考虑天然裂缝条件下水平井压裂簇间距优化
——以吉木萨尔页岩油为例
2022-03-22何小东张景臣王俊超郭晓东
何小东,张景臣,王俊超,李 恒,陈 希,郭晓东
1)中国石油新疆油田分公司工程技术研究院,新疆克拉玛依 834000;2)中国石油大学(北京)非常规油气科学技术研究院,北京 102249
近年来,非常规油气藏已成为全球一种非常重要的石油资源,是接替常规油气能源,支撑油气革命的重要力量[1].页岩油更是成为非常规油气发展的“热点”[2-5].在中国的四川盆地、准噶尔盆地、三塘盆地、鄂尔多斯盆地、松辽盆地、渤海湾盆地、苏北盆地、江汉盆地和南襄盆地等都发现了大面积页岩油藏.其中,位于准噶尔盆地东部的吉木萨尔凹陷,已建成中国首个页岩油示范区,目前已产原油超80万t.随着开发的不断进行,吉木萨尔页岩油示范区逐渐确立了“水平井+体积压裂”的开发模式[6].吉木萨尔凹陷M井区于2020年开展了大段多簇压裂,地质上表明,地层埋深较深,闭合应力很高,岩性以云质粉砂岩和长石砂岩为主,储层原油黏度高、流度低,地层压力系数偏高,隔夹层发育薄[7];工程上认为,压裂改造体积是高产的工程保障,通过密切割布缝设计,缩小裂缝间距可有效提高改造体积.但密切割工艺对水平井的簇间距要求非常严格,簇间距过窄会导致簇间干扰现象严重,使得中间裂缝受到跟段和趾段裂缝的影响,不能均匀起裂.簇间距过宽又无法形成密切割缝网[8].以往的研究主要聚集在页岩气储层、致密气储层、致密砂岩储层和低渗煤层储层,较少考虑页岩油储层[9-10].近几年来,大量文献通过采用地质工程一体化的研究方法,建立地质模型+工程模型对井间距、簇间距和工厂化开发模式等进行优化[11-19],但较少考虑天然裂缝的影响.能否使“缝控储量”进一步实现,充分沟通天然裂缝和人工裂缝,同时最大化节约成本,争取储层一次彻底充分改造,避免后续重复改造,是目前现场关注的核心问题.
基于上述问题,本研究建立了一套新的优化方法,采用FracMan三维压裂设计软件,建立页岩油实际储层的天然裂缝模型、地质力学参数模型和水力压裂人工裂缝模型,基于所建簇间距优化模型,模拟了密切割工艺下不同簇间距和不同基质渗透率对改造效果、区域动用程度的影响,最终确定出适合目标区块的最优簇间距.
1 研究区概况
1.1 储层地质特征
吉木萨尔凹陷的面积大约是1 278 km2,油层平均厚度为200 m,平均埋深为3 570 m.其中,M井区位于吉木萨尔凹陷东部,埋深为3 600~3 900 m,构造相对简单,整体上为东南高、西北低的西倾单斜,自上而下划分为4个油层:和其中,中上部两套物性和含油性均较好的油层集中发育段,对应上、下两套甜点上甜点体纵向划分为和共4个小层;下甜点体纵向划分为共7个小层,油层集中发育在上部3个小层,其连井剖面如图1.根据岩性解释数据,M井区下甜点岩性以云质粉砂岩(质量分数为38%)、长石砂岩(质量分数为48%)为主,云质泥岩(质量分数为7%)、白云岩(质量分数为5%)和页岩(质量分数为2%)含量较低;脆性指数平均为46%;根据X射线衍射全岩定量资料分析,储层黏土矿物总体质量分数平均为1.96%.此外,M井区属于异常高压、正常温度系统的未饱和油藏,压力系数为1.50~1.68,原油平均黏度为196.2 mPa·s,下甜点的隔夹层相对较薄,纵向应力遮挡弱于上甜点.
图1 过M1-M3-M 5连井剖面图Fig.1 Cross section of M1-M3-M 5
1.2 储层物性特征
2 簇间距优化模型的建立
2.1 天然裂缝模型
结合研究区块3口水平井,井距为200 m,水平段长1 500 m,基于FracMan三维压裂设计软件,采用离散裂缝网格方法(discrete fracture network,DFN),建立一个2 000 m(x方向)×1 000 m(y方向)×300 m(z方向)的井组模型.利用地震资料得到工区的构造情况;利用单井岩心观察和区域内成像测井解释得到裂缝的发育情况;结合区域构造特征(曲率和断层)、岩石物性、地震属性和古应力造缝机理等数据,综合分析得到裂缝基本参数(表1).研究区块共发育两组裂缝(高角度缝和层理缝),采用裂缝玫瑰产状进行分析,高角度缝走向为NE15°,倾角79°;层理缝与地层走向一致,倾角约10°~15°.
表1 M井区上下甜点体裂缝密度Table1 Fracture density of upper and lower sweet spot bodies in M well area 条/m
结合区域断层、蚂蚁体和露头等数据,采用基于分形理论幂函数方法对裂缝尺寸进行分析,量化研究区内大、中、小各级天然裂缝分布规律[21].研究区域内裂缝尺寸分形维数如下:高角度缝为0.078条/m,层理缝为3.38条/m.
在裂缝密度、裂缝产状和裂缝尺寸等参数下,结合井组模型,构建天然裂缝模型(图2).该模型为离散裂缝网络模型,比传统的双孔模型具有更多优势,能更真实地描述地质和裂缝情况,进行油气藏连通性的直接模拟,以及地质、地球物理和生产等一体化分析.
图2 构造缝模型、层理缝模型以及构造缝耦合层理缝模型Fig.2 Structural fracturemodel,bedding fracturemodel,structural fracturecoupled bedding fracturemodel
2.2 力学模型
综合考虑岩性、构造特征、天然裂缝、断层及溶洞等地质特征,利用岩石物性耦合的方法,分析天然裂缝对岩石物性的影响,预测含裂缝岩体物性参数,构建3口井组尺度的压前工程地质力学模型.
在力学模型的基础上,根据目标区块的单井力学解释成果(表2),确定模型的应力边界条件,水平最大主应力约为65 Mpa,水平最小主应力约为53 Mpa,垂向应力梯度约为0.023 MPa/m.结合区域边界条件、区域岩石(含裂缝岩体)物性场和构造特征等因素模拟研究区应力场,利用有限元方法计算研究区内应力场分布,建立地应力场模型(图3).
图3 地应力场模型(水平最大主应力)Fig.3 Model of in-situ stressfield
表2 J2井力学参数解释成果Table2 Interpretation resultsof mechanical parameters of J2 well
2.3 水力压裂工程模型
基于天然裂缝模型、地应力场及力学参数场,结合给定泵注程序,设施工液量为200 m3/簇,施工排量为10 m3/min,加砂强度为2 m3/m,开展目标区块考虑应力时变的全(真)三维压裂模拟,建立水力压裂工程模型.该模型考虑了天然裂缝、岩石物性(弹性模量和泊松比)、闭合压力、地应力场和构造特征等因素,可以实现应力场迭代模拟,精准模拟水力裂缝扩展.
压裂模拟中,发现水力主缝沿水平最大主应力方向延伸,与周围天然裂缝相接触,将其开启或穿过.模拟结果可以看出,通过密切割,压后缝间干扰程度更大形成缝网更为复杂,储量动用程度更高(图4).
图4 不同簇间距形成的压后缝网Fig.4 Thepressureback seam network formed by different cluster spacing
压裂模拟后,发现水力主缝及其所激活构造缝和层理缝发生膨胀,对周围岩体造成挤压和形变,改变井周围应力分布,形成应力集中区域.受水力压裂影响,压裂缝网周围呈现应力扰动现象,部分区域应力方向偏转剧烈,压后应力场如图5.
图5 压后缝网之间的应力阴影Fig.5 Stressshadow between thenetsafter fracturing
3 模拟结果讨论与分析
基于所建优化模型,对目标区块3口井开展簇间距优化.对基质渗透率为0.01×10-3、0.02×10-3、0.04×10-3、0.08×10-3、0.16×10-3和1.00×10-3μm2的6种情况,在簇间距分别为10、20和30 m时,开展了1、2和3 a的生产动态模拟,共得到54种结果.图6至图8分别为不同簇间距下的油藏压力波及图.
图6 簇间距为10 m的压裂缝网随时间推移的生产动态Fig.6 Production performanceof compressivefracturenetwork with cluster spacing of 10 m over time
图8 簇间距为30 m的压裂缝网随时间推移的生产动态Fig.8 Production performance of compressive fracture network with cluster spacing of 30 m over time
在模拟过程中,通过对缝网周围的压力变化情况和波及范围来表征储量的动用程度.对6种不同渗透率下的压裂缝网周围压降情况进行模拟发现,目标区块的基质渗透率越低,基质对裂缝供给能力越弱,缝网周围油藏压降幅度越大,单簇缝网的波及范围随基质渗透率降低而减小.结合井底压降曲线(图9)也可以看出,当基质渗透率为1×10-3μm2时,生产压降曲线最为平缓;当基质渗透率为0.01×10-3μm2时,压降曲线最陡,所以目标区块随基质渗透率降低井底油藏压力降幅将逐渐增大.
图9 簇间距为20 m时不同基质渗透率下的油藏压力变化曲线Fig.9 Reservoir pressureasfunction timeunder different matrix permeability with cluster spacing of 20 m
结合图10簇间距与压降的关系图可知,当簇间距为10 m时,生产压降曲线最平缓.所以目标区块通过缩小簇间距,可减缓井底压力降幅.目标区块页岩油在1×10-6~1×10-5μm2的渗透率情况下,簇间距设计不超过20 m,才能延缓压力下降程度.
图7 簇间距为20 m的压裂缝网随时间推移的生产动态Fig.7 Production performanceof compressivefracturenetwork with cluster spacing of 20 m over time
图14 基质渗透率为1×10-3μm2时不同簇间距下的油藏压力变化曲线Fig.14 Reservoir pressureasfunction timewith different cluster spacing under matrix permeability of 1×10-3μm2
4 结 论
1)使用DFN裂缝建模软件充分结合地质工程一体化条件,在实际储层中,建立了考虑天然裂缝的簇间距优化模型,能够直观模拟密切割工艺下,不同簇间距和不同基质渗透率对改造效果、区域动用程度的影响.
2)通过比对54种模拟结果,吉木萨尔页岩油示范区的井底油藏压力下降幅度随基质渗透率降低而增大;基质渗透率降低,基质向改造缝网供给能力减弱,缝网波及范围减小;簇间距减小和射孔簇数增加可减缓油藏压力下降幅度.随着簇间距减小,天然裂缝效应下改造效果更加复杂,井间改造更为充分.
3)在油层物性和岩石力学等参数非均质性强、较高压力系数、较大水平应力下,吉木萨尔M区块页岩油在渗透率为1×10-6~1×10-5μm2情况下,簇间距设计不超过20 m,才能延缓压力下降程度.