG J H, LI L, XIE J Y, LI L N, HUANG X L, XIE Y H. Nutrient resource quantity from main grain crop straw incorporation and its enlightenment on chemical fertilizer reduction in wheat production in China. Scientia Agricultura Sinica, 2020, 53(23): 4835-4854. doi: 10.3864/j.issn.0578-1752.2020.23.010. (in Chinese)

[7] BEGUM N, GUPPY C, HERRIDGE D, SCHWENKE G. Influence of source and quality of plant residues on emissions of N2O and CO2from a fertile, acidic Black Vertisol. Biology and Fertility of Soils, 2014, 50(3): 499-506. doi: 10.1007/s00374-013-0865-8.

[8] WU Y, LIN S, LIU T, WAN T, HU R. Effect of crop residue returns on N2O emissions from red soil in China. Soil Use and Management, 2016, 32(1): 80-88. doi: 10.1111/sum.12220.

[9] HUANG Y, ZOU J W, ZHENG X H, WANG Y S, XU X K. Nitrous oxide emissions as influenced by amendments of plant residues with different C: N ratio. Soil Biology and Biochemistry, 2004, 36(6): 973-981. doi: 10.1016/j.soilbio.2004.02.009.

[10] YANG G R, HAO X Y, LI C L, LI Y M. Effects of greenhouse intensive cultivation and organic amendments on greenhouse gas emission according to a soil incubation study. Archives of Agronomy and Soil Science, 2015, 61(1): 89-103. doi: org/10.1080/03650340. 2014.922177.

[11] SHAN J, YAN X Y. Effects of crop residue returning on nitrous oxide emissions in agricultural soils. Atmospheric Environment, 2013, 71: 170-175. doi: org/10.1016/j.atmosenv.2013.02.009.

[12] WEITZ A M, LINDER E, FROLKING S, CRILL P M, KELLER M. N2O emissions from humid tropical agricultural soils: effects of soil moisture, texture and nitrogen availability. Soil Biology and Biochemistry, 2001, 33(7/8): 1077-1093. doi: org/10.1016/S0038-0717 (01) 00013-X.

[13] BAGGS E M, REES R M, SMITH K A, VINTEN A J A. Nitrous oxide emission from soils after incorporating crop residues. Soil Use and Management, 2000, 16: 82-87. doi: org/10.1111/j.1475-2743. 2000.tb00179.x.

[14] LIN S, IQBAL J, HU R G, SHAABAN M, CAI J B, CHEN X. Nitrous oxide emissions from yellow brown soil as affected by incorporation of crop residues with different carbon-to-nitrogen ratios: a case study in central China. Archives of Environmental Contamination and Toxicology, 2013, 65(2): 183-192. doi: 10.1007/s00244-013-9903-7.

[15] MUHAMMAD W, VAUGHAN S M, DALAL R C, MENZIES N W. Crop residues and fertilizer nitrogen influence residue decomposition and nitrous oxide emission from a Vertisol. Biology and Fertility of Soils, 2011, 47(1): 15-23. doi: 10.1007/s00374-010-0497-1.

[16] BASCHE A D, MIGUEZ F E, KASPAR T C, CASTELLANO M J. Do cover crops increase or decrease nitrous oxide emissions? A meta-analysis. Journal of Soil and Water Conservation, 2014, 69(6): 471-482. doi: 10.2489/jswc.69.6.471.

[17] GENTILE R, VANLAUWE B, VAN KESSEL C, SIX J. Managing N availability and losses by combining fertilizer-N with different quality residues in Kenya. Agriculture, Ecosystems and Environment, 2009, 131(3/4): 308-314. doi: 10.1016/j.agee.2009.02. 003.

[18] MCFARLAND J W, RUESS R W, KIELLAND K, DOYLE A P. Cycling dynamics of NH4+and amino acid nitrogen in soils of a deciduous boreal forest ecosystem. Ecosystems, 2002, 5(8): 775-788. doi: 10.1007/s10021-002-0146-0.

[19] GILLIAM F S, LYTTLE N L, THOMAS A, ADAMS M B. Soil variability along a nitrogen mineralization/nitrification gradient in a nitrogen-saturated hardwood forest. Soil Science Society of America Journal, 2005, 69(1): 247-256.

[20] BRANT J B, SULZMAN E W, MYROLD D D. Microbial community utilization of added carbon substrates in response to long-term carbon input manipulation. Soil Biology and Biochemistry, 2006, 38(8): 2219-2232. doi: 10.1016/j.soilbio.2006.01.022.

[21] SCHNECKENBERGER K, DEMIN D, STAHR K, KUZYAKOV Y. Microbial utilization and mineralization of [14C]-glucose added in six orders of concentration to soil. Soil Biology and Biochemistry, 2008, 40(8): 1981-1988. doi: 10.1016/j.soilbio.2008.02. 020.

[22] NETT L, SRADNICK A, FUß R, FLESSA H, FINK M. Emissions of nitrous oxide and ammonia after cauliflower harvest are influenced by soil type and crop residue management. Nutrient Cycling in Agroecosystems, 2016, 106(2): 217-231. doi: 10.1007/s10705-016-9801-2.

[23] FRIMPONG K A, BAGGS E M. Do combined applications of crop residues and inorganic fertilizer lower emission of N2O from soil? Soil Use and Management, 2010, 26(4): 412-424. doi: 10.1111/j.1475- 2743.2010.00293.x.

[24] LIU C Y, WANG K, MENG S X, ZHENG X H, ZHOU Z X, HAN S H, CHEN D L, YANG Z P. Effects of irrigation, fertilization and crop straw management on nitrous oxide and nitric oxide emissions from a wheat-maize rotation field in northern China.Agriculture Ecosystems and Environment, 2011, 140(1/2): 226-233. doi: 10.1016/j.agee.2010. 12.009.

[25] GAILLARD R, DUVAL B D, OSTERHOLZ W R, KUCHARIK C J. Simulated effects of soil texture on nitrous oxide emission factors from corn and soybean agroecosystems in Wisconsin. Journal of Environmental Quality, 2016, 45: 1540-1548. doi: 10.2134/jeq2016. 03.0112.

[26] TOMA Y, HATANO R. Effect of crop residue C:N ratio on N2O emissions from gray lowland soil in Mikasa, Hokkaido, Japan. Soil Science and Plant Nutrition, 2007, 53(2): 198-205. doi: org/10.1111/j. 1747-0765.2007.00125.x.

[27] BLAGODATSKAYA E V, BLAGODATSKY S A, ANDERSON T H, KUZYAKOV Y. Contrasting effects of glucose, living roots and maize straw on microbial growth kinetics and substrate availability in soil. European Journal of Soil Science, 2009, 60(2): 186-197. doi: org/ 10.1111/j.1365-2389.2008.01103.x.

[28] GU J X, NICOULLAUD B, ROCHETTE P, GROSSEL A, HENAULT C, CELLIER P, RICHARD G. A regional experiment suggests that soil texture is a major control of N2O emissions from tile-drained winter wheat fields during the fertilization period. Soil Biology and Biochemistry, 2013, 60: 134-141. doi: 10.1016/j.soilbio. 2013.01.029.

[29] STEHFEST E, BOUWMAN L. N2O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions. Nutrient Cycling in Agroecosystems, 2006, 74(3): 207-228. doi: 10.1007/ s10705-006-9000-7.

[30] VAN GROENIGEN J W, KASPER G J, VELTHOF G L, VAN Den Pol-van DASSELAAR A, KUIKMAN P J. Nitrous oxide emissions from silage maize fields under different mineral nitrogen fertilizer and slurry applications. Plant and Soil, 2004, 263: 101-111. doi: 10.1023/ B:PLSO.0000047729.43185.46.

[31] LESSCHEN J P, VELTHOF G L, DE VRIES W, KROS J. Differentiation of nitrous oxide emission factors for agricultural soils. Environmental Pollution, 2011, 159(11): 3215-3222. doi: org/10.1016/j. envpol.2011.04.001.

[32] JIAN S Y, LI J W, CHEN J, WANG G S, MAYES M A, DZANTOR K E, HUI D F, LUO Y Q. Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: A meta-analysis. Soil Biology and Biochemistry, 2016, 101: 32-43. doi: org/10.1016/j.soilbio.2016.07.003.

[33] 徐华, 邢光熹, 蔡祖聪, 鹤田治雄. 土壤水分状况和质地对稻田N2O排放的影响. 土壤学报, 2000, 37(4): 499-505.

XU H, XING G X, CAI Z C, HETIAN Z X. Effects of soil water regime and soil texture on N2O emission from rice paddy field. Acta Pedologica Sinica, 2000, 37(4): 499-505. (in Chinese)

[34] 张学林, 周亚男, 李晓立, 侯小畔, 安婷婷, 王群.氮肥对室内和大田条件下作物秸秆分解和养分释放的影响. 中国农业科学, 2019, 52(10): 1746-1760. doi: 10.3864/j.issn.0578-1752.2019.10.008.

ZHANG X L, ZHOU Y N, LI X L, HOU X P, AN T T, WANG Q. Effects of nitrogen fertilizer on crop residue decomposition and nutrient release under lab incubation and field conditions. Scientia Agricultura Sinica, 2019, 52(10): 1746-1760. doi: 10.3864/j.issn. 0578-1752.2019.10.008. (in Chinese)

[35] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000.

LU R K. Analytical Methods for Soil and Agro-chemistry. Beijing: China Agricultural Science of Technology Press, 2000. (in Chinese)

[36] 关松荫. 土壤酶及其研究法. 北京: 农业出版社, 1986.

GUAN S Y. Soil Enzymes and Their Research Methods. Beijing: Agricultural Press, 1986. (in Chinese)

[37] 夏志敏, 周建斌, 梅沛沛, 王平, 桂林国, 李隆. 玉米与蚕豆秸秆配施对秸秆分解及土壤养分含量的影响. 应用生态学报, 2012, 23 (1): 103-108. doi: 10.13287/j.1001-9332.2012.0014.

XIA Z M, ZHOU J B, MEI P P, WANG P, GUI L G, LI L. Effects of combined application of maize-and horsebean straws on the straws decomposition and soil nutrient contents. Chinese Journal of Applied Ecology, 2012, 23(1): 103-108. doi: 10.13287/j. 1001-9332.2012. 0014. (in Chinese)

[38] MILLAR N, NDUFA J K, CADISCH G, BAGGS E M. Nitrous oxide emissions following incorporation of improved-fallow residues in the humid tropics. Global Biogeochemical Cycles,2004, 18(1): GB1032. doi: 10.1029/2003gb002114.

[39] MANZONI S, JACKSON R B, TROFYMOW J A, PORPORATO A. The global stoichiometry of litter nitrogen mineralization. Science, 2008, 321: 684-686. doi: 10.1126/science.1159792.

[40] QIU Q Y, WU L F, OUYANG Z, LI B B, XU Y Y, WU S S, GREGORICH E G. Effects of plant-derived dissolved organic matter (DOM) on soil CO2and N2O emissions and soil carbon and nitrogen sequestrations. Applied Soil Ecology, 2015, 96: 122-130. doi: 10.1016/j.apsoil.2015.07.016.

[41] 马小婷, 隋玉柱, 朱振林, 王勇, 李新华. 秸秆还田对农田土壤碳库和温室气体排放的影响研究进展. 江苏农业科学, 2017, 45(6): 14-20. doi: 10.15889 /j.issn. 1002-1302. 2017. 06.003.

MA X T, SUI Y Z, ZHU Z L, WANG Y, LI X H. Effects of straw returning on soil carbon pool and greenhouse gas emissions. Jiangsu Agricultural Sciences. 2017, 45(6): 14-20. doi: 10.15889 /j.issn. 1002-1302. 2017. 06.003. (in Chinese)

[42] 李英臣, 侯翠翠, 李勇, 过治军. 免耕和秸秆覆盖对农田土壤温室气体排放的影响. 生态环境学报, 2014, 23(6): 1076-1083. doi: 10.16258/j.cnki.1674-5906.2014.06.020.

LI Y C, HOU C C, LI Y, GUO Z J. Effects of no-till and straw mulch on greenhouse gas emission from farmland: A review. Ecology and Environmental Sciences, 2014, 23(6): 1076-1083. doi: 10.16258/ j.cnki.1674-5906.2014.06.020. (in Chinese)

[43] 王淑颖, 李小红, 程娜, 付时丰, 李双异, 孙良杰, 安婷婷, 汪景宽. 地膜覆盖与施肥对秸秆碳氮在土壤中固存的影响. 中国农业科学, 2021, 54(2): 345-356. doi: 10.3864/j.issn.0578-1752.2021.02.010.

WANG S Y, LI X H, CHENG N, FU S F, LI S Y, SUN L J, AN T T, WANG J K. Effects of plastic film mulching and fertilization on the sequestration of carbon and nitrogen from straw in soil. Scientia Agricultura Sinica, 2021, 54(2): 345-356. doi: 10.3864/j.issn.0578- 1752.2021.02.010. (in Chinese)

Effects of Crop Residue Decomposition on Soil Inorganic Nitrogen and Greenhouse Gas Emissions from Fluvo-Aquic Soil and Shajiang Black Soil

ZHANG XueLin, WU Mei, HE TangQing, ZHANG ChenXi, TIAN MingHui, LI XiaoLi, HOU XiaoPan, HAO XiaoFeng, YANG QingHua, LI ChaoHai

AgronomyCollege, Henan Agricultural University/State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops for 2011, Zhengzhou 450002

【】The purpose of this study was to examine the effects of crop residue decomposition on soil available nitrogen (N) and nitrous oxide (N2O) emissions, and provide a theoretical basis for reasonable N fertilizer rate in agricultural soils to promote residue decomposition, to increase soil available nutrients, and to reduce N2O emissions.【】The indoor soil incubations with nylon decomposition bag were conducted to study the effects of crop residue types (wheat and maize), soil types (fluvo-aquic soil: AS and Shajiang black soil: LS) and N fertilizer rates (N0: 0; N1: 180 kg N·hm-2; N2: 360 kg N·hm-2) on soil N2O emission. A control (CK) without residue addition and N fertilizer input was also established for the two soil types. Inorganic N content, N2O and CO2flux, and soil enzyme activity were measured in incubated soil.【】Compared with CK, soil inorganic N content under N0 decreased significantly, which was decreased by 0.8 mg·g-1for 1 g wheat residue addition or 0.4 mg·g-1for 1 g maize residue addition. Compared with AS, soil inorganic N content in LS reduced by 16% with wheat residue addition, by 41% with maize residue addition. Compared with wheat residue addition, soil inorganic N content in AS and LS increased by 111% and 252% with maize residue addition, respectively. Compared with CK, both soil N2O and CO2flux increased with wheat residue or maize residue addition, and the total accumulation of soil N2O flux under N0 treatment increased by 70% and 47% with wheat residue and maize residue addition, by 346% and 154% for CO2accumulation, and by 53% and 71% for global warming potential, respectively. Compared with AS, soil N2O flux in LS reduced by 38% and 61% with wheat residue and maize residue addition, by 12% and 51% for the accumulation of N2O flux, and by 28% and 16% for the accumulation of CO2flux, respectively. And the global warming potential in LS increased by 13% with the wheat residue addition in comparison with that in AS, while declined by 44% with maize residue addition. Compared with wheat residue addition, the accumulation of soil N2O flux with maize residue addition increased by 88% in AS, and by 6% in LS, and reduced by 21% and 6% for the accumulation of soil CO2flux in AS and LS, respectively. And the global warming potential with maize residue addition was 91% higher than that of wheat residue addition under the conditions of different N fertilizer rates and soil types. Compared with N0 and N2, soil N2O flux and their global warming potential under N1 treatment reduced significantly with wheat residue or maize residue addition in LS. Compared with CK, soil invertase activity increased with wheat residue or maize residue addition in both AS and LS, while which declined for soil Catalase and O2content. Compared with wheat residue addition, soil urease activity, Catalase, and invertase activities declined with maize residue addition. Compared with AS, soil urease and catalase activities in LS reduced with wheat residue or maize residue addition, while soil O2content increased. The catalase activities and O2content was significantly and negatively related with soil N2O flux. 【】The decomposition of wheat residue and maize residue reduced soil inorganic N content while increasing soil N2O flux. Soil inorganic N content and N2O flux with maize residue addition were higher than that of wheat residue. Emissions of N2O from Fluvo-aquic soil with wheat or maize residue addition was higher than that from Shajiang black soil. When combined with suitable N fertilizer rate, neither residues additions in Shajiang black soil increased N2O flux and global warming potential. These results suggested that, in the field, comprehensive management methods by returning residue to soil should consider the residue type, soil type and rate of N fertilization.

crop residue; fluvo-aquic soil; Shajiang black soil; greenhouse gas; soil nitrogen mineralization; global warming potential

10.3864/j.issn.0578-1752.2022.04.009

2021-01-11;

2021-03-11

国家重点研发计划课题(2018YFD0200605)、河南省自然科学基金(182300410013)、河南农业大学科技创新基金(30500712)

张学林,Tel:13643867669;E-mail:xuelinzhang1998@163.com,zxl1998@henau.edu.cn

(责任编辑 李云霞)

猜你喜欢

黑土无机氮肥
我国将对黑土耕地“建档保护”
氮肥追施量及追施间隔对设施黄瓜生长的影响
自然资源部:加强黑土耕地保护 严格耕地用途管制
新时期海产品无机砷检测与含量控制策略
长期有机无机配施下烤烟-玉米轮作优化土壤微生物活化无机磷*
如何打击盗土
长期施肥对砂姜黑土可溶性碳淋溶的影响
论水稻生产中氮肥追施技术
朝阳县大白菜裸地栽培配方施肥效应探讨
基于不同添加剂的阻燃纤维专利技术综述